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Abstract

In this paper, the family of BBM equation with strong nonbmelispersiveB(m,n) is con-
sidered. We apply the classical Lie method of infinitesimdlee symmetry reductions are
derived from the optimal system of subalgebras and leadstesys of ordinary differential
equations. We obtain for special values of the parametetisi®equation, many exact so-
lutions expressed by various single and combined nondegiresJacobi elliptic function
solutions and their degenerative solutions (soliton, lind compactons).

1 Introduction

Benjaminet al [2] proposed the regularised long wave (RLW) equation, onj&min-Bona-
Mahony equation (BBM),
U + Uy + Ul — Uxt = O,

as an alternative model to the Korteweg—de Vries equatiothi® long wave motion in nonlin-
ear dispersive systems. These authors argued that botliceguare valid at the same level of
approximation, but that BBM does have some advantages bgefdV from the computational
mathematics viewpoint.

In order to understand the role of nonlinear dispersion enfdrmation of patterns in an un-
dular bore, Yalong [17] introduced and studied a family ofNBlBke equations with nonlinear
dispersion, Bm,n) equations

U+ (U™)x — (UMt = O, m,n> 1.

In [17], the exact solitary-wave solutions with compact o and exact special solutions with
solitary patterns of the equations were derived.

In [12] the authors introduced the family of BBM equation lwitrong nonlinear dispersive
B(m,n) equation:

U+ Ux+a(u™), + (U, =0, (1.1)

by using an algebraic method and they obtained solitanepagolutions. The case= 1 and
m = 2 corresponds to the BBM equation, [2]. This equation is teradtive to the Kortewegde
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Vries (KdV) equation, and describes the unidirectionappigation of small-amplitude long waves
on the surface of water in a channel. The BBM equation is nt¢ oanvenient for shallow
water waves but also for hydromagnetic and acoustic wawvektheerefore it has some advantages
compared with the KdV equation.

Clarkson [6] showed that the similarity reduction of the &tipn (1.1) form=3,n=1 and
a= % obtained by using the classical Lie group method reducegpdhtial differential equation
(PDE) to an ordinary differential equation (ODE) of Pairdldype; whereas the partial differential
equation doesn't possesses the Painlevé property faalpdifferential equations as defined by
Weisset al[13]. The author proved that the only non-constant sintijfagductions of this equation
obtainable either using the classical Lie method or thectlimeethod, due to Clarkson and Kruskal
[7], are the travelling wave solutions.

In this paper we study similarity reductions of the equation

ut+bux+a(um)x+(un)xxt: 07 (12)

wherea, b are constantd) # 0, andn,m € R* with mor n # 1, by using the Lie method of in-
finitesimals. The fundamental basis of this method is thaema differential equation is invariant
under a Lie group of transformations, a reduction transétionm exists. Though the method is
entirely algorithmic, it involves a large amount of algelarad of auxiliary calculations. Some
symbolic manipulations programs have been developed tpliginthe calculations. We use the
MACSYMA program symmgrp.max [5] and we have checked theltedwy using the MATH-
EMATICA program SYM.nb [8, 9]. In order to find all invarianbkitions with respect te-
dimensional subalgebras, it is sufficient to constructriava solutions for the optimal system of
orders. The set of invariant solutions obtained in this way is chtoptimal system of invari-
ant solutions For PDEs with two independent variables a single groupatatu transforms the
PDE into a ODEs, which are generally easier to solve. Theimedjtheory and description of the
method can be found in [3, 10, 11, 14].

The outline is as follows: 2 we obtain the symmetry reductions, similarity variablad a
reduced ordinary differential equations (dependingagm, m andn); in §3 we derive, for special
values of the parameters, exact solutions which can be &sguleby various single and combine
nondegenerative Jacobi elliptic function solutions aredrttiegenerative solutions (soliton, kink
and compactons); finally, i§4 some conclusions are presented.

2 LieSymmetries

To apply the classical method to Eq. (1.2) we consider thepamameter Lie group of infinitesimal
transformations irfx,t,u) given by

X" = x4+ £&(x,t,u) + O(£?),

t* =t+er(x,t,u)+O(e?),

u* = u+en(xt,u)+0(?),
wherece is the group parameter. We require that this transformdéawves invariant the set of so-
lutions of (1.2). This yields to an overdetermined, linggtem of equations for the infinitesimals

&(xt,u), T(x,t,u) andn(x,t,u). The associated Lie algebra of infinitesimal symmetriesasstt
of vector fields of the form

V:E(Xatau)ax+T(X,t,U)dt+’7(Xatau)au- (21)
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Invariance of Eq. (1.2) under a Lie group of point transfaiioras with infinitesimal generator
(2.1) leads to a set of twenty six determining equationsviSglthis system we obtaié = & (x),
a(x,t) kpu u . .
u(n_’l) — % + sz—n whereé, T anda are related by the following conditions:
oo U2 + kg nuMt 4 35n UM — kg uttl 4+ Eutl — 2an?u+-2anu=0,
a&umu™" + 2aanmu” + b & u™ ! + 2ap,,n? U + 2axb nu+ 2arnu = 0,
—alky M u™" 4+ a&mPu™" + ak nmd™" + 2anmu™ +a&nmy™tn
+2aanmfu™—2aa n’mu"+ bk nutt 4+ 2brinuttt
+b&nutt —blquttl 4+ b&EuUt — 2abrfu+2abnu=0.

T=1(t)andn =

The solutions of this system depend on the parameters otiequa.2) and we can distinguish
the following cases:

1. If aandb are arbitrary constants, the only symmetries admitted [) @re the group of space
and time translations, which are defined by the infinitesigeaierators

V1= dx, Vp = dt
e For Avy + Vv, the similarity variables and similarity solution are:

Z = X—At
u = h(2 (2.2)

whereh(z) satisfies
A(hM"” 4+ AH —amH™ 1 —bH = 0.

This equation, after integrating once with respec,tcan be reduced to

A (" =ah™+ (b—A)h+ky, (2.3)
wherek; is an integrating constant.

2. The cases for which Eq.(1.2) with== 0 have extra symmetries are given in the Table 1.

Table 1: Symmetries for a Generalization of a Family of BBM Equations
i | constants \2 Vi,

1|a(m-1)=0| (n—21)xdx+ (n—1)té + 2ua,
2| m=1a=-b (n—1)xdy + 2ud, T(t)o

3| m=2,n=1 —t + (u+ L) du

wheret(t) is an arbitrary function.

In order to determine solutions of PDE (1.2) that are notwajent by the action of the group,
we must calculate the one-dimensional optimal system [N@lxt we construct a table showing
the separate adjoint actions of each element as it acts lbtlee ather elements. This construction
is done by summing the Lie series.
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Table 2: commutator table for the Lie algebfa!}. Table 3: Adjoint table for the Lie algebrév!}.
Vi,vj] v1 Vo vi Ad Vi Vo vi
V1 0 0 (n—1)vq V1 V1 Va2 vi—e(n—1v,
Va2 0 0 (n—1)v Vo vy V2 vi—g(n—1)v,
vi ~(n—1v; —(n—1)v, O vi eley;  enbey, vi
Table 4: commutator table for the Lie algeb{a?}. Table 5: Adjoint table for the Lie algebrév?}.
Vi, Vil Vi Vo % Ad Vi Vo %
Vi 0 0 (n-1)v; Vi Vi Vo V3—(n—1)evy
V2 0 0 0 Vo V1 Vo V3
V3 —(n=1v; O 0 vi enbeyy v, v3
Table 6: commutator table for the Lie algebfa?}. Table 7: Adjoint table for the Lie algebrév3}.
vi,vi] vi vo V3 Ad vi v Vi
i 0O 0 O Vi VI Vo v3
Vo 0 0 —-w V2o Vi V2 Vitevp
vi 0 v, O Vi ovi ety v3

The generators of the nontrivial one-dimensional optingatemm are the set
A 1 2 3
Vi, AVi+Vz, V3, AV2+V3  AVi+Vva
Since equation (1.2) has additional symmetries and thectiehs that correspond t@; andvs,
have already been derived, we must only determine the sitpilariables and similarity solutions

corresponding to the remaining generators:
e For v} the similarity variables and similarity solution are:

z=17%, u:h(z)tr?zi,
the reduced ODE is
(n—1) z(h")" —2(h")" +h (n—1) (z—a—b)—2h=0.
Forn= 2 andb = —a, after integrating once with respectach(z) must satisfy
hi' —2 (W) —h* +kyzl? = 0, (2.4)

wherek; is an arbitrary constant.
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e For Av, + V3 + V2 the similarity variables and similarity solution are:
2
2

z=94(t) —Inx, u=h(z)emr1,

whered = [ ;7{;dt andh(z) satisfies the ODE

(h"2n3 — 20202 4+ W2n) W7 + (3h 1 n* +h" (—9hH —3h?) nd 4 h" (9hH
+2h2) 02+ 1 (R~ 3hH) n) '+ 1" ()*n°+h" (=5 ()° — 3h ()?) n®
+h (9 (W)3+5h (h’)2+2h2h’> e+ <h” (-7 (W) —h (h’)2+2h2h’> +h3h’) 2
n (hﬂ (2 (W)3—h (h’)2> — 213 h') n+h3h = 0.

e ForAvy +v§ the similarity variables and similarity solution are:

h(zz b
=X+Al =— ——
z=Xx+AlIn(t), u . >

andh(z) satisfies the ODE

AN ' £ AW +2ahH —h=0. (2.5)

Equation (2.5) is invariant under translations, this allesto reduce the order by one. By means of
the change of variableg/ = h,g = %}, the following second order ordinary differential equatio
for g(y) is obtained:

Mg’ —Ag*+ kg’ — g0 — 3A(¢)? - 2aydf +yg® = 0.

3 Exact Solutions
By making the change of variables

h"=y (3.2)
equation (2.3) becomes

Ay :ay”ﬁ]+(b—/\)y%+kl. (3.2)
After multiplying (3.2) by 3/ and integrating once with respectaave get

)\(y')Z_ ﬂ %‘+1+ 2(b—)\)n

1
=Y 1 ya 14 2k + ko, (3.3)

wherek; is an integrating constant.
Let us assume that equation (3.3) has solution of the form

y(2) = aff(2), (3.4)

wherea andf3 are parameters to be determined later.
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By substituting (3.4) into (3.3) we obtain

2an pm_ 2(b—A)n _5_ 2k . ko B
2 2 2 2 2B+2
(") (m+ n)/\aBZf T (n+ 1)Aa[32fn . GBZ)\f o GZBZAf P12 35)

In the following we will determine the exponents and coefiité of equations (3.5). So that
equation (3.5) is solvable in terms of Jacobi elliptic fumet that is equation (3.5) becomes

(f)2=r+pfP+qff, (3.6)

wherer, p andq are constants.

Comparing the exponents and the coefficients of equatiab$ #8d (3.6) we distinguish the
following cases:
Case 11f k; =0 andk, = 0.

Subcase 1:13 = mi—l n=1andms# 1.

(b-A)m-122  _ (mt1gb-2)

4pA ’ 2p

Subcase 1:28 = f%n andn=m.

(b—A)m-12  _ 2mpb—A)

2m(m+1)gA ~ (m+1)q
Subcase 1:33 = nZTnl andn=m.
_(b—)\)(m—l)2 _2mpb—A)
2m(m+1)rA -’  (m+Dyr
Subcase 1:436 = nZTnl andm=2n—1.
C(b=M0-1%2 _ (31—1)g(b—A)
o2n(n+Dra N (n+r

Subcase 1:506 = %n andn=1.

(b—A)(m-122  _(m+Dr(b—A)

4pA ’ 2p

2n
Subcase 1:68 = — andm=2n-—1.

(n—1)2%(b-A) _ (3n—1)g(b—A)

o2n(n+1)pA (N+1)pA
Subcase 1:7A = b, B is arbitrary andn=n.

a isarbitrary  a=af?ph
Subcase 1:81 =b, B = 20,
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a(n—m)?2

a= 2bn(n+m)q’

Subcase 1:90 =b, § = 2L

n-m-

a(n—m)?

a= 2bn(n+mjr-

Case 21f k; # 0 andk, = 0.
Subcase 2:13 =2,n=1andm= 2.

ke _2kp _ 3ak
“Soxr T tA, a= r
Subcase 2:28 = -2,n=1andm= 2.
a:£7 b:2k_1p_i_)\7 a:y_
297 q q
Subcase 2:38 = -2,n=m= 1.
k
a:—l, b:ﬁqﬂ, a:Zk—lp.
20/ q q
Subcase 2:48 =2,n=m= 1.
. kl _3k1q _Zklp
oy PET A A=

Case 31If k; =0 andk, # 0.
Subcase 3:13=1,n=1andm= 3.

1
ko \ 2
a (r)\) , b

Subcase 3:28 =—-1,n=1andm=3.

Wl

1
ko 2
or—i(a) , b=A
Subcase 3:43 = —-1,n=m= 3.
o\
_ 2 _
a_i<q)\>, b=A

r 1
ko \ 2 B 2
1ip(a> ], a= 429\ (r

NI

NI

ko 2 B
112r<q—)\> ], a_ip)\<

1+2q <rk—)\2> ] , a==+pA <r

k:

A

)

Nl

Nl

Nl

Nl
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Since in all these cases, p andq are arbitrary constants, we may choose them properly such
that the corresponding solutidnof the ODE (3.6) are expressed in terms of the Jacobianiellipt
functions. In the following we present some exact solutions

elfr=1,p=—(14+¢?),q=c? then

y=a(snzc))’,

where sifz|c) is the Jacobi elliptic function, is a solution of equation3(3[1].
From Subcase 3.1 for A =kp, n=1, m= 3, a = 2k,c? andb = —k»c? we obtain the particular
solution of equation (3.3)

y =sn(Z[c).

From (3.1) and (2.2) foc =1, n= 1, m= 3 anda = —2b we obtain the exact solution of (1.2)
given by

u(x,t) = tanh(x+ bt). (3.7)

If b= —%, (3.7) describes a kink solution (see Fig.1).

Figure 1: Solution (3.7) fob = —3.

From Subcase 2.4 for A = k—z-} a= —2kg(c®+1) andb = ky(3c® + %) we obtain the solution of
equation (3.3)
y = srf(Zc).

From (3.1) and (2.2), for =0, m=n= 1 anda = —4b, to yield
u(x,t) = sin*(x—bt). (3.8)
olf r =25, p= 5=, q= ==, f =nc(zc) £sqZc) is solution of equation (3.6), [1]. Then
y= ano(zlc) + soZlc))?

is solution of equation (3.3), where and 3 are arbitrary functions, rig/c) = ﬁzm sqZc) =

grr:(él‘g where sifzjc) and criz|c) are the first and the second Jacobian elliptic functionpees
tively (the elliptic sine and the elliptic cosine).
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From Subcase 1.7 for A = b, a = bB2 andn = m we obtain the particular solution of equation
(3.3)
y = [nc(z1) £sazj1))°.

From (3.1) and (2.2) ilm= n anda = bB? we obtain the solution of equation (1.2)
u(x,t) = [coshx— bt) =+ sinh(x — bt)]? . (3.9
elf p=1landg= -1,
y=a(cn(z1))?
is solution of equation (3.3).

B b(m— 1)2
From.subcase llforA = M2 —2m1E
(3.3)is

2b(m-+ 1)

:1 - —
, n anda =

, the solution of equation

y= sectr (2).
From (3.1) and (2.2) we obtain the solution of equation (1.2)

u(x,t) = sectr (x—At). (3.10)

Form=2 andA =1, (3.10) describes a soliton moving along a line with camstalocity (see
Fig.2).

,V\"V\\
N,

N

Figure 2: Solution (3.10) fom=2,A = 1 anda = —6.

Solutions (3.7) and (3.10) were first found in [12]. As far askmow, solutions (3.8) and (3.9)
are new and have not been previously described in the literat

4 Concluding remarks

In this paper we have seen a classification of symmetry remhgcof a family of BBM equations,
depending on the values of the constamts, n andm, by making use of the theory of symmetry
reductions in differential equations. We have construetiéthe invariant solutions with regard
to the one-dimensional system of subalgebras. Besidedrtfiarity reduction travelling wave
solution, we find new similarity reductions for this family equations. We have constructed
all the ODE'’s to which (1.2) is reduced. We obtain for speg@lies of the parameters of this
equation, many exact solutions expressed by various simgleeombined nondegenerative Jacobi
elliptic function solutions and their degenerative san$ (soliton, kink and compactons).
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