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Abstract

We consider gauge fields associated with a semisimple Malcev algebra. We construct
a gauge-invariant Lagrangian and found a solution of modified Yang-Mills equations
in seven dimensions.

1 Introduction

In Ref. [1], the 4d (anti-)self-dual Yang-Mills equations were generalized to the higher-
dimensional linear relations

cmnpsF
ps = λFmn, (1.1)

where the numerical tensor cmnps is completely antisymmetric and λ = const is a non-zero
eigenvalue. It is obvious that these equations lead to the full Yang-Mills equation, via the
Bianchi identity. Several anti-self-dual solutions of (1.1) were found in [2–6]. Conversely,
self-dual solutions of (1.1) are known. However, if we assume that the tensor Fmn may
take values in a Malcev algebra, then such solution may be found. Interestingly that
this solution exactly coincides with the general solution of 7d analogue of the 3d Euler
top equation [7]. The 7d model is regarded as a model describing self-dual membran
instantons [8].

The paper is organized as follows. Section 2 contains well-known facts about Cayley-
Dickson algebras, Malcev algebras, and analytic Moufang loops which we use. In Sections
3 gauge fields associated with a semisimple Malcev algebra are investigated, and a gauge-
invariant Lagrangian of the Yang-Mills type is constructed. In Section 4 solutions of
equations of motion in seven dimensions are found.
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2 Moufang loops and Malcev algebras

Recall that a loop is a binary system S with an unity element, in which the equations
ax = b and ya = b are uniquely solvable for all a, b ∈ S. Moufang loops are distinguished
from the class of all loops by the identity

(xy)(zx) = (x(yz))x.

This paper is concerned with connected analytic Moufang loops; that is, connected analytic
manifolds equipped with the Moufang loop structure, in which the binary operations are
analytic. Everywhere below for short we use the term ”Moufang loop” in place of the
term ”connected analytic Moufang loop”.

Moufang loops are closely associated with alternative algebras that are defined by the
identities

x2y = x(xy), yx2 = (yx)x.

It is evident from the definition that any associative algebra is alternative. The most im-
portant example of a nonassociative alternative algebra is the real Cayley-Dickson algebra.
Let us recall its construction (see [9]).

Let A be a real linear space equipped with a nondenerate symmetric metric g of signa-
ture (8, 0) or (4, 4). Choose the basis {1, e1, ..., e7} in A such that

g = diag(1, 1, 1, 1,±1,±1,±1,±1), (2.1)

and define the multiplication

eiej = −gij + cij
kek, (2.2)

where the structure constants cijk = cij
sgsk are completely antisymmetric and different

from 0 only if

c123 = c145 = c167 = c246 = c275 = c374 = c365 = 1.

The multiplication (2.2) transform A into a linear algebra that is called the Cayley-Dickson
algebra.

In general, the commutator algebra A(−) of the alternative algebra A is not a Lie
algebra. Instead of the Jacobi identity, A(−) satisfies the identity

J(x, y, [x, z]) = [J(x, y, z), x], (2.3)

where J(x, y, z) is so-called Jacobian of the elements x, y, z

J(x, y, z) = [[x, y], z] + [[y, z], x] + [[z, x], y]. (2.4)

An anticommutative algebra whose multiplication satisfies the identity (2.3) is called a
Malcev algebra. Everywhere below we use the term ”Malcev algebra” in place of the term
”finite-dimensional real Malcev algebra”.

Malcev algebras and alternative algebras are closely associated [10–12]. Any non-
Lie simple Malcev algebra is isomorphic to the quotient algebra A(−)/R, where A is a
Cayley-Dickson algebra. Any semisimple Malcev algebra M is decomposed in the direct
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sum M = N(M) ⊕ J(M) of Lie center N(M) and ideal J(M) generated by Jacobians.
Besides, N(M) is a semisimple Lie algebra and J(M) is a direct sum of non-Lie simple
Malcev algebras. In particular, it follows from here that any semisimple Malcev algebra
is embedded in the commutator algebra of an appropriate alternative algebra.

Further, recall that a derivation of a Malcev algebra M is a linear transformation D of
M satisfying

D[x, y] = [Dx, y] + [x,Dy]

for all x, y ∈M . We may write it in an equivalent form

[D,Tx] = TDx, (2.5)

where T : M → End(M) is the regular representation of M , such that Txy = [x, y].

We denote by Lie(M) the Lie algebra generated by all operators Tx. If M is a
semisimple Malcev algebra, then Lie(M) is a direct sum of the derivation subalgebra
Der(M) = Der(N)⊕Der(J) and vector subspace T (M) ≃ J(M). In addition, the subal-
gebra Der(N) ≃ N(M) and the subalgebra Der(J) is linearly generated by the operators

D(x, y) = T[x,y] + [Tx, Ty], (2.6)

where x, y ∈ J(M). With the regular representation T we may connect the bilinear form
(x, y) = tr(TxTy). It is clear that the form (x, y) is symmetric (x, y) = (y, x). In addition,
it follows from (2.3) that

([x, y], z) = (x, [y, z]), (2.7)

for any x, y, z ∈M . The form (x, y) is called a Killing form.

The regular representation of Malcev algebras can be extended. Let M be a Malcev
algebra, V be a real vector space, and τ : M → End(V ), x→ τx a linear mapping. Then
τ is called a representation of M if the algebra defined on the space M ⊕ V by

[x+ v, y + w] = [x, y] + τxw − τyv

is a Malcev algebra. In this case V is called a Malcev module. It is known [13–14] that every
representation of a semisimple Malcev algebra is completely reducible. Any irreducible
Malcev module is either Lie or the regular bimodule for a nonassociative simple Malcev
algebra or sl(2)-module of dimension 2 such that τx = x̄, where x̄ is the adjoint matrix to
x ∈ sl(2).

Finally, we note that there exists a correspondence between Moufang loops and Malcev
algebras, which generalizes the classical Lie correspondence between Lie groups and Lie
algebras [15–17]. Namely, there exists an unique, to within isomorphism, simply connected
Moufang loop S with a given tangent Malcev algebra, and any Moufang loop with the same
tangent algebra is isomorphic to the quotient algebra S/N where N is a discrete central
normal subgroup of S. Any simply connected semisimple Moufang loop is decomposed in
the direct product of a semisimple Lie group and a simple nonassociative Moufang loops
each of which is analytically isomorphic to one of the spaces S

7, S
3 × R

4, or S
7 × R

7.
Actually, any simply connected simple nonassociative Moufang loop is isomorphic to the
loop of elements of norm 1 in the Cayley-Dickson algebra over R or C.
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Using the previously mentioned correspondence between Moufang loops and Malcev
algebras, we can define a notion of the representation of Moufang loop. Let S be a
Moufang loop and M be its tangent Malcev algebra. The representation M → End(V )
of M induces the mapping S̃ → Aut(V ) of the simply connected Moufang loop S̃, locally
isomorphic to S, into the simply connected Lie group G̃ ⊆ Aut(V ). This mapping can
extend into the group G ≃ G̃/G̃0, where the subgroup G̃0 lies in the discrete center of G̃.
Therefore if S ≃ S̃/S̃0 and S̃0 is isomorphic to a subgroup of G̃0, then there exists the
mapping S → G induced by the representation of M . We shall call this mapping by a
representation of S. In particular, if S is a nonassociative compact simple Moufang loop,
then G̃ ≃ Spin(7) and G ≃ SO(7).

3 Nonassociative gauge fields

Suppose S is a semisimple Moufang loop, M is its tangent Malcev algebra, and Am(x) is
a vector field taking values in M and defined in an Euclidean or pseudo-Euclidean space.
Further, let

S → G ⊆ Aut(V ) (3.1)

be a representation of S, and H be a subgroup of G locally isomorphic to the group Int(S)
of inner automorphisms of S. Define the field ψ(x) taking values in V and its covariant
derivative

D̂mψ =
(
∂m + Âm

)
ψ,

where Âm ∈ End(V ) is an image of Am corresponding to the representation (3.1). As
usually, we require that D̂mψ has transformation properties the same as the field ψ, i.e.

ψ → ψ′ = ûψ,

D̂mψ → D̂′

mψ
′ = ûD̂mψ, (3.2)

where û(x) is function taking values in the subgroup H.

Consider an infinitesimal gauge transformation û = 1 + ε̂. It is obvious that ε̂ ∈
Der(M). If the field Am takes values in the Lie center N(M), then the condition (3.2)
defines the usual transformation rule of gauge fields

Am → Am + [ε,Am] − ∂mε, (3.3)

where ε is an isomorphic prototype of ε̂ in N(M). If Am is an element of the ideal
J(M) generated by Jacobians, then the situation is different. In this case the operator ε̂
has not a prototype in M . On the other hand, the representation of J(M) induced by
the representation of S is regular. Therefore we may use the identity (2.5) and get the
following transformation rule

∂m → ∂m − ∂mε̂,

Am → Am + ε̂Am

}
. (3.4)
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Obviously, the transformation (3.4) of Am induces a transformation of Âm according to
the rule

Âm → ûÂmû
−1. (3.5)

Now we go on to a construction of the gauge-invariant Lagrangian. To this end define
tensor fields in M such that their images in End(V ) are transformed by the adjoined
representation of G. This request is satisfied if we suppose

Fmn = ∂mAn − ∂nAm + [Am, An],

Jm =
1

12
cmnpsJ(An, Ap, As),

where cmnps is a completely antisymmetric numerical tensor. Indeed, it can easily be
checked that the infinitesimal transformations (3.3) and (3.4) induce the transformations

Fmn → Fmn + ε̂Fmn, Jm → Jm + ε̂Jm,

F̂mn → ûF̂mnû
−1, Ĵm → ûĴmû

−1, (3.6)

where F̂mn and Ĵm are images of Fmn and Jm, which are defined by the representation (3.1).
Note that the tensor Fmn extend a notion of the Yang-Mills field strength. Conversely,
the field Jm has not a prototype in the Yang-Mills theory. The field Jm is not zero only
if M is a non-Lie Malcev algebra.

We define the Lagrangian

L =
1

8g2
tr(F̂mnF̂

mn + ĴsÂ
s). (3.7)

If M is a Lie algebra, then the Lagrangian (3.7) coincides with the Lagrangian of Yang-
Mills and hence it is gauge-invariant. On the other hand, every representation of a semisim-
ple Malcev algebra is completely reducible. Therefore it is enough to prove H-invariance
of the Lagrangian (3.7) only if M is a non-Lie simple Malcev algebra. But in this case the
gauge-invariance of the Lagrangian (3.7) follows from (3.5) and (3.6).

4 Solutions of the equations of motion

Let M be a non-Lie simple Malcev algebra. Then M ≃ A(−)/R, where A is a Cayley-
Dickson algebra, and hence the algebra M admits the basis e1, . . . , e7 with the multipli-
cation table

[ei, ej ] = 2cij
kek.

In this basis the operators Tei
are represented in the form

Tei
= ci

jkejk, (4.1)

where ejk are generators of the Lie algebra Lie(M) ≃ so(7) or so(3, 4) with the matrix
elements

(ejk)
a
b = gjbδ

a
k − gkbδ

a
j . (4.2)



On a construction of self-dual gauge fields in seven dimensions 575

Using the representation (4.1) and the identity (4.2), we can find the Killing form

(ei, ej) = −24gij . (4.3)

Substituting (4.3) in the Lagrangian (3.7), we easily get the equations of motion

∂mFmn + [Am, Fmn] = Jn. (4.4)

Using the definition (2.4), we prove that every solution of the equations

Fmn =
1

4
cmnpsF

ps (4.5)

is a solution of the equations of motion (4.4).

Further, let H be a Lie group locally isomorphic to the group Int(M) of inner auto-
morphisms of M . Then H ≃ G2 (or H ≃ G′

2 in noncompact case). Define by

J(ei, ej , ek) = 12cijk
lel

the completely antisymmetric H-invariant tensor cijkl. If we write out its nonzero compo-
nents

c4567 = c2367 = c2345 = c1357 = c1364 = c1265 = c1274 = 1,

then it is easy to prove that the tensors cijk and cijkl satisfy the following identities

cmnicps
i = gmpgns − gmsgnp + cmnps, (4.6)

cmnicpsj
i = cps[mgn]j + csj[mgn]p + cjp[mgn]s, (4.7)

cmnijcp
ij = 4cmnp, (4.8)

cmnijcps
ij = 4gmpgns − 4gmsgnp + 2cmnps. (4.9)

Note that if the gauge fields are defined in an Euclidean space and M is a compact
algebra, then any solution of (4.5) correspond to a minimum of the functional of action.
Indeed, using the identities (2.7) and (4.9), we can shown that

L =
1

8g2
tr

[
2

3

(
F̂mn −

1

4
cmnpsF̂

ps

)2

+ ∂mÎm

]
,

where the prototype of Îm in M has the form

Im = cmnps

(
An∂pAs +

2

3
(AnAp)As

)
.

Since the variation of field on the boundary of volume vanish in the deduction of equations
of motion, we get the required statement.

Now we turn to a search of solutions of the equations (4.5). Suppose that the field Fmn

is defined in the space M with the metric (2.1). We choose the ansatz

Am(x) =
cmijx

j

λ2 + x2
ei, (4.10)
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where x2 = xkx
k. Using the identities (4.6)–(4.7), we get the following expression of field

strength

Fmn(x) =
2cmni(δ

i
jλ

2 + 2xixj)

(λ2 + x2)2
ej . (4.11)

By the identity (4.8), it follows that the tensor (4.11) is self-dual

The obtained solution may be generalized. We choose the ansatz

Am(x) = 6cmijx
iBj(u), (4.12)

where depending on u = λ2 +x2 the vector Bj takes values in M . If the vector Bi satisfies
the identity

dBi

du
=

1

2
cijk[B

j, Bk], (4.13)

then the field strength again is self-dual

Fmn(x) = 12cmnj

(
Bj +

dBj

du
x2 +

dBi

du
xixj

)
.

A particular solution of the equation (4.13) can find if to compare the right parts of (4.10)
and (4.12). General solution of (4.13) was found in the work [7].
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