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Abstract 

We improved the serial recursion calculation process of dynamic programming and introduced parallel dynamic 

programming based on stage reconstruction. Through the proposed algorithm a multistage decision problem can be 

repeatedly reconstructed and gradually transferred to a single stage issue. This algorithm was applied to solve the 

optimized operation of cascade reservoirs in the lower reach of Yalong River in China. Results indicate that the 

calculating efficiency, compared with serial dynamic programming, can be significantly improved without 

sacrificing accuracy. 

Keywords: parallel computing; optimized operation of cascade reservoir; parallel dynamic programming; stage 

reconstruction 

 

1 Introduction 

Reservoir optimized operation is a group of complicated 

system-optimization problems, having features of high 

dimension, nonlinearity, and multiple constraints. 

Methods used to solve such problems fall into mainly two 

types: intelligent optimization algorithms and traditional 

optimization approaches. For intelligent optimization 

algorithms represented by genetic algorithm
1, 2

, as they 

are readily caught in locally optimal solution, their 

application is constrained. As a traditional optimization 

method, dynamic programming
3-6

 (DP) is the most classic 

and the most applied. However, with the number of 

reservoir power stations rise, the computation scale of DP 

increases exponentially and its computation timeliness 

drops sharply or even “curse of dimensionality” occurs. 

To improve the solving performance of intelligent 

algorithm, experts in China and around the world have 

conducted lots of research and made improvements on 

various algorithms
7-10

. However, as far as an intelligent 
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optimization algorithm is concerned, its search process is 

inevitably accompanied with certain randomness no 

matter which kind of improvement strategy is employed 

as long as it is under the frame structure of intelligent 

algorithm. Thereby, it cannot be guaranteed that the 

algorithm will converge at the globally optimal solution. 

For DP, scientists have proposed dimensionality 

reduction methods
11, 12

 such as progressive optimal 

algorithm (POA) and discrete differential DP (DDDP). 

Although the complication of problem solving has been 

simplified by these dimensionality reduction methods, 

solving results more than often can only be regarded as 

satisfactory results when compared with results of 

standard DP as these methods rely heavily on initial 

solutions. 

With the development and promotion of high 

performance computing technologies, the concept and 

computing technology of parallel are introduced to solve 

reservoir optimized operation. In Ref. 13, data 

decomposition plus the divide and rule mode were used 

to allocate computation tasks of different combinations of 

initial and final states within each time period to different 

CPU kernels for computation. In Ref. 14 and Ref. 15, the 

master process was used to designate and store DP 

computation tasks and results while slave process was 

used to compute, compare, and obtain the optimized 

accumulative objective function value. Essentially, 

master-slave mode was employed by these approaches in 

their progressive parallel treatment of state computation 

within a single stage. Improvement in the parallel 

performance of an algorithm mainly relies on the increase 

of CPU kernel (or process) number. In this study, on the 

basis of the recursion structure of standard DP, parallel 

DP (SR-PDP) based on stage reconstruction was 

introduced taking the stages of a multi-stage problem as 

the objects for parallel processing. The algorithm was 

implemented in VC++. And the effects of different 

controlling parameters on the computation performance 

of parallel algorithm were evaluated through analog 

computation using the cascade hydropower stations in the 

lower reach of the Yalong River as an example. 

2 Mathematical model 

Assuming that the initial and the final water levels of an 

operation period of each reservoir are known, under the 

condition of deterministic runoff, with the maximum 

electric energy production as the goal, set up the 

optimization model of maximum electric energy 

production taking into account the constraint of cascade 

firm capacity. 

The objective function is as follows 
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where E is the total electric energy production of the 

cascade hydropower stations; Nt is the total capacity of 

the cascade hydropower stations at time period t; NB is 

the firm capacity of the cascade hydropower stations; Ki 

is the capacity coefficient of the cascade hydropower 

station i; 
i

tQ is the average electric generation during 

time period t of hydropower station i; 
i

tH is the average 

electricity generation water head during time period t for 

hydropower station i; t is the length of the 

computation time frame; θ is an exponent, usually taking 

the value of 2; A is a positive penalty coefficient; σt is an 

variable with value of 0 or 1 and its value is decided by 
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(3) 

The constraint conditions include: 

(1) Constraint of flow connection between 

hydropower stations 

( )i i i

t t tQI L QX  
            

(4) 

where i

tQI is the flow entering reservoir i in during time 

period t; 
i

tL  is the local inflow of reservoir i during time 

period t; ( )i  is an assembly of reservoirs at the upper 

reach and having direct flow connection with reservoir i; 
( )i

tQX   is the total discharge from reservoirs belonging 

to Ω(i) during time period t. 

(2) Reservoir hydrologic budget constraint 

 1

i i i i

t t t tV V QI QX t   
       (5) 

i i i

t t tQX Q q 
            (6) 

where 1

i

tV   and 
i

tV  are the initial and final water 

storages, respectively, of reservoir i during time period 

t-1; 
i

tQX  is the discharge of reservoir i during time 

period t; 
i

tq is the abandoned water flow of reservoir i 
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during time period t. 

(3) Hydropower station output constraint 

min max

i i i

tN N N≤ ≤
          (7) 

where 
min

iN  and 
max

iN are the lower limit and the upper 

limit, respectively, of the output from hydropower station 

i. 

(4) Reservoir water storage amount constraint 

,min ,max

i i i

t t tV V V≤ ≤
          (8) 

where 
,min

i

tV  and 
,max

i

tV  are the lower limit and upper 

limit, respectively, of the water storage amount of 

hydropower station i during time period t. 

(5) Reservoir discharged volume constraint 

,min ,max

i i i

t t tQ Q Q≤ ≤
         (9) 

where 
,min

i

tQ  and 
,max

i

tQ  are the lower limit and upper 

limit, respectively, of the discharged volume of 

hydropower station i during time period t. 

(6) Boundary conditions  

1 1

i i i i

Begin T EndV V V V= =
       (10) 

where 
i

BeginV  and 
i

EndV are the water storage amount at 

the beginning and the end of an operation period of 

reservoir i, respectively. 

(7) Non-negative conditions constraint 

All the above variables take non-negative values. 

3 Serial DP 

Taking the long term optimized operation of cascade 

hydropower reservoirs as an example. Assume that I is 

the number of hydropower reservoirs, an operation period 

is divided into T time periods, Vt is the water storage 

amount at the beginning of time period t, QXt is the 

discharged volume of time period t, and 

   TI

ttt

TI

ttt QXQXQXVVV ,,,,,,, 11  . Under the 

condition that natural inflow is known, optimize 

operation strategies according to the optimization 

criterion that maximum electric energy production from 

hydropower reservoir groups is achieved during the 

operation period. The optimized operation is a typical 

multi-stage decision process. A common serial DP has the 

following computation steps: 

(1) Stage variables: Divide the operation period into T 

stages based on month (or ten days) and use tto represent 

stage variable. 

(2) State variables: The water storage amount Vt is 

selected as the state variable of a reservoir at time t. 

(3) Decision variables: The discharged volumeQXt is 

selected as the decision variable for a reservoir for the 

time period t.  

(4) State transfer function or hydrologic budget 

function: 

 1t t t tV V QI QX t    
      

(11) 

(5) Indicator function: If the electric energy 

production of a hydropower reservoir group at the t stage 

is selected as the indicator function, we have: 

 ,t t tN V QX
          (12) 

(6) The recursion relation: 
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The program frame of serial DP recursion is mainly 

constituted by 3 nested major cycles which are the stage 

variable cycles, the state variable cycle, and the decision 

variable cycle. The pseudo-codes for the serial DP 

recursive program are shown in Fig.1. 

Essentially, the stage cycle is the successive 

computation of the benefit to go ft+1(Vt+1). Take the 

Initialize     fT+1(VT+1)=﹣∞,   t=T,T-1,…,1，i=1,2,…,K

Initialize     fT(VT)= 0

For all the stages   from t = T to 1

For all the state variables    Vt
i∈[Vt,min，Vt,max]

For all the decision variables    QXt
i∈[QXt,min，QXt,max]

If Ψ(Vt
i，QXt

i)+ft+1(Vt+1)＞ft(Vt)

ft(Vt)＝ Ψ(Vt
i，QXt

i)+ft+1(Vt+1)

End if

End for

End for

End for

the stage

loop

the state

loop

the decision

loop

Fig. 1. The pseudo-codes for a serial DP recursive program 
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backward computed serial DP as an example, the 

computation of ft(Vt) relies on ft+1(Vt+1) from the next 

stage. Due to the interdependence between data in 

recursion, only sequential computation can be performed 

for standard DP. 

4 SR-PDP 

It can be seen from serial DP recursion function that each 

recursion in serial DP consists of 2 parts. The 1
st
 part was 

the solving of a single stage indicator function; the 2
nd

 

part is the benefit to go after that stage until the last stage. 

When solving DP using state discrete method, the 

solving order of the state points has no effects on the 

optimum-searching results of the current stage once the 

discrete point location of state space is confirmed. 

Therefore, employing the parallel computation 

technology, it is possible to segment state variables of DP 

and allocate them into different processes for parallel 

computation. In Ref. 14-16, essentially, master/slave 

mode was employed in the parallel treatment of the state 

combinatorial computing of a single stage. Therefore, it 

can be considered as a partial parallel of the indicator 

function ψ(Vt, QXt). However, the recursion method used 

is still that first adding the corresponding benefit to go to 

the indicator function value of the current stage and then 

carrying out recursion successively for each stage. 

This study began from stage reconstruction for 

parallel computing. The basic idea is that dividing all the 

stages into several parallel subgroups and performing 

computation for each of the subgroups. Orderly connect 

the computation results of the above subgroups and result 

in a new multi-stage recursive problem which has fewer 

stages than the original problem. Performing such stage 

reconstruction repeatedly can progressively transfer a 

multi-stage problem into a single stage one, and the 

original problem is solved. 

Taking into account the features of reservoir 

operation models and assuming that there are 12 stages 

during operation period and subgroup capacity (stages) is 

2, perform uniform dispersion for the reservoir water 

level from its normal pool level to its dead water level. 

The solving process of SR-PDP is shown in Fig. 2 where 

the computing within each dashed box makes an 

independent subgroup. 

For a multi-stage decision problem with T stages, if 

the subgroup capacity is C (C≥2), the computation steps 

are as follows: 

Step 1: Subgroups set up. For a multi-stage decision issue 

with T stages, from the first stage, every C stage 

makes a subgroup. Finally, a T-stage problem is 

divided into /T C   independent subgroups. And 

the last subgroup has C or T-|T/C|*C stages; 

Step 2: Intersubgroup parallel computing. Intersubgroup 

parallel computing is simultaneously performed; 

Step 3: Intrasubgroup computing. Solve the C-stage 

subgroups according to standard DP and obtain 

results for different initial and end state 

combinations of the subgroups. Essentially, 

internal computing is a process that transfers a 

C-stage probleminto a single stage one and 

records the corresponding local computation 

results of that subgroup; 

Step 4: Stage reconstruction. Orderly connect the 

previously obtained /T C   single stage 

problems at their overlapping state points and 

reconstruct them into a new multi-stage problem. 

Now, the stage number changes from T to 

/T C   ; 

Step 5: Judge whether it is the end. When the stage 

number is 1, solving finishes, otherwise return to 

step 1. 
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Fig. 2. The solving process of SR-PDP 
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5 Parallel performance evaluation 

The major indexes that are used to evaluate the 

computation performance of a parallel algorithm are 

speedup ratio and parallel efficiency. 

Speedup ratio is the speedup times used to evaluate a 

parallel machine cluster relative to serial machines. 

Suppose that it takes Ts for a certain serial application 

program to be run on a single CPU of a certain parallel 

machine. After parallelization of that program, it takes Tp 

for P programs to be run in parallel on P CPUs. Then, the 

speedup ratio Sp of that parallel program on that parallel 

machine can be defined as: 

S
P

P

T
S

T
                  (15) 

Parallel efficiency is used to evaluate the rate of the 

computing power that is effectively utilized. For an ideal 

parallel machine cluster, the speedup ratio is P and the 

parallel efficiency is 1. But, for a real system, the speedup 

ratio is less than P and the parallel efficiency is between 0 

and 1. E stands for parallel efficiency and it describes 

what degree a CPU is effectively utilized. If 

communication overhead is not considered, parallel 

efficiency can be defined as: 

P
P

S
E

P
                (16) 

6 Application examples 

As shown in Fig. 3, the cascade hydropower stations at 

the lower reach of the Yalong River consists of 2 

hydropower reservoirs that cannot be operated for a 

whole perfect year and 3 hydropower reservoirs with 

poor operation performance. Under the condition of 

deterministic runoff, with the maximum electric energy 

production as the goal, develop the optimization model of 

maximum electric energy production taking into account 

the confine of cascade firm capacity. As the 3 power 

stations including Jinping I, Jinping II and Gongdi 

Tongzilin were operated daily or of water diversion mode, 

in actual computing, the number of reservoirs that need 

operation strategy optimization was 2. 

 

 

 

 

 

 

 

 

 

 

 

The computing platform of the computer cluster was 

made up of 3 Intel® Core™ i5 computers of 

isostructuralism that were connected with each other. The 

CPU kernel number of the computer cluster was fixed as 

12. The communication interface used MPICH2, and 

communication mode adopted the SPSD mode. 

Computing tasks were equally divided based on process 

numbers. 

The effects of parameters such as subgroup capacity, 

state space discrete scheme and stage number in 

operation period on the computation performance of 

SR-PDP are discussed as follows taking the computation 

results of serial DP as standard. 

6.1 The effects of subgroup capacity 

The 5-year measured data of monthly runoff from June 

1959 to May 1964 were used for optimization 

computation. The stage number during the operation 

period was 60, and the state space was dispersed on 100 

equal parts.  

During the process of stage reconstruction, the 

processes needed by parallel computing became 

gradually fewer. As process number is related to 

subgroup capacity, the latter can exert great effects on the 

computation complexity and parallel efficiency of the 

algorithm. During computing, 6 (i.e., 5, 6, 7, 8, 9, and 10) 

subgroup capacity schemes were set up. Analog 

computation for the 6 schemes was performed using both 

serial DP and SR-PDP. Both computations arrived at a 

cascade electric energy production of 4.0573310
11

 kW·h 

and both cascade electricity generation assurance rates 

were 98.33%. These results confirmed that SR-PDP only 

changes the computation mode of serial DP without 

changing the final computation results of the algorithm. 

Indexes of parallel computation performance for both 

serial and parallel computation modes are shown in Table 

1. The number of processes needed in the repeated 

reconstruction computation of SR-PDP decreased 

Jinping I Jinping II Guandi Ertan Tongzilin

Reservoir Hydropower

Fig. 3. Topological diagram of the cascade 
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progressively with the increase in the times of 

reconstruction. In other words, process number was not a 

fixed value. Therefore, discussion on the parallel 

computation performance of SR-PDP here did consider 

the index of parallel efficiency. Instead, the parallel 

computation time and parallel speedup ratio were 

employed for the evaluation of parallel performance of 

the algorithm. 

As can be seen from Table 1, with the increase of 

subgroup capacity, the parallel computation performance 

of SR-PDP showed trends of first going up and then 

dropping, which is shown in Fig. 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 Comparison of computation results of different subgroup capacity schemes 

Scheme No. 
Subgroup 

capacity 

Changing of process 

number 

Computation 

scale (108 

times) 

Computation time 

(s) 
Speedup 

ratio 

Serial Parallel 

SR-PDP-A1 2 30→15→8→4→2→1 

ca 58 2341 

771 3.0 

SR-PDP-A2 3 20→7→3→1 690 3.4 

SR-PDP-A3 4 15→4→1 482  4.9  

SR-PDP-A4 5 12→3→1 522  4.5  

SR-PDP-A5 6 10→2→1 563  4.2  

SR-PDP-A6 7 9→2→1 657  3.6  

SR-PDP-A7 8 8→1 648  3.6  

SR-PDP-A8 9 7→1 652  3.6  

SR-PDP-A9 10 6→1 658  3.6  

SR-PDP-A10 11 6→1 683  3.4  

SR-PDP-A11 12 5→1 689  3.4  

SR-PDP-A12 13 5→1 723  3.2  

SR-PDP-A13 14 5→1 769  3.0  

SR-PDP-A14 15 4→1 775  3.0  

 

With the set up of the parameters in this section, 

when subgroup capacity was 4-6, computation time was 

the shortest and parallel computation performance fell in 

the optimal range. When process number was equal to or 

slightly larger than the CPU kernel number of the 

computation platform, the computation platform set up 

in this study can achieve its highest parallel computation 

performance. As the computation platform was a simple 

computer cluster of 3 4-kernel PC machines 

interconnected through local area network and the CPU 

kernel number was 12, it was better for the value of the 

subgroup capacity C to be a positive integer close to 

⌈T/12⌉ to avoid too many processes which will lead to a 

drop in parallel computation performance. 

6.2 The dispersion number of state space 

The measured monthly runoff data of 1 year from June 

 

Fig. 4. Relationship between the parallel computation 

performance of SR-PDP and subgroup capacity 
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1959 to May 1960 were used for optimization 

computation. The stage number of the operation period 

was 12, and the subgroup capacity was fixed as 2. Ten 

schemes of state space dispersion number were set up 

from 10 to 100 with a step size of 10. 

Analog computations were performed for the above 

10 schemes using both the serial DP and parallel DP. 

Optimization results are shown in Table 2. 

As can be seen from Table 2, with the dispersion 

number of state space increased, the electricity 

generation displayed increasing trends and partial 

vibration occurred during the increasing process. The 

reason is that uniformly divided fixed dispersion over 

water level was used in this study. Changes of the water 

level dispersion point location might have resulted in the 

slight bias in electric energy production. 

 

Table 2 Comparison of analog computation results of different dispersion schemes 

Scheme No. 
Dispersion 

number 

Electric 

energy 

production 

(108 kW·h) 

Cascade 

electricity 

generation 

assurance 

rate (%) 

Computation 

scale 

(104 times) 

Computation time 

(s) 
Speedup 

ratio 
Serial Parallel 

SR-PDP-B1 10 715.47 91.67 ca 1.02  1 3 0.33 

SR-PDP-B2 20 719.389 91.67 ca 16.08  1 3 0.33 

SR-PDP-B3 30 719.97 100.00 ca 81.18  4 4 1.00 

SR-PDP-B4 40 719.758 100.00 ca 256.32  11 5 2.20 

SR-PDP-B5 50 719.913 100.00 ca 625.50  28 13 2.15 

SR-PDP-B6 60 719.939 100.00 ca 1296.72  57 25 2.28 

SR-PDP-B7 70 720.33 100.00 ca 2401.98  105 51 2.06 

SR-PDP-B8 80 719.879 100.00 ca 4097.28  178 87 2.05 

SR-PDP-B9 90 720.317 100.00 ca 6562.62  280 137 2.04 

SR-PDP-B10 100 720.472 100.00 ca 10002.00  402 198 2.03 

 

Computation scale and computation time increased 

rapidly in response to the increase of the dispersion 

number of state space. After comparison, we can see 

from Fig. 4 that the computation time of SR-PDP 

decreased fairly greatly compared with that of serial DP. 

When the dispersion number was between 10 and 30, 

serial computation time was relatively short, leading to 

fairly big changes in the parallel computation 

performance of SR-PDP. When the dispersion number 

was over 30, the parallel computation performance of 

SR-PDP fluctuated slightly with the increase of the 

dispersion number of state space, but the fluctuation was 

negligible when compared with the total computation 

time. Therefore, it can be concluded that when other 

parameters were fixed and the problem to be solved 

required computation amount at scale, the computation 

performance of SR-PDP basically stayed stable as shown 

in Fig. 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Comparison of computation time 
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6.3 Stage number in an operation period 

The dispersion number of state space was fixed as 100, 

and the subgroup capacity was fixed as 5. Thirty schemes 

of stage number were set up from 1 to 30 years with 1 

year as step size. 

Analog computation was carried out for the above 30 

schemes using both the serial DP and parallel DP. The 

optimization results are shown in Table 3. 

As can be seen from Table 3, the cascade electric 

energy production assurance rates were all above 95% for 

all the different stage number schemes, which met the 

requirement of actual projects. Therefore, the 

computation results of parallel DP were valid for actual 

projects. With the increase of stage number, roughly, the 

computation scale increased linearly, and the computation 

time of serial DP also exhibited trends of linear 

increasing with the increase in computation scale. The 

computation time of SR-PDP dropped fairly greatly 

compared with that of serial DP as shown in Fig. 6. With 

the increase of stage number, the computation time of 

SR-PDP tended to increases stairwise as shown in Fig. 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The reason for the stairwise increase of computation 

time with increasing stage number is that the subgroup 

capacity was fixed as 5, and the stage reconstruction 

times needed during the computation process would 

increase stairwise with the increase in stage number as 

shown in Table 4. 

Table 4 The relationship between stage reconstruction times and stage number 

Stage number 12 24 36 48 60 72 84 96 108 120 

Reconstruction times 2 2 3 3 3 3 3 3 3 3 

Stage number 132 144 156 168 180 192 204 216 228 240 

Reconstruction times 4 4 4 4 4 4 4 4 4 4 

Stage number 252 264 276 288 300 312 324 336 348 360 

Reconstruction times 4 4 4 4 4 4 4 4 4 4 

 

Fig. 7 The relationship between computation time and 

stage number 

  

Fig. 6 Comparison of computation time 

 

(b) The relationship between speedup ratio and computation 

scale 

Fig. 5. Comparison of analog results 
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Table 3 Comparison of analog results of schemes with different stage numbers 

Scheme No. 
Stage 

number 

Cascade 

electric 

energy 

production 

(108 kW·h) 

Cascade 

electricity 

generation 

assurance 

rate (%) 

Computation 

scale (108 

times) 

Computation time 

(s) 
Speedup 

ratio 
Serial Parallel 

SR-PDP-C1 12 720.47 100.00  ca 10  402 305 1.32  

SR-PDP-C2 24 1534.29 95.83  ca 22  889 370 2.40  

SR-PDP-C3 36 2428.74 97.22  ca 34  1371 573 2.39  

SR-PDP-C4 48 3290.31 97.92  ca 46  1863 579 3.22  

SR-PDP-C5 60 4057.33 98.33  ca 58  2341 585 4.00  

SR-PDP-C6 72 4936.63 98.61  ca 70  2834 669 4.24  

SR-PDP-C7 84 5747.81 98.81  ca 82  3300 687 4.80  

SR-PDP-C8 96 6603.68 97.92  ca 94  3806 697 5.46  

SR-PDP-C9 108 7311.31 98.15  ca 106  4278 713 6.00  

SR-PDP-C10 120 8083.09 98.33  ca 118  4755 717 6.63  

SR-PDP-C11 132 8972.87 98.48  ca 130  5249 1076 4.88  

SR-PDP-C12 144 9693.36 98.61  ca 142  5721 1083 5.28  

SR-PDP-C13 156 10487.1 98.72  ca 154  6217 1114 5.58  

SR-PDP-C14 168 11267.7 98.81  ca 166  6670 1138 5.86  

SR-PDP-C15 180 12105.3 99.44  ca 178  7170 1152 6.22  

SR-PDP-C16 192 12954.6 99.48  ca 190  7651 1181 6.48  

SR-PDP-C17 204 13770.7 99.51  ca 202  8134 1193 6.82  

SR-PDP-C18 216 14580.4 99.54  ca 214  8627 1209 7.14  

SR-PDP-C19 228 15276.8 99.56  ca 226  9097 1224 7.43  

SR-PDP-C20 240 16037.7 99.58  ca 238  9618 1247 7.71  

SR-PDP-C21 252 16868.4 99.60  ca 250  10079 1269 7.94  

SR-PDP-C22 264 17612.1 99.62  ca 262  10549 1290 8.18  

SR-PDP-C23 276 18454.7 99.64  ca 274  11037 1327 8.32  

SR-PDP-C24 288 19325.6 99.65  ca 286  11529 1360 8.48  

SR-PDP-C25 300 20164.4 99.33  ca 298  12032 1384 8.69  

SR-PDP-C26 312 20988.5 99.36  ca 310  12487 1401 8.91  

SR-PDP-C27 324 21871.4 99.38  ca 322  12974 1437 9.03  

SR-PDP-C28 336 22640.1 99.40  ca 334  13445 1486 9.05  

SR-PDP-C29 348 23489.9 99.43  ca 346  13907 1531 9.08  

SR-PDP-C30 360 24186.5 99.44  ca 358  14472 1589 9.11  
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The computation scale increased linearly with the 

increase of stage number. The increase of parallel 

speedup ratio of SR-PDP is shown in Fig. 8. When the 

stage number was 132, the speedup ratio displayed 

decrease and then continued increasing. This was because 

when the subgroup capacity was 5 and the stage number 

increased from 120 to 132, the stage reconstruction times 

needed changed from 3 to 4. Thereby, the computation 

time showed fairly great increase, leading to the big 

decrease of the speedup ratio of SR-PDP here. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7 Conclusions 

The following conclusions are drawn based on the 

simulation and analysis of the computation performance 

of SR-PDP: 

(1) Compared with DP, SR-PDP can greatly shorten 

the computation time without sacrificing the 

computational accuracy. 

(2) For different subgroup capacity schemes, the 

computation time of SR-PDP was shortened fairly greatly 

compared with that of serial DP. The changing trend of 

the parallel performance of SR-PDP was related to the 

relationship between subgroup capacity and the total 

stage number of an operation period. When the subgroup 

capacity was so set up that the process number needed for 

computation was smaller or slight greater than the CPU 

kernel number of the computation platform, the parallel 

performance of SR-PDP was in direct proportion to the 

subgroup capacity. When the subgroup capacity was so 

set up that the process number needed for computation 

was far greater than the CPU kernel number of the 

computation platform, the parallel performance of 

SR-PDP was inversely proportional to the subgroup 

capacity. 

(3) For different dispersion schemes of state space, 

the computation time of SR-PDP decreased fairly greatly 

compared with that of serial DP. Generally, as long as the 

computation volume of a problem reached a certain scale, 

the parallel computation performance of SR-PDP 

basically stayed stable with the changes of the dispersion 

number of state space. 

(4) For different schemes of stage number of an 

operation period, the computation time of SR-PDP was 

shortened fairly greatly compared with that of serial DP. 

With the increase of the stage number in an operation 

period, the parallel computation performance of SR-PDP 

tended to increase stairwise. The location of the stage 

jump point was related to the relationship between the 

subgroup capacity and the stage number of an operation 

period. Generally speaking, when the subgroup capacity 

is so set up that the reconstruction times of SR-PDP need 

to be raised, jump of computation performance will occur 

in which the subgroup capacity is and the computation 

performance of the subgroup capacity schemes at 

locations slightly after the jump point will be lower than 

that of the schemes slightly before the jump point. 
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