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Abstract 
Concept hierarchies are important for generalization in 
many data mining applications. We propose a method 
to automatically build a concept hierarchy from a 
provided distance matrix. The method is a 
modification of traditional agglomerative hierarchical 
clustering algorithm. When two closest clusters are 
selected for combining into a new cluster, the 
algorithm either creates a new cluster with the two 
original clusters as its sub-clusters, or let a cluster join 
the other without creating a new cluster at the higher 
level of the hierarchy. For the purpose of algorithm 
evaluation, a distance matrix is derived from the 
concept hierarchy built by algorithm. Root mean 
squared error between the provided distant matrix and 
the derived distance matrix is used as evaluation 
criterion. Empirical results show that the traditional 
algorithm under complete link strategy performs better 
than the other strategies, our algorithms perform 
almost the same under the three strategies, and our 
algorithms perform better than the traditional 
algorithms under various situations. 
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1. Introduction 
Concept hierarchy, or called taxonomy, is usually in 
the form of tree. It is an important tool for capturing 
the generalization relationship among objects. Concept 
hierarchies exist in many data mining applications. For 
example, multiple level association rule mining [7, 8, 
16, 11] is based on assuming the existence of concept 
hierarchy. 

Concept hierarchies are usually built by domain 
experts. It is not practical in many applications. For 
example, in a supermarket data mining application, 
manually building the taxonomy of items is a very 
laboring job. Moreover, such taxonomies are hard to 

reflect the changing customer purchasing behaviors 
which subsequently affect the similarities between 
items. Therefore, it is obviously that automatically 
building a taxonomy based on the similarities between 
objects is desired. 

With the similarities between objects, an intuitive 
way for building a concept hierarchy is hierarchical 
clustering. However, internal nodes in trees built by 
traditional agglomerative hierarchical clustering 
algorithm are all degree 2. This is not a regular form of 
concept hierarchy. We propose algorithms for 
automatically building concept hierarchies from a 
given distance matrix of the objects. In a concept 
hierarchy, it is very likely that more than two concepts 
form a common concept. In order to capture such 
characteristics of concept hierarchy, the clustering 
algorithms should allow more than two clusters merge 
into a cluster. We allow two clusters “join” by 
merging their children, i.e., sub-clusters, into a cluster. 
Fig. 1 shows an example of expected concept 
hierarchy on drink. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1: An expected concept hierarchy 
 

The rest of the paper is organized as follows. In 
section 2, the measurement for the algorithms is 
presented and the way to obtain the distance matrix is 
discussed. Section 3 discusses the algorithms to build 
a concept hierarchy from a given distance matrix 
among the objects. Experiment description and the 
result are in section 4. Conclusion is in section 5. 
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2. Measurement 
There are some metrics for quality of clustering, such 
as intra-cluster distance, inter-cluster distance, and 
Dunn’s validity index [3]. In information retrieval 
community [14, 15, 18], there are measurements for 
concept hierarchy on documents, such as the 
percentage of reserved taxonomic relations [4], top_k 
inclusion rate [20]. But, these are not suitable for our 
method since it is hard to obtain ideal concept 
hierarchies, and, our method does not concern clusters. 

Input to the algorithms is a distance matrix, 
denoted as provided distance matrix. Since a correct 
concept hierarchy is usually not available, we propose 
an indirect measurement. In order to compare with the 
given distance matrix, the output concept hierarchy is 
converted into a distance matrix, denoted as derived 
distance matrix. The derived distance between two 
objects is inverse proportional to the level of their 
nearest common ancestor. Distance between two 
objects is 1 if their nearest common ancestor is the 
root. Root mean squared error (rmse) between the two 
distance matrices is served as the measurement of the 
output concept hierarchy quality. 

As for obtaining the provided distance matrices, 
there are methods for different types of data. There are 
methods for different types of data to obtain distance 
matrices. For data in categorical attributes, we can 
adopt the similarity definition from CACTUS [5] with 
simplification. We use connectivity to define 
similarity between categories [12, 13]. Let dataset D = 
{d1, d2, …, dn}. D is subset of D1 * D2 * … * Dk, 
where Di is a categorical domain, for 1 ≦ i ≦ k. 
Tuple di = <ci1, ci2, …, cik>.  

There is a link between categories x and y in 
domain Di if there is a pair of tuples (du, dv) having x 
and y as their ith attribute values and have the same 
categorical value in an attribute j other than attribute i. 
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The similarity between two categories x and y in 
attribute i is defined as the number of links to total 
number of pairs having x and y as their ith attribute 
values. 

For market basket data, ROCK uses 
interconnectivity [9] to define the similarity between 
two items in the universal item set. For items x and y 
in a transaction database, the similarity can be defined 
by the support of 2-itemset {x, y} [1]. Other metrics 
for similarity between any two items can also be 
considered, such as Jaccard coefficient [10, 6]. 

There are two categories of measurements on the 
distance between two academic documents TF-IDF 
[17] in information retrieval and reference-based 
distance. Two academic documents are dissimilar if 

they share few or none citations. But if they share 
similar citations, they can be considered similar [2]. 

3. Building a Concept Hierarchy 
It is intuitive to use traditional agglomerative 
hierarchical clustering for building a concept hierarchy. 
Hierarchical clustering treats each object as a singleton 
cluster, and then successively merges clusters until all 
objects have been merged into a single remaining 
cluster. The strategies for computing the distance 
between a pair of clusters used in this paper are single 
link [19], average link, and complete link [10]. 
 In our modified hierarchical clustering, two clusters 
can either “merge” into a new cluster at the upper 
level of the tree or “join” together. When two 
clusters merge, they become the children of the newly 
created cluster. When two clusters join together, either 
(1) they form a new cluster whose children (sub-
clusters) are the children of the two original clusters, 
or (2) a cluster becomes a child of the other cluster. 
However, two singleton clusters can only merge. It 
makes no sense for them to join together. 
 Let distclu(X, Y) be the average distance between an 
object in cluster X and an object in Y. Let clusters A 
and B have sets of sub-clusters {A1, …, Am} and 
{B1, …, Bn}, respectively. Then, nA = m(m+1)/2 and 
nB = n(n+1)/2 are the numbers of sub-cluster pairs in 
A and B, respectively. We denote distcomp(X) as the 
total distance of distclu(Ai, Aj), and distcomp_avg(A) as 
the average distance of distclu(Ai, Aj), where Ai and Aj 
are two sub-clusters in A. The weighted average 
distance distcomp_avg(A, B) of A and B is (distcomp(A) + 
distcomp(B)) / (nA + nB). When the pair of cluster A and 
B is chosen by the hierarchical clustering algorithm for 
next iteration, the following conditions are used to 
determine the type of merge or join. The conditions 
are checked sequentially. 
1. Two singleton clusters merge into a new cluster. 
2. If distclu(A, B) - distcomp_avg(A, B) > σ, where σ is 

the standard deviation of the distance in the 
provided distance matrix, then A and B are 
merged. This means that though the pair of 
clusters A and B is chosen for next clustering 
iteration, their cluster-to-cluster distance is still 
quite large. So, they are not suitable to join 
together. 

3. Given a small fraction β, say β = 0.05, if 
|distcomp_avg(A)-distcomp_avg(B)| / distcomp_avg(A, B) 
< β, then sub-clusters of A and B are sub-
clusters of a new cluster. 

4. If distcomp_avg(A) > distcomp_avg(B), meaning 
objects in sub-clusters of A are more diverse 
than objects in sub-clusters of B, then B 
becomes a sub-cluster of A. 



5. Else, A becomes a sub-cluster of B. 
The total distance between sub-clusters of a 

resulting cluster X, distcomp(X), has to be updated after 
merging or joining clusters A and B. In Fig. 2(b), 
distcomp(C) ← distclu(A, B). The distance distclu(A, B) 
has been computed when the pair (A, B) is chosen if 
average link is applied for computing cluster to cluster 
distance. In Fig. 2(c), distcomp(C) ←  distcomp(A) + 
distcomp(B) + distclu(A, B). In fig. 2(d), distcomp(A) ← 
distcomp(A) + distclu(A, B).  
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Fig. 2: The cases of merging or joining. (a) Clusters are 

to be processed in next clustering iteration. (b) They merge 
into a new cluster. (c) Their sub-clusters form a new cluster. 

(d) Cluster B becomes a sub-cluster of cluster A 

4. Experiment Result 
A provided distance matrix of n objects is generated 
with the assistance of a tree described in the following 
steps. 

1. Start with a root. 
2. The number of an internal node is uniformly 

distributed in a specified range, denoted as span. 
Generate a random number s in this range. 

3. Randomly choose a leaf node. Create s children 
for the chosen node. 

4. Repeat steps 2 and 3 until there are n leaf nodes. 
5. Compute the distance between all pairs of 

categories. 
6. Noise is applied on the distance matrix. 

Uniformly distributed numbers between (1-noise) and 
(1+noise) is multiplied to the distance values. 

In the experiment, we illustrate the performance 
of the algorithms under three parameters, namely noise, 
span, and number of items. For each parameter 
combination, root mean squared error values of 100 
tests are averaged. For generating provided distance 
matrices, we build trees with two intervals of span: [2, 
6] and [2, 10]. 

We compare the root mean squared error (rmse) 
between the provided distance matrices and the 
distance matrices derived from the trees built by the 

algorithms. In figures 3 and 4, the lines MS, MA, and 
MC represent for our new modified algorithm under 
the three cluster-to-cluster distance strategies, namely 
single link (S), average link (A), and complete link (C), 
respectively. The lines TS, TA, and TC represent for 
traditional algorithm under the three strategies, 
respectively. 

The spans of internal nodes are in two ranges: the 
narrower range [2, 6] and the wider range [2, 10]. 
Figure 3 shows the result of the narrower span range 
case. We observe that (1) our modified method is 
better than the traditional algorithm for both noise 
levels under all the three cluster to cluster distance 
strategies. (2) The gap between our method and the 
traditional method is larger when the noise is smaller. 
(3) Among the three strategies, single link is best for 
our modified method; average link is best for the 
traditional method. Complete link is worst for both 
methods. (4) As the number of objects increases, the 
root mean squared error decreases. But, the trend stops 
when the number of objects is more than around 400. 
 Figure 4 shows the result of the wider span range 
case. We have similar observations as in Fig. 4. 
Furthermore, there are something else to notice: (1) 
Both methods under the three strategies perform worse 
when the span of internal is wider. (2) The gap 
between the two methods is smaller as compared to fig. 
4. (3) The root mean squared error decreases as the 
number of objects increases. But, the decreasing trend 
stops at around 600 objects. 

5. Conclusion 
Concept hierarchy is a useful mechanism for 
representing the generalization relationships among 
objects. So that, multiple level association rule mining 
can be conducted. In this paper, we build a concept 
hierarchy from a distance matrix with the goal that 
distance between any pair of objects is preserved as 
much as possible. 

We adopt the traditional agglomerative 
hierarchical clustering. However, clusters do not only 
merge, but also join. Empirical results show that our 
modified algorithm has much better performance than 
the original algorithm. 

This study can further be improved in some 
directions: (1) All the lengths, i.e., weights, of edges 
of the concept hierarchy are the same. If weights on 
edges of the concept hierarchy can be trained, the 
distance relationship between objects can be better 
preserved. (2) A better measurement for the methods 
might be devised, so that the resulting concept 
hierarchy can be directly evaluated. (3) In the 
information retrieval research field, document 
directories are often available. Definitions of distance 



between documents are also available. Experiments on 
automatically obtaining directories and comparing 
them to existing directories can be conducted to 
understand the algorithms on real data. 
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Fig. 3: Experiment set 1 
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Fig. 4: Experiment set 2 
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