






Field Description Units 

Qavg Average reactive power VAR 

Qavg_t Average reactive energy VARh 

Smin Minimum apparent power VA 

Smax Maximum apparent power VA 

Savg Average apparent power VA 

Savg_t Average apparent energy VAh 

PFmin Minimum power factor - 

PFmax Maximum power factor - 

PFavg Average power factor - 

B. Power Events 
The power events are extracted from the raw power 

measurements (active power at 50 Hz) by applying a modified 
version of the change of mean detector algorithm presented in 
[15], where the authors apply a statistical method based on the 
Generalized Likelihood Ratio test (GLR) to find the likelihood 
of a potential change of mean occur between two consecutive 
time periods. 

Our change of mean detector works with one sliding 
window (detection window) that is used to calculate the 
likelihood of a change of mean happen at a given sample. A 
second sliding window, called voting window, is used to find 
the extrema values of the likelihood test. The detection window 
[i, k] is composed by two separate windows, [i, j[ and [j, k],  
pre-event and post-event respectively. For each sample in the 
power signal the likelihood of a power change occurring at that 
instant is given by equation 4: 

 ! ! ! 
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Where ![i, j[ and ![j, k] are the mean of the pre-event and 
post-event windows respectively, "[i, k] is the standard 
deviation of the detection window and P(x) is the active power 
of the xth sample. 

Figure 3 illustrates the power event detection process, and it 
is possible to see that when a power change occurs (bottom line 
in blue), this will be reflected in the maximization (positive 
power changes) or minimization (negative changes) of the 
events likelihood (top line in red). Therefore, the voting 
window of our algorithm works by simply finding the maxima 
and minima (i.e. the extrema) of the event likelihood results 
that correspond to the positions of the power events in the 
aggregated power signal.  

This algorithm has four parameters: the sizes of the pre-
event, post-event and voting windows and the minimum step 
change of interest bellow which the likelihood of an event 
occurring is set to zero. 

Before deploying the system we performed laboratory tests 
[16] to find the values for this parameters that would give the 
best results in terms of detected power changes. In the end the 
best results (with a percentage of True Positives above 95%) 
were obtained with the following values: pre-event window 

size: 150, post-event window size: 100, voting window size: 50 
(all in samples) and the minimum step change of interest was 
set to 30 Watts, that were then used in the four deployments. 
Furthermore posterior evaluation of the algorithm using this 
values against one of the datasets previously mentioned 
(BLUED) showed an average sensitivity (ability to detect 
positive results) around 90%, which was in accordance with 
our initial test results. 

 
Fig. 3.  Event detection process. As the changes in active power (bottom line) 

happen they will be reflected in the maximization or minimization of the 
event likelihood statistics (top line). 

The power event data is a record of all the power changes 
with a mean real power change of at least ± 30 Watts. Table II 
lists the measurements that characterize each power event. 

TABLE II.  Power event measurements 

Field Description Units 

home_id Unique identifier of the monitored home - 

timestamp Date and time of the measurement datetime 

deploy Deployment identifier - 

delta_P Real power change W 

delta_Q Reactive power change VA 

trace_P Real power trace of the event (50 Hz) W 

trace_Q Reactive power trace of the event (50 Hz) VAR 

The event trace is the collection of all the power values in 
the vicinity of the power event, as shown in figure. 4. In our 
case the power event traces contain 150 measurements before 
the change and 100 after, which at 50 Hz correspond to 3 and 2 
seconds respectively. 

 
Fig. 4.  Real power transient of a microwave turning on. 
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C. Interactions with the Eco-feedback 
This is a record of the frequency at which the householders 

used the feedback. The interactions with the system were only 
collected for houses with feedback devices (some of the houses 
were used as control group with no feedback). Also no 
interactions are available during the baseline periods of the 
different studies (period where electricity consumption was 
collected but no feedback was provided). Table III lists the 
features that describe each user event. 

D. Demographics 
The demographics data is a record that describes the 

participating families, their homes and the periods for which 
consumption and user event data is available. Table IV lists the 
demographics features of our dataset. 

E. Environmental Data 
Given the importance of weather phenomena of the 

production of energy, we have also collected extended 
information on this. The data was collected from an online 
repository2 of environmental data, and consists of several 
measurements (listed in table VI) collected at 30 minute read 
intervals. 

F. Electricity Production 
Since the 18th of June 2013 we are also recoding the 

numbers of the electricity production using a web service made 
available by the local electric company. The production data is 
recorded at fifteen minute read intervals and besides the overall 
value, the disaggregated production by source is also recorded. 
Table V lists the production measurements that are available. 

G. Additional data 
In addition to the data that we have already described we 

are also making available some complementary items that can 
be relevant for future research: i) individual householder 
demographics, including gender, age, occupation, among 
others; ii) list of appliances in some of the participating houses, 
and iii) a time dimension table, supplemented with daily 
weather information, e.g. minimum and maximum 
temperatures, sunrise and sunset times. 

TABLE III.  User event features 

Field Description 

home_id Unique identifier of the monitored home 

timestamp Date and time of the measurement 

deploy Deployment identifier 

type Type of interaction. Either mouse or touch 

view_id Identifier of the visualized screen 

view_name Name of visualized screen 

 

                                                             
2 www.wunderground.com 

TABLE IV.  Demographic features 

Field Description Units 

home_id Monitored home unique identifier - 

building_id Building identifier - 

begin_monitoring Date and time of the first measurement datetime 

end_monitoring Data and time of the last measurement datetime 

begin_feedback Date and time of feedback deployment datetime 

end_feedback Date and time of feedback removal datetime 

type Type of residence. Apartment or house - 

bedrooms Number of bedrooms - 

adults Number of adults - 

children Number of children - 

contacted_power Contracted power with the provider kWh 

TABLE V.  Electric energy production measurements 

Field Description Units 

timestamp Date and time of the measurement datetime 

total Total production MWh 

thermal_fuel Electricity produced by burning fuel MWh 

hydro Hydro electricity produced MWh 

eolic Wind farms production MWh 

photovoltaic Solar electricity produced MWh 

thermal_waste Electricity produced by burning waste MWh 

TABLE VI.  Environmental data measurements 

Field Description Units 

timestamp Date and time of the measurement datetime 

temperature Outside temperature ºC 

humidity Relative humidity % 

pressure Relative pressure hPa 

wind_dir Wind direction - 

wind_speed Wind speed km/h 

precipitation Precipitation levels mm 

events Relevant events, e.g. rain or thunder - 

conditions Sky conditions. e.g. partly cloudy - 
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IV. SustData Characterization 
The SustData dataset contains, at the time of this writing 

(March 10, 2014), over 50 million individual records of electric 
energy related data, spanning a total of 1144 distinct days since 
the 29th of July 2010. 

A. Energy consumption 
As mentioned above, our dataset contains over 50 million 

individual records, from which almost 25 million are individual 
power readings as summarized in table VIII. 

TABLE VII.  Energy consumption data summary 

Dep Samples Days Min. 
Days 

Max. 
Days 

Min Date 
(YY/MM/DD) 

Max Date 
(YY/MM/DD) 

1 3.474.557 123 51 119 2010/07/10 2010/11/10 

2 12.481.536 504 240 511 2010/11/25 2012/04/20 

3 5.671.576 298 237 297 2012/08/01 2013/05/25 

4 2.884.512 219 187 217 2013/07/31 2014/03/10 

 24.512.181	   1144	   ---	   1144	   ---	   ---	  

The first deployment was the shortest one with 123 
different days, while the second is the longest with 
consumption data for 504 days. The minimum number of days 
(Min. Days) is, as the name suggests, the smallest number of 
days available for a single house (reciprocate for the maximum 
number of days). 

Each individual day contains 1440 measurements for every 
monitored house. Figure 5 shows the graphical representation 
of the real and reactive power from a random day in one of the 
dataset houses, in which one can easily notice peaks of 
consumption in very specific time periods, namely, early 
morning, noon and late afternoon / early evening. 

 
Fig. 5.  Real and Reactive power traces for one full day of consumption in one 

random house of the SustData dataset. (Best viewed in color) 

B. Power Events 
Currently the dataset contains over 11 million individual 

power events across all the four deployments, as summarized 
in table VIII: 

TABLE VIII.  Power events summary 

Dep Events 
Min. 

Events 
Max. 

Events AVG SD 
Day 

AVG 
Day 
SD 

1 1.487.945 17.656 203.336 70.855 48.834 897 625 

2 6.057.701 51.564 722.813 288.462 171.532 685 380 

3 1.822.903 18.610 495.596 130.207 153.872 460 525 

4 1.745.232 58.315 485.933 174.523 122.640 880 610 

 11.113.781	   ---	   ---	   ---	   ---	   ---	   ---	  

Where min. events is the minimum number of power 
events in a single house (reciprocate to max. events), AVG is 
the average number of power events between all the houses, 
Day AVG is the daily average of power events and SD is the 
standard deviation (Day SD is the daily standard deviation).  

A quick inspection of the results immediately reveals the 
high values for the daily standard deviation, which is a clear 
indicator of the large difference in the number of power events 
across the different houses, for instance, in the second 
deployment four houses have over 1000 daily power events in 
average, while seven houses have less than 300 power events 
per day. 

C. Interactions with the Eco-feedback 
Regarding the interactions with the eco-feedback our 

dataset contains 14027 individual records from a total of 32 
households (in the third and fourth deployments some houses 
were part of the control group, 11 and 5 respectively, and no 
eco-feedback was provided). 

Table IX shows a summary of the eco-feedback interactions 
data. Once again the values for the standard deviation are high 
(with the exception of the current deployment), which is an 
indicator that not all the household members used their systems 
with the same frequency. In fact, some of the houses have very 
low numbers of interactions in the first three deployments (3, 
14 and 20).  

TABLE IX.  Summary of the interactions with eco-fedback data 

Dep	   Houses	   Interactions 
w/ feedback	  

Min. User 
Events	  

Max. 
User 

Events	  
AVG	   SD	  

1 21 3.739 3 548 178 155 

2 21 7.682 14 928 366 226 

3 6 1.424 20 732 237 247 

4 5 1.182 136 356 236 72 

 --- 14.027 --- --- --- --- 

D. Environmental and Electricity Production Data 
The SustData dataset contains, at the time of this writing, 

24886 records of electricity production data, recorded at 15-
minute intervals since the 18th of June 2013 (264 days so far). 
Additionally we have also collected individual environmental 
data measurements for each of the 1144 days in our dataset at a 
rate of 48 measurements per day (54912 records). 
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V. Dataset Implementation 
The SustData dataset is a free and publicly available dataset 

for all researchers to use and can be accessed from 
http://aveiro.m-iti.org/data/sustdata. Our dataset is persisted 
using a Not only SQL (NoSQL) Database Management System 
(DBMS), and the available data can be accessed using its open 
Application Programming Interface (API). 

A. Data Persistence 
The most common way of persisting publicly accessible 

data continues to be, after so many years, using text files that 
follow a certain structure that is then given to the users 
(normally in the form of readme files). But, while this seems to 
be the best option for the dataset creators it presents limitations 
for the actual datasets users, for instance, there is no way of 
having a preview on the data without downloading the files 
completely. 

With this in mind, and given the size and variety of the data 
in our dataset, we have opted to persist it using a NoSQL 
DBMS, that are known for being capable of dealing well with 
large amounts of data in opposition to traditional relational 
DBMS that tend to suffer serious performance issues as the 
database grows in size. Moreover, NoSQL DBMS are 
optimized for retrieve and append operations, which are the 
operations that we are particularly interested in. 

In our case we selected the MongoDB3 implementation of 
NoSQL, which besides the aforementioned advantages also 
offers a query language to create “SQL-like” queries that are an 
important feature of our API. 

B. Web Server and Web API 
The server-side of our system was implemented using the 

Node.js4 software platform to setup and run a web-server, 
Mongoose5 library for data modeling and query building, and 
the Express6 web application framework to create our web API 
and the dataset explorer web application.  The combination of 
MongoDB, Node.js, Mongoose and Espressjs was selected due 
to their seamless integration that results from the fact that they 
all share the use of JavaScript (MongoDB, Node.js and 
Expressjs are all implemented using this programing language) 
and the JavaScript Object Notation (JSON7) that is the standard 
data format used by MongoDB. 

Regarding the API, it offers a set of pre-defined functions 
to access and manipulate the several data types in our dataset, 
including aggregation, grouping, sorting and filtering. These 
features were designed and implemented to allow quick 
exploration of the existing data as well as to provide 
mechanisms to quickly export the data to common text 
formants, thus proving an easy way to create subsets of the 

                                                             
3 www.mongodb.org 
4 www.nodejs.org 
5 www.mongoosejs.com 
6 www.expressjs.com 
7 www.json.org 

original dataset for offline operation, instead of forcing users to 
download the whole dataset. 

Finally, interested users can access the datasets using one of 
three options available: 1) online using the dataset explorer 
web application, 2) online by directly accessing the web API 
HTTP methods for retrieving data and 3) offline after exporting 
the data using the export features available in the dataset 
explorer. 

VI. Potential Uses 
Sustainable energy generation, distribution and 

consumption can greatly benefit from the potential offered by 
ICT. In this section we describe some possible uses of our 
dataset towards enabling more intelligent energy management 
systems. 

A. Eco-feedback Research 
A key aspect of energy monitoring effectiveness is how the 

information is presented to the users and there is a whole field 
of research devoted to this. It is known as eco-feedback 
technology [17], and focuses on finding what kinds of 
residential energy feedback are most effective and appropriate 
in specific contexts and locations. 

Information visualization is the core of any eco-feedback 
approach and we believe that this dataset can play an important 
role in creating better eco-feedback experiences. For example, 
the consumption data can be used as inputs for different 
interface designs to help answer critical research questions in 
this field related to temporal resolution (minute, hour, day, 
week, month and year) and presentation mode (real-time and 
historical). Moreover, since we have data for several houses, 
each one with different consumption patterns, it is possible to 
understand how the feedback systems will behave in different 
situations, e.g. high consumption vs. low consumption families. 

The same data can also be used to evaluate more abstract 
visualizations that are harder to test or predict how they will 
behave in different consumption scenarios. This is the case of 
most ambient and artistic visualizations where researchers 
attempt to integrate consumption information in the domestic 
environment [18]. Furthermore, having long periods of 
consecutive consumption data can be used to find energy usage 
patterns that can be used to create novel eco-feedback 
experiences like the one in [19] where the authors attempted to 
leverage the emotional connection between energy 
consumption and the local endemic landscape by combining 
real-time and historical baseline consumption to change the 
landscape according to the observed consumptions patterns. 

Similarly the recorded interactions with the feedback can be 
useful to understand how this was used over time, assess which 
features the users preferred and find navigation patterns that 
can guide designers in the early stages of designing eco-
feedback interfaces.  

Finally the power event data can be used to create and 
evaluate eco-feedback systems designed for labeling power 
events with the respective appliance names to be used as 
training data for load disaggregation algorithms. Having 
humans manually labeling sensor data is a problem transversal 

365



to every supervised machine learning approach, and with our 
dataset it is possible to combine consumption and power events 
to design and test interfaces that can tackle both the problem of 
motivating the consumers to perform this task, while increasing 
the accuracy of the provided labels. 

B. Prediction and Forecasting 
Improved power plant efficiency was largely identified as 

an area where significant reductions in CO2 emissions can be 
achieved using only already established techniques [20]. One 
of these techniques is energy demand management that refers 
to the ability to balance the supply of electricity on the network 
by adjusting the load in order to reduce peak demand periods. 

The ability to accurately predict future energy needs is 
cornerstone in proper demand side management, and many 
research efforts have been devoted to this in the last couple of 
years [21] including contributions from different fields like 
time series and regression analysis, artificial neural networks, 
genetic algorithms and fuzzy logic.  

Some of the investigated methods rely heavily on past 
consumption data to predict future demand, and therefore we 
argue that our dataset can be of added value in this situations, 
especially given the high granularity of our data (one 
measurement per minute) that can be easily manipulated to test 
different prediction periods (e.g. hour, day, week), and the 
considerable number of different houses (50), that can be used 
to evaluate the outcomes of the prediction algorithms in a 
variety of energy consumption scenarios. 

Furthermore, the power events data can also be important to 
investigate forecasting approaches that look at individual 
device uses to create prediction models of the overall 
consumption. These approaches, commonly denominated 
bottom-up approaches, are based on the obvious relationship 
between the overall consumption and the consumption patterns 
of each individual appliance. Figure 6 shows this relationship 
in our dataset with highlights in the areas where it is possible to 
see the direct relationship between the actual power and the 
load changes. 

Not less important than energy demand management is the 
smart grid initiative that is significantly increasing the fraction 
of grid energy that is contributed by renewables. Nevertheless, 
the high volatility and unpredictable nature of renewables 
increases the difficulty of integrating them into the grid without 
affecting its stability.  Thus, the ability to accurately predict 
future renewable generation is important since the grid must be 
able to dispatch mechanisms to compensate over or under 
generation from renewable sources. 

It is therefore not surprising that researchers are also 
devoting their efforts into creating forecasting models for 
energy generation from renewable sources based on 
environmental data such as solar penetration and wind speed 
[22], [23]. Such prediction models are created based on 
historical production and environmental data records, thus 
making our dataset suitable for creating and evaluating these 
models using the provided renewables and temperature records, 
as shown in figures 7 and 8 where we plot one day of 
environmental information against production data. 

 
Fig. 6.  Two representations of the power consumption: on the top using the 

real power one-minute interval measurements, and on the bottom using 
the real power change of the events that were detected during that day. 

(Best viewed in color) 

 
Fig. 7.  Environmental and production data comparison: temperature against 

photovoltaic production of electricity. 

 
Fig. 8.  Environmental and production data comparison: temperature against 

eolic production of electricity. 

C. Unsupervised Feature Learning for Load Disaggregation 
Inspired by recent discoveries in the field of neuroscience a 

new subfield of machine learning as emerged. This is the 
subfield of deep learning [24] and, in very high-level terms, the 
main goal of deep learning architectures is to learn the best 
possible feature representations of the examples in the data.  

One of the most promising characteristics of deep learning 
architectures is the possibility of learning features from 
unlabeled data given that the algorithms are provided with 
large quantities of unlabeled examples from which they can 
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learn good feature representations. This is known as 
unsupervised feature learning and it is in this area that our 
dataset can play a very important role in load disaggregation 
since we are now releasing large amounts of data for both 
continuous power consumption at 1-minute intervals and 
power events with real and reactive transients at 50 Hz that can 
be used to extract relevant features that can ultimately improve 
the overall energy disaggregation results. 

VII. Conclusion 
In this paper we have introduced SustData, a public dataset 

for sustainable electric energy research. Ultimately, our goal 
with the release of this dataset is to provide the research 
community with a complete set of data that can be used in the 
development and evaluation of novel techniques to improve the 
already exiting energy monitoring and forecasting solutions. 

As it was previously mentioned, this dataset is still being 
updated with data from our most recent energy monitoring 
deployment, and future work includes adding data from other 
sources, including the addition of labeled power event data, 
thus making this dataset suitable for load disaggregation 
research. Furthermore, we are also very excited with the recent 
prospects of deep-learning architectures offering the possibility 
of extracting features from unlabeled data, which we believe 
can represent enormous advances in this very active field of 
research.  

In summary, we are convinced that having more and better 
publicly available data can further motivate the sustainability 
research community to apply state of the art machine learning 
and data mining techniques to tackle the problem of excessive 
carbon emissions due to unsustainable electricity consumption. 
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