
Jing TENG¹,a,*, Qin FU²,b, Yao CHEN³,c, Wan-Ling ZOU⁴,d

¹,²,³,⁴Xihua University of Architecture and Civil Engineering, Chengdu, Sichuan, China 610039

¹jj10300817@163.com, b995928525@qq.com, c348244696@qq.com, d1274640422@qq.com

*Corresponding author

Keywords: Construction enterprise, Technological innovation, Analytic network process, Fuzzy comprehensive evaluation.

Abstract. This thesis builds a set of evaluation index system of construction enterprise technology innovation based on network analytic network process and by empowering each indicator and evaluates indicators combined with fuzzy comprehensive evaluation method, the technology innovation levels of construction enterprise are obtained. This provides a set of objective and scientific evaluation methods for construction enterprise's technological innovation ability evaluation.

The establishment of the indicator system of construction enterprise technology innovation

The principles

The establishment should be comprehensive, scientific, and applicable. The index setting should be concise, easy to operate. At the same time, in the process of practical application, the indicator system should conform to the actual situation of the construction enterprise technology innovation to demonstrate its practicality.

The establishment should combine qualitative and quantitative indicators. In the process of index setting-up, according to the principle of combining qualitative and quantitative indicators, for some indicators which are hard to be quantitatively measured, there should be the qualitative indicators to ensure the authenticity of the evaluation[1].

The establishment should combine operability and comparability. In the process of obtaining index data, selected data should be easy to get and to deal with. Quantitative indicators can be directly quantified, and qualitative indicators can be indirectly quantified by assignment[2]. All evaluation objects should use the same evaluation standard to make them comparable.

Establish indicators

In view of construction enterprises’ features, combined with the principles of building indexes, the innovation ability of construction enterprises is divided into three levels. The first grade indexes include the ability of technological innovation, capital input, and management innovation ability. There are 9 second grade indexes including the use of new technology and 21 third grade indexes such as the use of new construction technology, and detailed classification is shown in Table 2.

Analysis of the network relationship of construction enterprises’ technical innovation indicators’ system

Analyzing the relationships among the first grade indexes, the second under each type of the first, and the third under each type of the second. The network relationships among the indexes are shown in fig.1.
Index weighting using analytical network process method

Setting first grade indexes and second grade indexes as the control layer, third grade indexes as the network layer using analytical network process method. Construct multiple comparison judgment matrix using paired comparison method and measure of comparison about 1~9. Then calculating each judgment matrix’s eigenvector and maximum eigenvalue λ_{max} using geometric mean. At last, doing the consistency check by calculating consistency index CI, random index RI, consistency ratio CR. If it was passed by test, eigenvector (after concentration) is weight vector; if not, we should reconstruct the comparison matrix[3].

For example, we can analyze the process of index weighting of first grade index.

Multiple judgment matrix

The multiple judgment matrix of the first grade index is shown in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>the ability of technological Innovation</th>
<th>capital input</th>
<th>management innovation ability</th>
</tr>
</thead>
<tbody>
<tr>
<td>the ability of technological Innovation</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>capital input</td>
<td>1/2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>management innovation ability</td>
<td>1/3</td>
<td>1/3</td>
<td>1</td>
</tr>
<tr>
<td>Index classification and weight</td>
<td>first grade index</td>
<td>weight</td>
<td>second grade index</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------</td>
<td>--------</td>
<td>--------------------</td>
</tr>
<tr>
<td>the first index</td>
<td>the ability of technological Innovation A₁</td>
<td>0.528</td>
<td>the use of new technology B₁</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>research and development of new technology and new material B₂</td>
<td>0.238</td>
<td>research and development of new construction technology C₄</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the second index</td>
<td>capital input A₂</td>
<td>0.332</td>
<td>innovation input B₄</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>adaptability to changes in the market B₅</td>
<td>0.297</td>
<td>market competitive capital C₈</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>reserve capital for price fluctuation C₉</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>capital input for brand building C₁₀</td>
</tr>
<tr>
<td></td>
<td>capital input for professional and technical personnel B₆</td>
<td>0.163</td>
<td>the proportion of professional personnel C₁₁</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>capital for talent introduction C₁₂</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>capital input for talent's improving of professional level C₁₃</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>incentive capital input for talent's professional level C₁₄</td>
</tr>
<tr>
<td>the third index</td>
<td>management Innovation ability A₃</td>
<td>0.14</td>
<td>informatization management innovation B₇</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>systematization management innovation B₈</td>
<td>0.311</td>
<td>enterprise lan C₁₇</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>management mode innovation B₉</td>
<td>0.196</td>
<td>the ability of enterprise's management innovation C₁₉</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The process of calculating first grade index’s weight

First, multiply each row respectively. Result: \(M_1 = 1 \times 2 \times 3 = 6 \), \(M_2 = \frac{1}{2} \times 1 \times 3 = \frac{3}{2} \), \(M_3 = \frac{1}{3} \times \frac{1}{3} \times 1 = \frac{1}{9} \). Then calculate the cube root of the product of each row. Result: \(W_i = \sqrt[3]{6} = 1.817 \), \(W_2 = \sqrt[3]{\frac{3}{2}} = 1.145 \), \(W_3 = \sqrt[3]{\frac{1}{9}} = 0.481 \). Then, make each vector into normalization processing. Result: \(W_1 = \frac{\sqrt[3]{6}}{\sum_j W_j} = 0.528 \), \(W_2 = \frac{\sqrt[3]{\frac{3}{2}}}{\sum_j W_j} = 0.333 \), \(W_3 = \frac{\sqrt[3]{\frac{1}{9}}}{\sum_j W_j} = 0.139 \). Calculate the maximum eigenvalue \(\lambda_{\text{max}} \) of the judgment matrix: \(UW = \begin{bmatrix} 1 & 2 & 3 \\ \frac{1}{2} & 1 & 3 \\ \frac{1}{3} & \frac{1}{1} & 1 \end{bmatrix} \begin{bmatrix} 0.528 \\ 0.333 \\ 0.139 \end{bmatrix} = \begin{bmatrix} 1.611 \\ 1.014 \\ 0.426 \end{bmatrix} \), then do the consistency check for the judgment matrix \(K \rightarrow K_i \): \(CI = \frac{\lambda_{\text{max}} - n}{n-1} = 3.054 - 3 = 0.0268 \). Then compared with the table of mean random consistency result, \(RI = 0.52 \), so, \(CR = \frac{CI}{RI} = 0.052 < 0.1 \). Finally, we can make a conclusion from the calculation process aforesaid that this judgment matrix have a good consistency. We can calculate each index’s weight using the method aforesaid.

The fuzzy comprehensive evaluation for the evaluation index

Confirming the evaluation's factors assembly

Make all the factors which will influence the evaluation objects into a set to construct a factor assembly of the evaluation objects \(K \).

\(K = (K_1, K_2, K_3, \ldots, K_n) \), \(n \) is the number, and the element is impact factor.

Confirming the evaluation set

\(V = (V_1, V_2, V_3, \ldots, V_m)^T \) \(m \) is the total number of evaluation grade. This thesis divides the grade judgment into 4 levels, \(V = (V_1, V_2, V_3, V_4)^T = \) (strong, relatively strong, general, weak)\(^T\) = (90, 75, 60, Less than 60)\(^T\).

Confirming each impact factor’s weight

\(W = (W_1, W_2, W_3, \ldots, W_n) \), \(n \) is the number, at the same time, it should satisfy the normalization condition: \(\sum_{i=1}^n w_i = 1 \)
Constructing the score membership function and fuzzy relation matrix

First, confirm the membership degree using fuzzy distribution, then confirm the fuzzy relation matrix D using the membership function. $D = \begin{bmatrix} d_{11} & \cdots & d_{1m} \\ \vdots & \ddots & \vdots \\ d_{m1} & \cdots & d_{mm} \end{bmatrix}$.

Synthesis W and D, calculate the fuzzy comprehensive evaluation vector H, then get the comprehensive evaluation set according each index’s weight. The model is:

$$H = W \circ D = \{W_1, W_2, W_3, \ldots, W_p\} \circ \begin{bmatrix} d_{11} & d_{12} & \cdots & d_{1p} \\ d_{21} & d_{22} & \cdots & d_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ d_{m1} & d_{m2} & \cdots & d_{mp} \end{bmatrix} = \{h_1, h_2, \ldots, h_p\}$$

h_j is the subjection degree of fuzzy subset V_j which is used to evaluate one thing’s final grade.

Conversely, we can know the multifactorial comprehensive evaluation by stratifying the elements in the factor set H by degrees, the model is:

$$H = \{h_1, h_2, \ldots, h_p\} = WoD = Wo \begin{bmatrix} \begin{bmatrix} W_1 o D_{11} \\ W_1 o D_{12} \\ \vdots \\ W_1 o D_{1p} \end{bmatrix} \\ W_2 o D_{21} \\ \vdots \\ W_2 o D_{2p} \\ W_m o D_{m1} \\ \vdots \\ W_m o D_{mp} \end{bmatrix}$$

Calculation results

$$Z = HV = \{h_1, h_2, \ldots, h_p\} (V_1, V_2, \ldots, V_p) = (Z_1, Z_2, \ldots, Z_p)$$

In this thesis, there are 4 evaluation grades, $p = 4$, strong, Relatively strong, general, weak. The Z_1, Z_2, Z_3, Z_4 in the magnitude is the corresponding evaluation grade’s Weight coefficient. For example, strong means 90 points, Relatively strong means 75 points, general means 60 points, weak means 0 points, so $Z_1 \times 90 + Z_2 \times 75 + Z_3 \times 60 + Z_4 \times 0$ is the final score of the construction enterprise’s ability of technological Innovation. Calculate the final score in turn according to the indexes at all levels, thus dividing the evaluation class of construction enterprises’ technology innovation, and this is the final purpose of the study.

Case analysis

The selected construction enterprise is a construction company in Sichuan province, which is a wholly owned subsidiary of a group co., LTD. First, the three levels indicators established by this article are rated by experts(score with a point value between 1 and 4, respectively mark 4 points, 3 points, 2 points and 1 according to the strong, strong, general, the weak), then through statistics, sorting and analyzing allocation results of experts, get the evaluation results of each index as follows in Table 3.
According to the analysis above, use the fuzzy statistical method to get the fuzzy comprehensive evaluation matrix D_1 of the third grade indexes which is under the second grade index.

$$ B_1 : D_1 = \begin{bmatrix}
0.3 & 0.4 & 0.3 & 0 \\
0.1 & 0.3 & 0.6 & 0 \\
0.2 & 0.3 & 0.5 & 0
\end{bmatrix} $$

Select the weighted operator $M(O,+)$ to make the fuzzy calculation about R_1, then get B_1’s comprehensive evaluation vector.

$$ H_1 = W_1 o D_1 = \begin{bmatrix} 0.571 & 0.286 & 0.143 \end{bmatrix} o \begin{bmatrix} 0.3 & 0.4 & 0.3 & 0 \\
0.1 & 0.3 & 0.6 & 0 \\
0.2 & 0.3 & 0.5 & 0
\end{bmatrix} = \begin{bmatrix} 0.229 & 0.357 & 0.414 & 0 \end{bmatrix}. $$

Similarly, we can calculate other second grade index’s comprehensive evaluation vector.

$$ H_2 = \begin{bmatrix} 0.167 & 0.300 & 0.533 & 0 \end{bmatrix}, H_3 = \begin{bmatrix} 0.267 & 0.500 & 0.233 & 0 \end{bmatrix}, H_4 = \begin{bmatrix} 0.278 & 0.246 & 0.475 & 0 \end{bmatrix}, $$

$$ H_5 = \begin{bmatrix} 0.202 & 0.453 & 0.346 & 0 \end{bmatrix}, H_6 = \begin{bmatrix} 0.1 \ & 0.45 & 0.45 & 0 \end{bmatrix}, H_7 = \begin{bmatrix} 0.45 \ & 0.55 & 0 \end{bmatrix}, H_8 = \begin{bmatrix} 0.159 & 0.532 & 0.308 & 0 \end{bmatrix}. $$

Then we can calculate second grade index’s fuzzy comprehensive evaluation matrix. A_1, A_2, A_3.

$$ A_1 = W_1 o B_1 = \begin{bmatrix} 0.625 & 0.238 & 0.137 \end{bmatrix} o \begin{bmatrix} 0.229 & 0.357 & 0.414 & 0 \end{bmatrix} = \begin{bmatrix} 0.183 & 0.363 & 0.454 & 0 \end{bmatrix}. $$

Similarly, we can calculate others.

$$ A_2 = \begin{bmatrix} 0.260 & 0.417 & 0.324 & 0 \end{bmatrix}, A_3 = \begin{bmatrix} 0.081 & 0.466 & 0.453 & 0 \end{bmatrix}. $$

Then, we can get the first grade index’s fuzzy comprehensive evaluation matrix N:

$$ N = W_0 A = \begin{bmatrix} 0.528 & 0.332 & 0.140 \end{bmatrix} o \begin{bmatrix} 0.183 & 0.363 & 0.454 & 0 \end{bmatrix} = \begin{bmatrix} 0.194 & 0.395 & 0.411 & 0 \end{bmatrix}. $$

In conclusion, the company's technology innovation index evaluation result is $N = \begin{bmatrix} 0.194 & 0.395 & 0.411 & 0 \end{bmatrix}$. It can be known by maximum membership principle that the
company technology innovation index evaluation membership degree value is 0.411, because during the evaluation results, the largest of four grades of membership degree is 0.411. Therefore, the level of evaluation is"general". This result illustrates that the company's technology innovation ability is general, and it still needs to improve its ability to innovate in order to improve the competitiveness of the enterprise.

Conclusion

In this paper, the construction enterprise technology innovation evaluation has been carried on the preliminary discussion, with the principle of the combination of qualitative and quantitative. And proposed an evaluation index system, which can be more comprehensive, objective and reasonable to reflect the construction enterprises’ technology innovation ability. But the construction enterprises’ technology innovation evaluation is an extensive and complicated problem, a more in-depth and meticulous research on the evaluation system combined with the actual constantly is still needed.

Acknowledgement

This research was financially supported by the Innovation Fund of Postgraduate, Xihua University (YCJJ2014091).

References

