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Abstract 
The LuGre tire model is a dynamic tire friction model 
which can describe the dynamic characteristic, but 
because of its high nonlinearity, it is very difficult to 
identify the parameters of the model. A two-step 
method for the parameter identification of LuGre tire 
model based on genetic algorithms is presented in this 
paper. In the first step, four static parameters are 
estimated via PD control, and in the second step, two 
dynamic parameters are obtained by the PID control. 
In the two steps, genetic algorithms are used to 
minimize the identification error. 
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1. Introduction 
The problem of predicting the friction force between 
the tire and the ground for wheeled vehicles is of 
enormous importance to the automotive industry. 
Since friction is the major mechanism for generating 
forces on the vehicle, it is extremely important to have 
an accurate characterization of the friction force 
generated at the interface. However, accurate 
tire/ground friction models are difficult to obtain 
analytically. Subsequently, in the past several years, 
the problem of modeling and predicting tire friction 
has become an area of intense research in the 
automotive community. 

The most common class of tire fiction models in 
research and applications is the so-called “static” 
models [1]-[3]. These models predict the friction force 
for constant vehicle and tire angular velocity as a static 
map of the relative velocity of the tire to tire friction 
force. The major representative of this class of models 
is Pacejka’s “Magic Formula” [3]. This is a semi-
empirical model using a set of parameters to fit a 
mathematical formula to experimental data. The 
experimental data in this case correspond to steady-
state operation of a tire, which is constant speed, 
angular rate and slip angle. Such conditions are not 
reached except during the rather particular case of 

cruising at constant speed. The development of the 
friction force at the tire/road interface is very much a 
dynamic phenomenon. In other words, the friction 
force does not reach its steady-state value 
instantaneously, but rather exhibits transient behavior 
which may differ significantly from its steady-state 
value. Experiments have shown that the tire/road 
forces do not necessarily vary along the steady-state 
force versus slip curves, but rather “jump” from one 
steady-state curve to the other. In addition, in realistic 
situations, these variations are most likely to exhibit 
hysteresis loops, clearly indicating the dynamic nature 
of friction. 

Recently, a second class of tire friction models 
has been developed that capture the dynamic behavior 
of friction forces-the so-called “dynamic tire friction 
models” [4]-[6]. A physics-based dynamic friction 
model for point contact, the LuGre friction model [5], 
is applied to the contact patch of a tire and a new tire 
friction model is developed. The new model provides 
physical interpretation of the friction forces as a result 
of elastic deformation of the surfaces in contact. Its 
dynamic nature allows the study of the transient 
behavior of tire friction while the singularities 
associated with slip quantities are avoided. 

But it is difficult to identify the parameters of 
LuGre tire model because of its high nonlinearity. The 
parameter z  is immeasurable, which describes the 
state of inner friction. And the coupling fluence 
between the static parameters and dynamic parameters 
is serious. In literature [7], Efstatios Velenis proposed 
a fitting identification method to identify the static 
parameters by comparing the steady-state 
characteristics of the model to steady-state data. But 
the precision is difficult to be ensured because this 
method will introduce great error when it takes Magic 
Formula model as fitting standard. Genetic algorithm 
[8] is a probability searching algorithm about auto-
adapted global optimization which is formed when 
simulating the genetic and evolution process of the 
biology. Comparing to the optimization method based 
on the gradient and the least squares, genetic 
algorithms need not the model message of its object 
when settling nonlinearity problems and these 
methods can avoid partial minimum. Consequently, 



they have broad adaptability and strong robustness. 
Genetic algorithms have been applied successfully in 
the parameter identification of nonlinearity systems. 
Therefore, a method for the parameter identification of 
LuGre tire model based on genetic algorithms is 
presented in this paper.  

2.  LuGre tire model 
LuGre tire model is a dynamic tire friction model 
which is proposed by Canudas de Wit C. It takes the 
friction phenomenon simulation for the contact face in 
mutual function between the bristles. Surfaces are very 
irregular at the microscopic level and two surfaces 
therefore make contact at a number of asperities. We 
visualize this as two rigid bodies that make contact 
through elastic bristles. When a tangential force is 
applied, the bristles will deflect like springs which 
give rise to the friction force; see Fig. 1. 
 

 
Fig. 1:  The friction interface between two surfaces is 
thought of as a contact between bristles.  

 
If the force is sufficiently large, some of the 

bristles deflect so much that they will slip. The 
phenomenon is highly random due to the irregular 
forms of the surfaces. The LuGre tire friction model 
bases on the average behavior of the bristles and it is 
defined by the following set of equations:   

                           
                                                                            (1) 
 

                                                                        (2) 
 

                                                                            (3) 
where F is the normalized friction force, 

0σ the 
normalized rubber longitudinal lumped stiffness, 

1σ the normalized rubber longitudinal lumped 
damping, 2σ the normalized viscous relative damping, 

sμ the normalized static friction, cμ the normalized 
Coulomb friction, sv the Stribeck relative velocity, 
z the internal weighted mean friction state, nF  the 
total normal force and vrvr −= θ&  the relative velocity. 

In the LuGre tire model ， v  is one of the 
important factors which influence the precision of the 
estimated parameters .However, direct measurement 
of vehicle velocity such as optical correlation method 

or spatial filtering method, although available, is often 
too expensive and requires additional wiring, which 
makes the system more complex. Relying on an 
additional sensor also makes the system more prone to 
sensor failures, thus lowering overall system reliability. 
Kalman filter and fuzzy logic estimation require at 
least one more sensor except the wheel velocity 
sensors. In this paper, we adopt an adaptive nonlinear 
filter approach to estimate the vehicle velocity based 
on wheel velocities, which requires only two or four 
measured wheel velocities. There are no acceleration 
or yaw rate signals available. In literature [9], the 
method is studied and tested. 

In this paper we consider the simplified motion 
dynamics of a quarter-vehicle model. The system is 
then of the form 
                                                                                  (4a) 
                                                                                  (4b) 

where m  is 4/1  of the vehicle mass and J , r are 
the inertia and radius of the wheel, respectively. v  is 
the linear velocity of the vehicle, θ  is the rolling angle 
of the wheel, and μ is the accelerating(or braking) 
torque. For the sake of simplicity, only longitudinal 
motion will be considered. The dynamics of the 
braking and driving actuators are also neglected. 

The relationship between the one-wheel model 
and the LuGre tire friction model is built by formulas 
(4a), (4b) and (1), (2), (3). 

3. GA-based friction parameter 
identification 

Static and dynamic parameters identification of LuGre 
tire model is carried on by two steps: firstly, under the 
steady state of LuGre tire model, static parameters as 

sμ , cμ , sv , 2σ  are estimated via PD control; then 
actual value is instead by the gained estimated value of 
static parameters, dynamic parameters as 

0σ , 1σ  are 
obtained by the PID control. The simplified motion 
dynamic of a quarter-vehicle model closed loop 
system with PD (PID) control is shown in Fig. 2. 
 
 
 
 
 
 
 

 
Fig. 2: The simplified motion dynamic of a quarter-vehicle 
model with a PD/PID controller. 
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3.1. Static parameter identification 
The steady-state characteristics of the LuGre tire 
friction model are obtained by setting 0=z& , and by 
imposing that velocities v  and θ&  (and hence rv ) are 
constant. In this case, the equations of (3) and (1) 
become 

 
                                                                                   (5) 
 
                                                                                   (6) 
 

We can now compute the steady-state expressions 
for the forces using (5) and (6). In particular, we have 
 
 
 
                                                                                   (7) 

When θ&  is constant, the (4b) becomes  
                                                                                   (8) 

Supposing that the closed loop system rotates 
with the constant speed { }N

i 1=θ& , and the corresponding 
control force is { }N

i 1=μ& . Therefore, { }N
i 1=θ& and { }N

i 1=μ&  can 
describe the static corresponding relation between the 
friction force and the angular velocity. Define vector 

sX  as [ ]2σμμ sxss vX = . At this point, the 
identification error is written as 

                                                                           (9) 

where ),( iss XF θ&=  is confirmed by formula (7). 
The objective function can be expressed as 
 
                                                                          (10) 

 
Then identification issue is minimizing the 

objective function J . 

3.2. Dynamic parameter 
identification 

A closed-loop PID control system scheme is adopted 
in the dynamic parameters identification. The result of 
static parameters identified in the previous step is used 
in this step. 

The control force μ  in equation (4a) is given by a 
PID controller 

                                                                          (11) 

where pk  is the proportional constant, dk  the  
differential coefficient constant, and ik  the integral 
constant. 

Supposing that the dynamic friction parameter 
vector is identified as [ ]TdX 10 σσ= , similarly the 

identification error can also be written as 
 
 

where )( itθ  denotes the exact angle of the actual 

system at time it ;  ),(1 id tXθ  the exact angle of  

identified-parameter-embedded system at time it . 
Consequently, equations (1), (3) and (4b) become  
 
 
 
 
 

 
 

In this case the objective function can be defined 
as follows 

 
                                                                          (12) 

                       
where 1c  and 2c  are weight coefficients. Then 
identification issue is minimizing the objective 
function J . 

3.3. Design of genetic algorithms 
In the static and dynamic parameters identification, 
genetic algorithms [10] are used to minimize the 
identification error. Parameters which are identified 
are concatenated together to create a chromosome. 
Then we encode each parameter using Gray coding. 
Selection is applied to the current population to create 
an intermediate population. The individual with the 
optimal fitness is selected for reproduction. A random 
choice is made in crossover, where the likelihood of 
crossover is 0.5. Mutation is applied to each child 
individually after crossover. It randomly alters each 
gene with gauss operator. In the process of estimating 
of dynamic parameters, the probability of mutation 
adjusts to the number of generations. 

The size of population is defined as 
M , ),2,1( MiX i K=  the individual, )( iXf  the fitness 
function. In the first step, the function to be optimized 
is the equation (10), and fitness function is given by 
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Similarly, the function to be optimized in the 
second step is the equation (12), and fitness function is 
as follow 
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A block diagram of the estimating method using 
genetic algorithms is shown in Fig.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Flow diagram for the parameters identification using 
genetic algorithms. 

4. Simulation experiment 
In order to verify the effectiveness of the proposed 
genetic algorithms in identifying the LuGre tire 
friction parameters, simulations have been performed 
with the one-wheel system and the LuGre model. The 
exact friction parameters used in the simulations are 
the ones given in Table 1, with the following 
additional values for the wheel: cmr 25= , kgm 5= , 

22 /14 sKgmFn = , 22 2344.0**75.0 KgmrmJ == . 
In the process of identifying the static parameters, the 
initial parameters of PD controller set as follows: 

30=pk , 8.0=dk .And the other values are: 2001 =T , 

50=M , 6.0=pc , 001.0=pm . The search space as 
follows, ]1,0[2 ∈σ , ]10,0[∈cμ , ]10,0[∈sμ ,

]50,0[∈sv .For the static LuGre friction parameters of 
the system, the offline identified friction parameter 
values are given in Table 1. Fig.4 shows step 
responses for system in identifying static parameters. 
The step responses are quite close. Fig.5 shows the 
evolution of the objective function. As we can observe, 
a good convergence is obtained. Similarly, in the 
process of identifying the dynamic parameters, the 
initial parameters of PID controller set as follows: 

50=pk , 5.0=dk , 3.0=ik .The input is ( ) 1( )d t tθ = . 

And the other values are: 2002 =T , 50=m , 6.0=pc , 

Mmpm /*)001.01.0(1.0 −−= , where m  is 
currently generation. The search space as follows, 

].10,0[],500,0[ 10 ∈∈ σσ The dynamic parameters 
identified are shown in Table 1. Step responses are 
shown in Fig.6 and the evolution of the objective 
function are shown in Fig.7. 

5. Conclusions 
A method for identifying the LuGre tire friction 
parameters using genetic algorithms is proposed in this 
paper. The shortcomings of great errors and a highly 
controlled laboratory environment in the fitting 
method are avoided. Simulation results show that the 
approaches are effective. In this scheme, wheel 
velocities signal of anti-lock brake system is only 
required, and so the expenditure of hardware is small, 
the realization of procedure is simple. Consequently, 
the method for the parameter identification of dynamic 
LuGre tire model presented in this paper has highly 
engineering practical value. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Step responses of PD controller. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: The evolution of objective function in identifying the 
static parameters. 
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Fig. 6: Step responses of PID controller. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7: The evolution of objective function in identifying the 
dynamic parameters. 
 

           Table 1: Parameter Estimates Vs.True Values. 
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