The Existence of the Moore-Penrose Inverse in Symmetrized Max-Plus Algebraic Matrix

Suroto Suroto¹*, Najmah Istikaanah¹, Renny Renny¹

¹Departement of Mathematics, Universitas Jenderal Soedirman, Purwokerto, Central Java, Indonesia
*Corresponding author. Email: suroto@unsoed.ac.id

ABSTRACT
In this paper we discuss Moore-Penrose inverse in symmetrized max-plus algebraic matrix. The existence of Moore-Penrose inverse is shown using a link among symmetrized max-plus algebra and conventional algebra. The result is a Moore-Penrose inverse in symmetrized max-plus algebraic matrix exists. Furthermore, the balanced inverse and the max-plus inverse are also the Moore-Penrose inverse in symmetrized max-plus algebraic matrix.

Keywords: Existence, Moore-Penrose inverse, Symmetrized max-plus algebra, Conventional algebra.

1. INTRODUCTION

Max-plus algebra is the set of \(\mathbb{R} \cup \{-\infty\} \) equipped with maximum (simply written "max") as addition and usual addition (simply written "plus") as multiplication, where \(\mathbb{R} \) is the set of all real numbers. Henceforth, the max-plus algebra is denoted by \(\mathbb{R}_{\max} \). It is different from conventional algebra, since there is no inverse element under addition for every element in max-plus algebra, except for zero element [1][2][3]. The symmetrization process can be done to solve the additive inverse problem. This process is carried out using a balance relation (denoted by \(\mathbb{V} \)) in order to obtain the minus and balance of all elements in \(\mathbb{R}_{\max} \). The result of this symmetrization is called symmetrized max-plus algebra and denoted by \(\mathbb{S} \) [4][5].

In conventional algebra, it is known that \(A^{-1} \) denotes the inverse of an invertible square matrix \(A_{n \times n} \) [6]. It is known that there is an inverse for an \(m \times n \) matrix called the Moore-Penrose inverse and usually denoted by \(A^* \) [7]. The concept of the inverse of an \(n \times n \) matrix can be used as an alternative way to find a solution to a system of linear equations in the form \(Ax = b \). If \(A \) is an invertible matrix, then the solution of the system of linear equations can be solved using the formula \(x = A^{-1}b \). If the matrix \(A \) of the system has a size of \(m \times n \), the solution of the system cannot be found using these rules. The discussion about application of the Moore-Penrose inverse in linear equation systems was discussed in [8].

The discussion about the Moore-Penrose inverse on arbitrary ring and integral domain were discussed in [9] and [10], respectively. In this paper, we discuss the Moore-Penrose inverse of matrix over \(\mathbb{S} \). We use a link between \(\mathbb{S} \) and conventional algebra in [11] to show the existence of Moore-Penrose inverse in \(\mathbb{S} \). We adopt the Moore-Penrose inverse in conventional algebra [12] to define the Moore-Penrose inverse in \(\mathbb{S} \), by changing equal relation in the conventional Moore-Penrose inverse into balance relation in symmetrized max-plus algebra. The results in this paper can potentially be used as an alternative tool to solve the solution of the systems of linear balance in \(\mathbb{S} \).

2. BASIC TERMINOLOGY

This section discusses basic terminologies in symmetrized max-plus algebra. Let \(\mathbb{S} \) be the set of all real numbers, \(\mathbb{E} \equiv \{-\infty\} \) and \(\mathbb{E}_{\max} \equiv \mathbb{R} \cup \{-\infty\} \). The basic operations in \(\mathbb{E}_{\max} \) are defined by

\[
\begin{align*}
a \oplus b &= \max\{a, b\} \quad (1) \\
a \oslash b &= a + b \quad (2)
\end{align*}
\]

where \(\max\{a, -\infty\} = a \) and \(a + (-\infty) = -\infty \), for all \(a, b \in \mathbb{E}_{\max} \). The mathematical system \(\mathbb{E}_{\max} = (\mathbb{E}_{\max}, \oplus, \oslash) \) is called the max-plus algebra, with the zero element is \(\mathbb{E} \), the unity element is \(e \) and the zero element \(\mathbb{E} \) is absorbing for \(\oslash \). Furthermore, \(\mathbb{E}_{\max} \) is an idempotent commutative semiring. There is no inverse element under addition for all \(a \) in \(\mathbb{E}_{\max} \) except for \(a = \mathbb{E} \).

Let \(P_{\mathbb{E}} \equiv \mathbb{E}_{\max} \times \mathbb{E}_{\max} \). The basic operations in \(P_{\mathbb{E}} \) are defined by

\[
\begin{align*}
(a, b) \ominus (c, d) &= (a \ominus c, b \ominus d) \quad (3) \\
(a, b) \otimes (c, d) &= (a \otimes c \oplus b \otimes d, a \otimes d \oplus b \otimes c) \quad (4)
\end{align*}
\]

for all \((a, b) \), \((c, d) \) \(P_{\mathbb{E}} \). The zero element is \((\mathbb{E}, \mathbb{E}) \), the unity element is \((0, \mathbb{E}) \) and \((\mathbb{E}, \mathbb{E}) \) is absorbing for multiplication. The mathematical system \(P_{\max} = (P_{\mathbb{E}}, \ominus, \otimes) \)
\(\otimes \) is a commutative idempotent semiring and called the algebra of pairs. Some terminologies in algebra of pairs refers to [4]. If \(u = (a, b) \in P_{\text{max}} \), then the absolute value of \(u \) is defined as \(|u|_\oplus = a \oplus b \), the minus of \(u \) is \(u = (b, a) \) and the balance of \(u \) is \(u^* = u \ominus (\ominus u) = ([|u|_\ominus, |u|_\oplus]). \) Furthermore, for all \(u, v \in P_{\text{max}}, \) the following statements are satisfied: \(u^* = (\oplus u)^* = (u^*)^* \), \(u \otimes u^* = (u \otimes v)^* \), \(\ominus (\ominus u) = u \), \(\ominus (u \ominus v) = (\ominus u) \ominus (\ominus v) \) and \(\ominus (u \ominus v) = (\ominus u) \otimes v. \)

In the conventional algebra, for all \(x \in \mathbb{R}, x - x = 0 \), but for all \(u \in P_{\text{max}}, u \ominus u = u^* \neq (E, E), \) except \(u = (E, E). \) It is important to introduce “balance” relation for substituting “equal” relation in conventional algebra. If \(u = (a, b), v = (c, d) \in P_{\text{max}}, \) balance relation (denoted by \(\mathbb{V} \)) in \(P_{\text{max}} \) is defined as follows:

\[
u \mathbb{V} u \text{ if } u \ominus d = b \ominus c. \tag{5}\]

The balance relation reflexive, symmetric but it is not transitive, so that it is impossible to define the quotient set of \(P_\mathbb{V} \) by \(\mathbb{V}. \) For example, \((5,4) \mathbb{V} (5,5) \) and \((5,5) \mathbb{V} (4,5) \) but \((5,4) \mathbb{V} (4,5) \). The new relation will be introduced in order to solve “transitive problem” in balance relation. Let \(u = (a, b), v = (c, d) \in P_{\text{max}}, \) relation \(\mathbb{B} \) in \(P_{\text{max}} \) is defined as follows:

\[
u \mathbb{B} u \text{ if } \begin{cases} (a, b) \mathbb{V} (c, d), & \text{if } a \neq b \text{ and } c \neq d \\ (a, b) = (c, d), & \text{if } a = b \text{ or } c = d. \end{cases} \tag{6}\]

For all \(u \in P_{\text{max}}, u \ominus u \mathbb{B} (E, E) \) except for \(u = (E, E) \) and \(\mathbb{B} \) is an equivalence relation. So, it is possible to obtain a quotient set of \(P_{\text{max}} \) by \(\mathbb{B}. \) The equivalence classes generated by \(\mathbb{B} \) are

1. \((w, -\infty) = \{(w, x) \in P_{\text{max}} | x < w \}\) is called max-positive.
2. \((-\infty, w) = \{(x, w) \in P_{\text{max}} | x < w \}\) is called max-negative,
3. \((w, w) = \{(w, w) \in P_{\text{max}}\}\) is called balanced.

The quotient set of \(P_{\text{max}} \) by \(\mathbb{B} \) is denoted \(P_{\text{max}}/\mathbb{B} \equiv \mathbb{S}. \) Note that \((5,4)\) balance with \((5,5)\) and \((5,5)\) also balance with \((4,5)\), but \((5,4)\) is not \(\mathbb{B} \) relation to \((5,5)\), neither are \((5,5)\) and \((4,5)\).

The mathematical system \(\mathbb{S}_{\text{max}} = (\mathbb{S}, \ominus, \otimes) \) is called the symmetrized max-plus algebra. The zero element is the class \((E, E) \) the unity element is the class \(0 = (0, 0) \) and the zero element \((E, E)\) is absorbing for \(\otimes. \) Furthermore, \((w, -\infty), (-\infty, w)\) and \((w, w)\) are sufficiently written by \(w \ominus w \) and \(w \subseteq w \), respectively. The set of all max-positive class or zero class, max-negative class or zero class and balanced class are denoted by \(\mathbb{S}^{\oplus}, \mathbb{S}^{\ominus} \) and \(\mathbb{S}^{\ominus} \), respectively. The set \(\mathbb{S}^{\subseteq} = \mathbb{S}^{\oplus} \cup \mathbb{S}^{\ominus} \) is called and the set of all signed element. Note that \(\mathbb{S}^{\oplus} \cup \mathbb{S}^{\ominus} \subseteq \mathbb{S} \) and \(\mathbb{S}^{\subseteq} \cap \mathbb{S}^{\subseteq} = \{(E, E)\}. \)

The basic operation of matrix over \(\mathbb{S} \) can be done in the usual way as that in conventional algebra. The zero matrix in \(\mathbb{S}^{m \times n} \) with \(E_{ij} = E \) for all \(i = 1, 2, \ldots, m \) and \(j = 1, 2, \ldots, n. \) The identity matrix is \(I = [a] \in \mathbb{S}^{n \times n} \) with \(a_{ij} = e \) if \(i = j \) and \(a_{ij} = E \) if \(i \neq j, \) for \(i, j = 1, 2, \ldots, n. \) For all \(A, B \in \mathbb{S}^{m \times n}, A \mathbb{V} B \) if \(a_{ij} \mathbb{V} b_{ij} \) for \(i = 1, 2, \ldots, m \) and \(j = 1, 2, \ldots, n. \) If \(A = \left[\begin{array}{c} 1 \otimes 2 \\ 3^* \end{array} \right] \) and \(B = \left[2^* \otimes 3 \right], \) then \(A \mathbb{V} B \) since \(a_{ij} \mathbb{V} b_{ij} \) for \(i = 1, 2 \) and \(j = 1, 2. \) Note that the corresponding entries of \(A \) and \(B \) are not always equal.

3. A LINK BETWEEN CONVENTIONAL ALGEBRA AND SYMMETRIZED MAX-PLUS ALGEBRA

This section discusses a link between \(\mathbb{S} \) and conventional algebra. It is used to solve the Moore-Penrose inverse in \(\mathbb{S} \) via conventional algebra approach. In this paper, this link is used to show the existence of axioms of the Moore-Penrose inverse in \(\mathbb{S} \) sense. The link is referred to [11].

Definition 1

A mapping \(F \) with domain of definition \(\mathbb{S} \times \mathbb{R}_0 \times \mathbb{R}_0^* \) is defined as

\[
F(a, \mu, s) = \begin{cases} |\mu| e^{as}, & \text{if } a \in \mathbb{S}^{\oplus} \\ -|\mu| e^{as}, & \text{if } a \in \mathbb{S}^{\ominus} \\ \mu e^{\langle 0, a \rangle}, & \text{if } a \in \mathbb{S}^{\subseteq} \end{cases} \tag{7}
\]

where \(a \in \mathbb{S}, \mu \in \mathbb{R}_0, s \in \mathbb{R}_0. \)

Definition 2

Let \(f(s) = ve^{\langle 0, a \rangle} \) be in the neighbourhood of \(\infty, \) here is the function \(R \) is defined as

\[
R(f) = \begin{cases} |a| & \text{if } v \text{ positive} \\ -|a| & \text{if } v \text{ negative} \end{cases} \tag{8}
\]

The function in (7) and (8) are used to correspond elements in symmetrized max-plus algebra into conventional algebra and otherwise, respectively. If \(\mu = 1 \) then \(F(5,1,1) = e^{5s}, \) \(F(\mathbb{V} 5,1,1) = e^{-5s} \) and \(F(5^*,1,1) = e^{5s}. \) Note that \(R(F(5,1,1)) = R(F(\mathbb{V} 5,1,1)) = R(e^{5s}) = 5 \) and \(R(F(5^*,1,1)) = R(e^{-5s}) = 5. \) Range of \(R \) is \(\mathbb{S}^\subseteq = \mathbb{S}^{\oplus} \cup \mathbb{S}^{\ominus} \) i.e the set of all signed element.

The following theorem explain the correspondence between addition and multiplication in symmetrized max-plus algebra into conventional algebra.

Theorem 3

Let \(a, b, c \in \mathbb{S}. \)

1. If \(a \mathbb{B} b = c \) then there are \(\mu_a, \mu_b, \mu_c \in \mathbb{R}_0 \) such that \(F(a, \mu_a, s) + F(b, \mu_b, s) \sim F(c, \mu_c, s), s \to \infty. \)
2. If \(\mu_a, \mu_b, \mu_c \in \mathbb{R}_0 \) such that \(F(a, \mu_a, s) + F(b, \mu_b, s) \sim F(c, \mu_c, s), \) for \(s \to \infty \) then \(a \mathbb{V} b \mathbb{V} c. \)
3. If \(a \mathbb{B} b = c \) then there are \(\mu_a, \mu_b, \mu_c \in \mathbb{R}_0 \) such that \(F(a, \mu_a, s) \times F(b, \mu_b, s) = F(c, \mu_c, s), \) for \(s \to \infty. \)
4. If there are \(\mu_a, \mu_b, \mu_c \in \mathbb{R}_0 \) such that...
This section discusses the existence of the Moore-Penrose inverse in \(S \) sense. The link between \(S \) and conventional algebra is used to derive several properties in determining the existence of the Moore-Penrose inverse on matrix over \(S \).

The following theorems explain the existence of the balance of matrix over \(S \), which is similar to the first and second axioms of the Moore-Penrose in conventional algebra.

Theorem 8

Let \(A \) and \(X \) be matrices over \(S \). If there are matrices \(N_m, N_r \) whose entries are in \(\mathbb{R}_0 \) such that

\[
\mathcal{F}(A, N_m) \cdot \mathcal{F}(X, N_r) \cdot \mathcal{F}(A, N_m) \sim \mathcal{F}(A, N_m), \quad \text{for} \quad s \to \infty, \quad \text{then} \quad A \otimes X \otimes A \forall A .
\]

Proof. Let \(a \) and \(x \) be entries of \(A \) and \(X \), respectively. By using Definition 1, the exponential form of all entries in \(A \) and \(X \) as in conventional algebra are obtained. All entries in exponential form are in \(S_e \). Therefore, according to Theorem 6 and Theorem 7, all of algebraic operation of those exponential are in \(S_e \). Let \(\mathcal{F}(A, N_m) \) and \(\mathcal{F}(X, N_r) \) be real matrix-valued function for \(A \) and \(X \), with \(N_m \) and \(N_r \) are matrices whose entries are in \(\mathbb{R}_0 \). Suppose there are matrices \(N_m, N_r \) whose entries are in \(\mathbb{R}_0 \) such that

\[
\mathcal{F}(A, N_m) \cdot \mathcal{F}(X, N_r) \cdot \mathcal{F}(A, N_m) \sim \mathcal{F}(A, N_m), \quad \text{for} \quad s \to \infty. \quad \text{If the asymptotic equivalent form in part 4 of Theorem 4 is replaced by}
\]

\[
\mathcal{F}(A, N_m) \cdot \mathcal{F}(X, N_r) \cdot \mathcal{F}(A, N_m) \sim \mathcal{F}(A, N_m), \quad \text{for} \quad s \to \infty \quad \text{then it is obtained that} \quad A \otimes X \otimes A \forall A .
\]

Theorem 9

Let \(A \) and \(X \) be matrices over \(S \). If there are matrices \(N_m, N_r \) whose entries are in \(\mathbb{R}_0 \) such that

\[
(X, N_r) \cdot \mathcal{F}(A, N_m) \cdot (X, N_r) \sim (X, N_r), \quad \text{for} \quad s \to \infty \quad \text{then} \quad X \otimes A \otimes X \forall X.
\]

Proof. Let \(\mathcal{F}(A, N_m) \) and \((X, N_r) \) be real matrix-valued function for \(A \) and \(X \), with \(N_m \) and \(N_r \) are matrices whose entries are in \(\mathbb{R}_0 \). Suppose there are matrices \(X, N_r \) whose entries are in \(\mathbb{R}_0 \) such that

\[
(X, N_r) \cdot \mathcal{F}(A, N_m) \cdot (X, N_r) \sim (X, N_r), \quad \text{for} \quad s \to \infty. \quad \text{If the asymptotic equivalent form in part 4 of Theorem 4 is replaced by}
\]

\[
(X, N_r) \cdot \mathcal{F}(A, N_m) \cdot (X, N_r) \sim (X, N_r), \quad \text{for} \quad s \to \infty \quad \text{then it is obtained that} \quad X \otimes A \otimes X \forall X.
\]

The following theorems explain the existence of the balance of matrix over \(S \), which is similar to the third and fourth axioms of the Moore-Penrose in conventional algebra.

Theorem 10

Let \(A \) and \(X \) be matrices over \(S \). If there are \(N_m, N_r \) whose entries are in \(\mathbb{R}_0 \) such that

\[
(\mathcal{F}(A, N_m) \cdot (X, N_r)) \sim (\mathcal{F}(A, N_m) \cdot (X, N_r)), \quad \text{for} \quad s \to \infty \quad \text{then} \quad (A \otimes X) \otimes A \forall X.
\]

Proof. Let \(\mathcal{F}(A, N_m) \) and \((X, N_r) \) be real matrix-valued function for \(A \) and \(X \), with \(N_m \) and \(N_r \) are matrices whose entries are in \(\mathbb{R}_0 \). Suppose there are matrices \(N_m, N_r \) whose entries are in \(\mathbb{R}_0 \) such that
Theorem 11
Let A and X be matrices over \mathbb{S}. If there are N_h, N_x whose entries are in \mathbb{R}_0 such that
\[
(F(X, N_x), s) \cdot (F(A, N_h), s) \cdot (F(X, N_x), s) \cdot (F(A, N_h), s)
\]
for $s \to \infty$. If the asymptotic equivalent form in part 4 of Theorem 4 is replaced by
\[
(F(A, N_h), s) \cdot (F(X, N_x), s)^T \sim (F(A, N_h), s) \cdot (F(X, N_x), s)
\]
for $s \to \infty$ then we have $(A \otimes X)^T \nabla A \otimes X$. □

Proof. Let $F(X, N_x)$ and $F(A, N_h)$ be real matrix-valued function for X and A, with N_x and N_h are matrices whose entries are in \mathbb{R}_0. Suppose there are matrices N_x, N_h whose entries are in \mathbb{R}_0 such that
\[
(F(X, N_x), s) \cdot (F(A, N_h), s)^T \sim (F(X, N_x), s) \cdot (F(A, N_h), s)
\]
for $s \to \infty$. If the asymptotic equivalent form in part 4 of Theorem 4 is replaced by
\[
(F(X, N_x), s) \cdot (F(A, N_h), s)^T \sim (F(X, N_x), s) \cdot (F(A, N_h), s)
\]
for $s \to \infty$ then we have $(X \otimes A)^T \nabla X \otimes A$. □

The following example illustrates the existence of the matrix balance form in Theorem 8 until Theorem 11.

Example 12
Let A and X be matrices over \mathbb{S}, respectively where $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$ and $X = \begin{bmatrix} -5 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -3 \end{bmatrix}$.

If $N_h = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $N_x = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ then
\[
F(A, N_h) = \begin{bmatrix} e^5 & e^{2s} & e^{3s} \\ e^{-5s} & e^{-2s} & e^{-3s} \\ e^{-5s} & e^{-2s} & e^{-3s} \end{bmatrix}
\]
and $N_x = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ such that
\[
F(A, N_h).F(X, N_x), s \cdot F(A, N_h), s \sim \begin{bmatrix} e^5 & e^{2s} & e^{3s} \\ e^{-5s} & e^{-2s} & e^{-3s} \\ e^{-5s} & e^{-2s} & e^{-3s} \end{bmatrix} \cdot \begin{bmatrix} e^5 & e^{2s} & e^{3s} \\ e^{-5s} & e^{-2s} & e^{-3s} \\ e^{-5s} & e^{-2s} & e^{-3s} \end{bmatrix} = (A, N_h), s \to \infty.
\]

Theorem 12
Let $M \in \mathbb{S}^{m \times n}$. The Moore-Penrose inverse of M is an $n \times m$ matrix $M^+ \in \mathbb{S}^{m \times n}$ which satisfies
1. $M \otimes M^+ \otimes M \nabla M$
2. $M^+ \otimes M \otimes M^+ \nabla M^+$
3. $(M \otimes M^+)^T \nabla M \otimes M^+$
4. $(M^+ \otimes M)^T \nabla M^+ \otimes M$

Since $X = \begin{bmatrix} -5 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -3 \end{bmatrix}$ in Example 12 fulfills the axioms in Definition 13, then X is the Moore-Penrose inverse of $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

The discussion in Theorem 8 until Theorem 11 were used to show the existence of the matrix balances in order to define the Moore-Penrose inverse in \mathbb{S}.

Definition 13
Let $M \in \mathbb{S}^{m \times n}$. The Moore-Penrose inverse of M is an $n \times m$ matrix $M^+ \in \mathbb{S}^{m \times n}$ which satisfies
1. $M \otimes M^+ \otimes M \subseteq M$
2. $M^+ \otimes M \otimes M^+ \subseteq M^+$
3. $(M \otimes M^+)^T \subseteq M \otimes M^+$
4. $(M^+ \otimes M)^T \subseteq M^+ \otimes M$

According to Definition 14, we can define the Moore-Penrose in max-plus algebra sense.

Definition 14
Let $M \in \mathbb{S}^{m \times n}$. The Moore-Penrose inverse of M is an $n \times m$ matrix $M^+ \in \mathbb{S}^{m \times n}$ which satisfies
1. $A \otimes A^+ \otimes A = A$
2. $A^+ \otimes A \otimes A^+ = A^+$
3. $(A \otimes A^+)^T = A \otimes A^+$
4. $(A^+ \otimes A)^T = A^+ \otimes A$

The balanced inverse of a square symmetrized max-plus algebraic matrix plays a similar role as an inverse in conventional matrix.
Definition 16 (Balanced Inverse)
Let $A \in S^{n \times n}$. If there is $B \in S^{n \times n}$ such that $A \otimes B \mathcal{V} A$ and $B \otimes A \mathcal{V} B$ then A is said to be balanced invertible and B is a balanced inverse of A. Furthermore, the balanced inverse of A is denoted by A^{-b}_b. The balanced inverse of a square matrix in S can be solved using Definition 1, Definition 2 and the properties of the link between S with conventional algebra. The following example explains the balanced inverse of square matrix over S.

Example 17
Let $A = \begin{bmatrix} 1 & 1 \end{bmatrix}_2$ where $\det(A) = 5 \forall E$. The real matrix-valued function which corresponds to A by the function in (7) is $A(s) = \begin{bmatrix} e^{3} & e^{2} \end{bmatrix}$. Therefore $\det(A(s)) = e^{5}s - e^{3}s$ and $\operatorname{cof}(A(s)) = \begin{bmatrix} e^{4}s & -e^3 \\ e^3 & -e^3 \end{bmatrix}$ for $s \in \mathbb{R}^+$. Since $\frac{\operatorname{cof}(A(s))^T}{\det(A(s))} = \begin{bmatrix} e^{5}s - e^{3}s \\ e^{5}s - e^{3}s \\ e^{5}s - e^{3}s \\ e^{5}s - e^{3}s \end{bmatrix}$ then

$s \rightarrow \infty, \begin{bmatrix} 1 & 1 \end{bmatrix} \otimes \begin{bmatrix} -1 \\ \Theta(-3) \\ -4 \\ \Theta(-3) \end{bmatrix} \otimes \begin{bmatrix} 0 \\ E \\ 0 \\ E \end{bmatrix}$

are obtained. Since $\begin{bmatrix} 1 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 2 \end{bmatrix}_4$ where $\begin{bmatrix} 1 & 1 \end{bmatrix}$ is a signed matrix in symmetrized max-plus algebra, then

$\begin{bmatrix} 1 & 1 \end{bmatrix} \otimes \begin{bmatrix} -1 \\ \Theta(-3) \\ -4 \\ \Theta(-3) \end{bmatrix} \otimes \begin{bmatrix} 0 \\ E \\ 0 \\ E \end{bmatrix}$

and

$\begin{bmatrix} -1 \\ \Theta(-3) \\ -4 \\ \Theta(-3) \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix}$

are obtained. Furthermore, the balanced inverse $A^{-b}_b = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$ such that $A \otimes A^{-b}_b \mathcal{V} I_n$ and $A^{-b}_b \otimes A \mathcal{V} I_n$. Therefore, A^{-b}_b is the Moore-Penrose inverse of A.

Theorem 18
A balanced inverse of $A \in S^{n \times n}$ is the Moore-Penrose of A.

Proof. Let A^{-b}_b be a balanced inverse of A. According to Definition 16, it satisfies $A \otimes A^{-b}_b \mathcal{V} I_n$ and $A^{-b}_b \otimes A \mathcal{V} I_n$. Consequently, it also satisfies

1. $A \otimes A^{-b}_b \mathcal{V} A I_n \otimes A = A$
2. $A^{-b}_b \otimes A \mathcal{V} I_n \otimes A^{-b}_b = A^{-b}_b$
3. $(A \otimes A^{-b}_b)^T \mathcal{V} (I_n)^T = I_n \mathcal{V} A \otimes A^{-b}_b$
4. $(A^{-b}_b \otimes A)^T \mathcal{V} (I_n)^T = I_n \mathcal{V} A^{-b}_b \otimes A$.

According to Example 17, the balanced inverse matrix $A^{-b}_b = \begin{bmatrix} -1 \\ \Theta(-3) \\ -4 \end{bmatrix}$ is the Moore-Penrose inverse of A.

Corollary 19
An inverse matrix of $A \in (\mathbb{R}^{\max})^{n \times n}$ is the Moore-Penrose of A.

Proof. Let A^{-b}_b be an inverse of A in max-plus algebra sense. It satisfies $A \otimes A^{-b}_b \mathcal{V} I_n$ and $A^{-b}_b \otimes A \mathcal{V} I_n$. Consequently, it also satisfies

1. $A \otimes A^{-b}_b \mathcal{V} I_n \otimes A = A$
2. $A^{-b}_b \otimes A \mathcal{V} I_n \otimes A^{-b}_b = A^{-b}_b$
3. $(A \otimes A^{-b}_b)^T \mathcal{V} (I_n)^T = I_n \mathcal{V} A \otimes A^{-b}_b$
4. $(A^{-b}_b \otimes A)^T \mathcal{V} (I_n)^T = I_n \mathcal{V} A^{-b}_b \otimes A$.

Therefore, A^{-b}_b is the Moore-Penrose inverse of A.

5. CONCLUSION

The existence of the Moore-Penrose inverse in symmetrized max-plus algebra can be determined using a link between symmetrized plus algebra and conventional algebra. The Moore-Penrose inverse in symmetrized max-plus algebra can be defined as that in conventional algebra by replacing “equal” relation by “balance” relation. The balanced inverse is the Moore-Penrose inverse in symmetrized max-plus algebra.

The future research potentially can be done in construction Moore-Penrose inverse using matrix decomposition in symmetrized max-plus algebra.

AUTHORS’ CONTRIBUTIONS

S is a researcher whose research object is symmetrized max-plus algebra and the main researcher in this study. NI and R contributed to drafting and editing the manuscript.

ACKNOWLEDGMENTS

The authors would like to thank all parties related to this research, especially the LPPM-Universitas Jenderal Soedirman which provided research funds under contract No. T/458/UN23.18/PT.01.03/2021.

REFERENCES

