
Research Article

Measuring Redundancy Score for Test Suite Evaluation
by Using Test Cases Matching Approach

Mochamad Chandra Saputra1,*, Tetsuro Katayama1, Yoshihiro Kita2, Hisaaki Yamaba1,
Kentaro Aburada1, Naonobu Okazaki1

1Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuen-Kibanadai Nishi, Miyazaki 889-2192, Japan
2Department of Information Security, Faculty of Information Systems, Siebold Campus, University of Nagasaki, 1-1-1 Manabino, Nagayo-cho,
Nishi-Sonogi-gun, Nagasaki 851-2195, Japan

1.  INTRODUCTION

Software contains a series of instructions that execute several tasks
to achieve their objective. From a software developer’s point of
view, instructions are defined as a program. Testing is important
for assessing whether the program behaves as users require. Testing
helps to examine the source code and to ensure that the release ver-
sion of the software is stable.

Institute of Electrical and Electronics Engineer has defined a test
case as a set of test inputs, execution conditions, and expected
results developed for a particular objective, such as to exercise a
particular program path or to verify compliance with a specific
requirement [1]. Executing the test case to the program to ensure
individual components are tested and operate correctly [2]. The
programmer uses unit testing to test individual program unit, such
as procedures, functions, methods, or classes.

Evaluating the test cases in test suite is necessary to reduce the cost
of testing [3]. Cost of testing contains the cost of designing, main-
taining, and executing test cases [4]. Test suite may contain redun-
dant, ambiguous, vague, and unfit test cases [5]. Evaluating a test
suite in this research is to find redundant test cases that should be
eliminated to reduce the cost of testing. Testing a software system
contains executing various sets of test cases that examine several
parts of the source code. The test cases are redundant when the

lines of code executed by a test case are similar to another test case
in a test suite.

The purpose of this research is to evaluate the test suite by iden-
tifying redundant test cases. This research compares the lines
of code executed among the test cases. The redundancy score is
defined by redundancy formula. This paper is organized on calcu-
lating the redundancy score helps you to reduce the cost of testing.
The rest of the paper is organized as follows. Section 2 describes the
methodology of this research to find redundant test cases using the
exact match approach. Section 3 describes the experimental activ-
ity and its result. Section 4 describes the result and discussion of
the research. Section 5 describes the conclusion and future work
of the research.

2.  METHODOLOGY

One of the testing techniques is structural testing, known as white-
box testing. The white-box testing examines the source code, spe-
cifically concerning the internal structure of the source code. One
of the objectives of the test case is to gain the code coverage infor-
mation as a kind of valuable information in the white-box testing
[6]. The test case coverage needs to confirm which line of code is
executed in testing [7].

The approach in this research is illustrated in Figure 1. The first
process in this research is finding the test case coverage informa-
tion from the test case. The test case coverage information is the

A RT I C L E I N F O
Article History

Received 10 November 2019
Accepted 27 January 2021

Keywords

Redundancy score
test suite evaluation
test case matching
redundant test cases

A B S T R AC T
Evaluating a test suite that contains redundant test cases is necessary to reduce the cost of testing. The redundant test cases exist
when both of the two test cases are executed the same lines of code. This research evaluates the test suite by identifying redundant
test cases. Exact match approach is used to investigate the redundant test cases in the test suite. The redundancy score is defined
by redundancy formula which is calculated by dividing the number of redundant test cases by numbers of test cases in a test
suite. The experiment uses two Java programs. The redundancy scores of the two test suites from each program are 0.37 and 0.67,
respectively. It means 37% and 67% redundant test cases are included in the test suites. The redundancy score provides useful
information to improve the efficiency of software testing, especially in testing other programs by reusing the same test suite such
as regression testing and automated testing.

© 2021 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

*Corresponding author Email: chandra@earth.cs.miyazaki-u.ac.jp

Journal of Robotics, Networking and Artificial Life
Vol. 8(1); June (2021), pp. 1–5

DOI: https://doi.org/10.2991/jrnal.k.210521.001; ISSN 2405-9021; eISSN 2352-6386
https://www.atlantis-press.com/journals/jrnal

http://creativecommons.org/licenses/by-nc/4.0/
mailto:chandra%40earth.cs.miyazaki-u.ac.jp?subject=
https://doi.org/10.2991/jrnal.k.210521.001
https://www.atlantis-press.com/journals/jrnal

2	 M.C. Saputra et al. / Journal of Robotics, Networking and Artificial Life 8(1) 1–5

information of lines of code executed by the test case. The test case
coverage information is examined with exact match approach to
identify redundant test cases. The redundant test cases exist when
both of the two test cases execute the same lines of code. Two test
cases are not categorized as redundant test cases if they have differ-
ent lines of code executed even one line of code.

The exact match approach compares the lines of code executed by
the test cases in the test suite. To compare them, flags are intro-
duced. When the value of the flag is 1, it means the line is executed.
And, 0 means not executed. Table 1 shows an example of an exact
match of test case coverage information. The result is whether all
the lines of code executed from test case coverage information
identically. The unmatch result is when the lines of code executed
from test case have differences, even one line.

Redundant test cases in the test suite may increase the cost of exe-
cuting the test suite in testing. It is important to identify redun-
dant test cases in the test suite and then to measure the redundancy
score to reduce the cost of executing the test suite. The redundancy
score is calculated by dividing the number of redundant test cases
in the test suite by the number of test cases. The formula for calcu-
lating the redundancy score is as follows:

	 Redundancy score
Redundant test cases

Test cases
=

∑
∑ � (1)

Its range is from 0 to 1. It represents the degree of redundancy as
the ratio of redundant test cases in the test suite. The research uses
the test case coverage information. Here, Java code coverage library
(JaCoCo) is used to generate reports on the lines of code executed
by the test cases [8].

Figure 1 | The flow of test suite redundancy calculation approach.

Table 1 | Example of exact match of test case coverage information

LOC 1 2 3 4 5 6 7 8 9 Result

TC-1 0 1 1 1 1 0 0 1 1 Unmatch
TC-2 0 1 1 0 0 0 0 1 1
TC-1 0 1 1 1 1 0 0 1 1 Match
TC-3 0 1 1 1 1 0 0 1 1

Table 2 | Student grade

LOC Statement

  1 input = new Scanner(System.in);
  2 System.out.println(“ Please Enter you Score: ”);
  3 score = input.nextInt();
  4 if(score>=90 && score<=100){
  5   System.out.println(“Your Grade is A”);
  6 } else if (score<90 && score>=80){
  7   System.out.println(“Your Grade is B”);
  8 } else if (score <80 && score >=70){
  9   System.out.println(“Your Grade is C”);
10 } else if (score <70 && score >=60){
11   System.out.println(“Your Grade is D”);
12 } else {
13   System.out.println(“You Faild on this class, try next year”);}
14 }

Table 3 | Quadratic function

LOC Statement

  1 Scanner input = new Scanner(System.in);
  2 System.out.print(“Input a: ”);
  3 double a = input.nextDouble();
  4 System.out.print(“Input b: ”);
  5 double b = input.nextDouble();
  6 System.out.print(“Input c: ”);
  7 double c = input.nextDouble();
  8 double result = b * b 4.0 * a * c;
  9   if (result > 0.0) {
10    double r1 = (b + Math.pow(result, 0.5)) / (2.0 * a);
11    double r2 = (b Math.pow(result, 0.5)) / (2.0 * a);
12    System.out.println(“The roots are “ + r1 + “ and ” + r2);
13    } else if (result == 0.0) {
14     double r1 = b / (2.0 * a);
15     System.out.println(“The root is ” + r1);
16   } else {
17     System.out.println(“The equation has no real roots.”);
18     }

3.  THE EXPERIMENT

The experiment has two java source codes: student grades and qua-
dratic function as shown in Tables 2 and 3. And, test suites of each
program are prepared. Table 4 shows the sample test suites of them.
They consist of eight test cases for student grades and nine test cases
for quadratic function, respectively.

Table 4 | Sample test suites of student grades and quadratic function
suite

Student grades Quadratic function

Test case Input data Test case Input data

TC-1 100 TC-1 a:1, b:–5, c:6
TC-2 15 TC-2 a:1, b:–2, c:1
TC-3 90 TC-3 a:1, b:1, c:1
TC-4 70 TC-4 a:1, b:–4, c:4
TC-5 65 TC-5 a:1, b:–6, c:25
TC-6 0 TC-6 a:0;b:2, c:4
TC-7 –1 TC-7 a:1;b:–4, c:-5
TC-8 85 TC-8 a:1;b:–3, c:3
– – TC-9 a:50;b:100, c:50

	 M.C. Saputra et al. / Journal of Robotics, Networking and Artificial Life 8(1) 1–5	 3

Table 5 | The result of the test case coverage
information on student grades

Test case name Test case coverage information

TC-1 1,1,1,1,1,0,0,0,0,0,0,0,0,1
TC-2 1,1,1,1,0,1,0,1,0,1,0,1,1,1
TC-3 1,1,1,1,1,0,0,0,0,0,0,0,0,1
TC-4 1,1,1,1,0,1,0,1,1,0,0,0,0,1
TC-5 1,1,1,1,0,1,0,1,0,1,1,0,0,1
TC-6 1,1,1,1,0,1,0,1,0,1,0,1,1,1
TC-7 1,1,1,1,0,1,0,1,0,1,0,1,1,1
TC-8 1,1,1,1,0,1,1,0,0,0,0,0,0,1

Table 6 | The result of the test case coverage
information on quadratic function

Test case name Test case coverage information

TC-1 1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,1
TC-2 1,1,1,1,1,1,1,1,1,0,0,0,1,1,1,1,0,1
TC-3 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1
TC-4 1,1,1,1,1,1,1,1,1,0,0,0,1,1,1,1,0,1
TC-5 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1
TC-6 1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,1
TC-7 1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,1
TC-8 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1
TC-9 1,1,1,1,1,1,1,1,1,0,0,0,1,1,1,1,0,1

Table 7 | The result of the test case matching of student grades

TC-1 TC-2 TC-3 TC-4 TC-5 TC-6 TC-7 TC-8

TC-1 – Unmatch Match Unmatch Unmatch Unmatch Unmatch Unmatch
TC-2 Unmatch – Unmatch Unmatch Unmatch Match Match Unmatch
TC-3 Match Unmatch – Unmatch Unmatch Unmatch Unmatch Unmatch
TC-4 Unmatch Unmatch Unmatch – Unmatch Unmatch Unmatch Unmatch
TC-5 Unmatch Unmatch Unmatch Unmatch – Unmatch Unmatch Unmatch
TC-6 Unmatch Match Unmatch Unmatch Unmatch – Unmatch Unmatch
TC-7 Unmatch Match Unmatch Unmatch Unmatch Unmatch – Unmatch
TC-8 Unmatch Unmatch Unmatch Unmatch Unmatch Unmatch Unmatch –

The experiment uses the test case coverage information that
defined as lines of code are executed by the test cases. Tables 5 and 6
show the result of the test case coverage information on student
grades and quadratic function, respectively. When the value is 1, it
means the line is executed. And, 0 means not executed.

Tables 7 and 8 show the result of the test case matching of student
grades and for quadratic function, respectively. Table 9 shows the
result of the exact match for student grades and quadratic function.
The number of redundant test cases is used to calculate the redun-
dancy score by formula (1).

Table 8 | The result of the test case matching of quadratic function

TC-1 TC-2 TC-3 TC-4 TC-5 TC-6 TC-7 TC-8 TC-9

TC-1 – Unmatch Unmatch Unmatch Unmatch Match Match Unmatch Unmatch
TC-2 Unmatch – Unmatch Match Unmatch Unmatch Unmatch Unmatch Match
TC-3 Unmatch Unmatch – Unmatch Match Unmatch Unmatch Match Unmatch
TC-4 Unmatch Match Unmatch – Unmatch Unmatch Unmatch Unmatch Unmatch
TC-5 Unmatch Unmatch Match Unmatch – Unmatch Unmatch Unmatch Unmatch
TC-6 Match Unmatch Unmatch Unmatch Unmatch – Unmatch Unmatch Unmatch
TC-7 Match Unmatch Unmatch Unmatch Unmatch Unmatch – Unmatch Unmatch
TC-8 Unmatch Unmatch Match Unmatch Unmatch Unmatch Unmatch – Unmatch
TC-9 Unmatch Match Unmatch Unmatch Unmatch Unmatch Unmatch Unmatch –

4.  RESULTS AND DISCUSSION

The redundant test cases are investigated by exact match approach
among test cases in the test suite. The result from exact match
approach can find the same test case coverage information. In the
results of exact match approach between test cases in the test suite,
it was found that several test cases were identical, which means that
several test cases exactly match to others. By detecting the test cases
redundancy, redundant test cases are eliminated and the cost of
testing is reduced.

In the experiment, the redundant test cases are found on student
grades and quadratic function. Based on the result of exact match
in Table 9, the number of redundant test cases for student grades
is three test cases. The result of the exact match for its test suite is
that (TC-1 and TC-3) and (TC-2, TC-6, and TC7) exactly match.
The number of redundant test cases for quadratic function is six test
cases. The result of the exact match for its test suite is that (TC-1,
TC-6, and TC-7), (TC-2, TC-4, and TC-9), and (TC-3, TC-5, and
TC-8) exactly match. The test suite only needs one test case for each
group of redundant test cases and they should be eliminated.

This research calculates the redundancy score by using formula (1).
The redundancy score of the test suite for student grades is 0.37,
and quadratic function is 0.67, respectively. It means 37% and 67%
redundant test cases are included in the test suites.

Hence, we can evaluate the test suite by identifying redundant
test cases. The redundancy score provides useful information to
improve the efficiency of software testing, especially in testing

Table 9 | The result of the exact match

Student grades Quadratic function

TC-1, TC-3 TC-1,TC-6 and TC-7
TC-2, TC-6, TC7 TC-2, TC-4 and TC-9
– TC-3, TC-5 and TC-8

4	 M.C. Saputra et al. / Journal of Robotics, Networking and Artificial Life 8(1) 1–5

other programs by reusing the same test suite such as regression
testing and automated testing.

5.  CONCLUSION

The research confirms that test suites can be evaluated by the
redundancy score which is calculated by the result from exact
match approach among the test case coverage information in the
test suite. The current research identified the redundant test cases
on the result from exact match approach.

The experiment has two java source codes: student grades and qua-
dratic function. And, each test suite is prepared. The redundancy
score of student grades is 0.37 and of quadratic function is 0.67,
respectively. It can represent the percentage of redundant test cases
in the test suite. It means 37% and 67% redundant test cases are
included in the test suites.

Hence, we can evaluate the test suite by identifying redundant
test cases. The redundancy score provides useful information to
improve the efficiency of software testing, especially in testing
other programs by reusing the same test suite such as regression
testing and automated testing.

Future research is needed to consider other evaluation methods of
a test suite, for example, relation between the test case redundancy
and path coverage, reusability of test cases or test suite, and so on.

CONFLICTS OF INTEREST

The authors declare they have no conflicts of interest.

REFERENCES

[1]	 The Institute of Electrical and Electronics Engineers (IEEE), 610-
1990 - IEEE standard computer dictionary: a compilation of IEEE
standard computer glossaries, IEEE, 1990.

[2]	 B.B. Agarwal, S.P. Tayal, M. Gupta, Software engineering & test-
ing: an introduction, Jones and Bartlett Publisher, USA, 2010.

[3]	 A. Farooq, R.R. Dumke, Evaluation approaches in software test-
ing, Technical Report, Nr.: FIN-05-2008, 2008.

[4]	 K. Naik, P. Tripathy, Software testing and quality assurance.
Theory and practice, vol. 1, John Wiley & Sons, Inc., Hoboken,
NJ, USA, 2008.

[5]	 H. Mohanty, J.R. Mohanty, A. Balakrishnan, Trends in software
testing, Springer Singapore, Singapore, 2017.

[6]	 P. Heed, A. Westrup, Automated platform testing using input
generation and code coverage, Technical Report, Department of
Computer Science, Lund University, Lund, Sweden, 2009.

[7]	 M.C. Saputra, T. Katayama, Code coverage visualization on web-
based testing tool for java programs, J. Robot. Netw. Artif. Life
2 (2015), 89–93.

[8]	 “EclEmma - Java Code Coverage for Eclipse.” [Online]. Available
from: https://www.jacoco.org/ (accessed November 5, 2020).

AUTHORS INTRODUCTION

Mr. Mochamad Chandra Saputra

He received the Master’s degree from
the University of Miyazaki, Japan, and
Brawijaya University, Indonesia on Double
Degree Program in 2014. He also worked
in Brawijaya University ICT Unit as System
Analyst from 2006 to 2014. Since 2015,
he has been a lecturer on the Faculty of
Computer Science, Brawijaya University.

Currently, he is persuing the Doctoral Study at the University of
Miyazaki. His research interests include software testing, software
quality, and software project management.

Mr. Tetsuro Katayama

He received the PhD degree in engineer-
ing from Kyushu University, Fukuoka,
Japan in 1996. From 1996 to 2000, he has
been a Research Associate at the Graduate
School of Information Science, Nara
Institute of Science and Technology, Japan.
Since 2000, he has been an Associate
Professor at the Faculty of Engineering,
Miyazaki University, Japan. He is cur-

rently a Professor with the Faculty of Engineering, University
of Miyazaki, Japan. His research interests include software test-
ing and quality. He is a member of the IPSJ, IEICE, and JSSST.

Mr. Yoshihiro Kita

He received a PhD degree in systems engi-
neering from the University of Miyazaki,
Japan in 2011. He is currently an Associate
Professor with the Faculty of Information
Systems, University of Nagasaki, Japan.
His research interests include software
testing and biometrics authentication.

Mr. Hisaaki Yamaba

He received the B.S. and M.S. degrees in
chemical engineering from the Tokyo
Institute of Technology, Japan, in 1988 and
1990, respectively, and the PhD degree in
systems engineering from the University
of Miyazaki, Japan, in 2011. He is currently
an Assistant Professor with the Faculty
of Engineering, University of Miyazaki,
Japan. His research interests include net-

work security and user authentication. He is a member of SICE
and SCEJ.

https://doi.org/10.1109/IEEESTD.1991.106963
https://doi.org/10.1109/IEEESTD.1991.106963
https://doi.org/10.1109/IEEESTD.1991.106963
https://doi.org/10.2991/jrnal.2015.2.2.5
https://doi.org/10.2991/jrnal.2015.2.2.5
https://doi.org/10.2991/jrnal.2015.2.2.5

	 M.C. Saputra et al. / Journal of Robotics, Networking and Artificial Life 8(1) 1–5	 5

Mr. Kentaro Aburada

�He received the B.S., M.S., and PhD degrees
in computer science and system engineer-
ing from the University of Miyazaki, Japan,
in 2003, 2005, and 2009, respectively. He
is currently an Associate Professor with
the Faculty of Engineering, University of
Miyazaki, Japan. His research interests
include computer network and security. He
is a member of IPSJ and IEICE.

Mr. Naonobu Okazaki

He received his B.S., M.S., and PhD degrees
in electrical and communication engineer-
ing from Tohoku University, Japan, in 1986,
1988, and 1992, respectively. He joined the
Information Technology Research and
Development Center, Mitsubishi Electric
Corporation in 1991. Since 2002, he is a
Professor with the Faculty of Engineering,
University of Miyazaki. His research

interests include mobile network and network security. He is a
member of IPSJ, IEICE, and IEEE.

