Research Article

Certain Properties of Single-Valued Neutrosophic Graph With Application in Food and Agriculture Organization

Shouzhen Zeng¹,², Muhammad Shoaib³, Shahbaz Ali⁴∗, Florentin Smarandache⁵, Hossein Rashmanlou⁶, Farshid Mofidnakhaei⁷

¹School of Business, Ningbo University, Ningbo, 315211, China
²College of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou, 310018, China
³Department of Mathematics, University of the Punjab, New Campus, Lahore, 54590, Pakistan
⁴Department of Mathematics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
⁵Department of Mathematics and Science, University of New Mexico, Gallup, NM, 87301, USA
⁶Mazandaran Adib Institute of Higher Education, Sari, 47416-13534, Iran
⁷Department of Physics, Sari Branch, Islamic Azad University, Sari, 4818937769, Iran

ABSTRACT

Fuzzy graph models are present everywhere from natural to artificial structures, embodying the dynamic processes in physical, biological, and social systems. As real-life problems are often uncertain on account of inconsistent and indeterminate information, it seems very demanding for an expert to model those problems using a fuzzy graph. To deal with the uncertainty associated with the inconsistent and indeterminate information of any real-world problems, a neutrosophic graph can be applied, where fuzzy graphs may not bear any fruitful results. The past definitions limitations in fuzzy graphs have directed us to present new definitions in single-valued neutrosophic graph (SVNG). A SVNG has several applications in the fields of physics, bio and connectivity of socialism. It has been an advantageous scope in the recent times for providing such information which is incomplete or uncertain accounting in real problems that gives the direction to describe the relationship between nodes. Operations are conveniently used in many combinatorial applications. In various situations, they present a suitable construction means; therefore, the current study, seeks to present and explore the key features of new operations, including: rejection, maximal product, symmetric difference, and residue product of SVNG. We have discuss the concept of maximal product on two strong-(SVNGS) and maximal product of connected-SVNG with examples. This research article presents the notions of degree of a vertex and total degree of a vertex in SVNG. Moreover, this study summarizes the specific conditions needed for obtaining vertices degrees in SVNG under the operations of maximal product, symmetric difference, residue product, and rejection. In addition, an application was illustrated in the food and agriculture organization with an algorithm to emphasize the contributions of this research article in practical applications.

1. INTRODUCTION

Graph theory is an exceptionally advantageous device in tackling combinatorial issues in different regions including calculation, variable-based math, number hypothesis, geography, and social frameworks. A graph is chiefly a model of relations, and it is applied to speak to the genuine issues including connections between objects. The vertices and edges of the graph are utilized to connotate the articles and the relations between objects, individually. In numerous improvement issues, the current data is vague or loose for different reasons, for example, the loss of data, the absence of proof, flawed measurable information, and inadequate data. By and large, the vulnerability, in actuality, issues may show up in the data that characterizes the issue. Fuzzy chart models are important numerical apparatuses for treating the combinatorial issues of different areas enveloping exploration, streamlining, variable-based math, figuring, ecological science, and geography. Fuzzy graphical models are observably more helpful than graphical models due to the common presence of unclearness and equivocalness. Initially, fuzzy set hypothesis is needed to manage numerous perplexing issues including inadequate data. Zadeh [32], firstly exemplified the idea of the set known as the fuzzy set. He described the fuzzy set characterized by true membership function value ranging from closed interval [0, 1]. Fuzzy set theory serves as a very powerful mathematical tool for solving approximate reasoning related problems. These notions effectively illustrate complex phenomena, which are not precisely described by classical mathematics. The fuzzy graphs idea and concept are discussed by Smarandache and Rosenfeld [27]. The fuzzy graphs application has been extended in few years and it has a scope from 19th century [4,5,10,11,15,16]. It is not necessarily true membership degree of 1, also, the
nonmembership degree and indeterminacy occur. Nonmembership degree is presented by Atanassov [3] in an intuitionistic fuzzy set. Shao et al. [31] labeled new concepts of bondage number in intuitionistic fuzzy graph. Rashmanlou et al. [20–26] introduced new concepts in bipolar fuzzy graph and interval-valued fuzzy graphs. Krishna et al. [13,14] analyzed the concept of vague set and vague graph. Devi et al. [8] investigated new ways in intuitionistic fuzzy labeling graph. Pythagorean fuzzy set also known as IF-set of type-2 [1] is the extension of intuitionistic fuzzy set (IF-set). Parvathi and Karunambigai [19] studied about Intuitionistic fuzzy graph. After while, Smarandache [31] included the indeterminacy concept in a neutrosophic set. Neutrosophy is the kind of philosophy which analyzes the nature and scope of neutralities. Neutrosophic set is the speculation of fuzzy set and furthermore neutrosophic rationale is the expansion of fuzzy rationale. Smarandache gives the possibility of a neutrosophic set due to introducing the vulnerability in the issues of different fields like clinical science and financial aspects and so forth. He portrayed significant classifications [29] of neutrosophic diagrams from which two classifications are relied upon the strict indeterminacy and other two classes depended [7] on its (i, i, f) parts. Malik and Hassan [12] presented the classification of bipolar single-valued neutrosophic graph (SVNG) classification. Later Malik and Naz et al. [17] described new operations on SVNG. Naz et al. [17] discussed operations on single-valued neutrosophic graphs with application. Malik et al. [18] also investigated some properties of bipolar SVNG. Product operations have applications in different branches, such as coding theory, network designs, chemical graph theory, and others. Many scholars discussed product operations on various generalized FGs. Mordeson and Peng [16] defined some of these product operations on FGS and some new fuzzy models are discussed in [33–38].

In this research, some new properties, including maximal product, symmetric difference, residue product, and rejection of SVNG are presented. Also, the examples of these operations are discussed. We found the degree and the total degree of SVNG. Finally, an application was illustrated in the food and agriculture organization with an algorithm to highlight the contributions of this research article in practical applications.

2. PRELIMINARIES

In this section, the key preliminary notions and definitions that are used in this current research study will be introduced.

Definition 1. [9] A graph \(G = (V,E) \) is an ordered pair of set of vertices and set of edges.

Definition 2. [30] Suppose that \(X \) is a space of points with generic element in \(X \) denoted by \(x \). Then, the neutrosophic set \(M_{\text{NS-M}} \) is defined as \(M = \{ x : T_M(x), I_M(x), F_M(x) \} \), \(x \in X \) which obey \(0 \leq \{ T_M(x) + I_M(x) + F_M(x) \} \leq 3, T_M: V \rightarrow [0,1], I_M: V \rightarrow [0,1], \) and \(F_M: V \rightarrow [0,1] \) represents the degree of true membership function, degree of indeterminacy membership function, and degree of false membership function of the element \(x \in X \), respectively.

Definition 3. [27] A SVNG \(G = (M, N) \) with underlying set of \(V \) is defined to be a pair of \(G = (V, E) \) which is defined as (i) \(T_M : V \rightarrow [0,1], F_M : V \rightarrow [0,1] \) and \(I_M : V \rightarrow [0,1] \) represents the degree of true membership function, degree of false membership function, and degree of indeterminacy membership function of the element \(m \in V \), respectively, where \(0 \leq T_M(m) + I_M(m) + F_M(m) \leq 3, V \in V \).

(ii) The function \(T_N : E \rightarrow [0,1], I_N : E \rightarrow [0,1] \) and \(F_N : E \rightarrow [0,1] \) are defined by

\[
T_N(mn) = \min \{ T_M(m), T_M(n) \} \\
I_N(mn) = \max \{ I_M(m), I_M(n) \} \\
F_N(mn) = \max \{ F_M(m), F_M(n) \} .
\]

It is free of any restriction so \(0 \leq T_N(mn) + I_N(mn) + F_N(mn) \leq 3 \).

Example 1. Consider the Figure 1 such that \(V = \{ a, b, c \}, E = \{ ab, bc, ca \}, M = \langle \left(\frac{a}{0.3} : \frac{b}{0.2} : \frac{c}{0.4} \right), \left(\frac{a}{0.6} : \frac{b}{0.4} : \frac{c}{0.0} \right), \left(\frac{a}{0.2} : \frac{b}{0.2} : \frac{c}{0.3} \right) \rangle, \) and \(N = \langle \left(\frac{ab}{0.1} : \frac{bc}{0.1} : \frac{ac}{0.2} \right), \left(\frac{ab}{0.7} : \frac{bc}{0.6} : \frac{ac}{0.8} \right), \left(\frac{ab}{0.3} : \frac{bc}{0.2} : \frac{ac}{0.3} \right) \rangle \).

By routine computations, it is easy to show that \(G \) is a SVNG.

Definition 4. A SVNG \(G \) is said to be strong if \(T_N(mn) = \min(T_M(m), T_M(n)), I_N(mn) = \max(I_M(m), I_M(n)) \) and \(F_N(mn) = \max(F_M(m), F_M(n)) \), for all \(mn \) in \(V \).

Definition 5. A SVNG \(G \) is said to be complete if \(T_N(mn) = \min(T_M(m), T_M(n)), I_N(mn) = \max(I_M(m), I_M(n)) \) and \(F_N(mn) = \max(F_M(m), F_M(n)) \), for all \(m, n \) in \(E \).

Definition 6. A SVNG \(G \) is said to be connected if \(T_N^{\infty}(m, m_j) > 0, F_N^{\infty}(m, m_j) < 1 \), \(F_N^{\infty}(m, m_j) < 1 \), for all \(m, m_j \in V \). Also, we have

\[
T_N^{\infty}(mn) = \sup \{ T_N(mn_1) \wedge T_N(n_1n_2) \wedge T_N(n_2n_3) \wedge \cdots \wedge T_N(n_{k-1}n), n \in V \},
\]

and

\[
F_N^{\infty}(mn) = \inf \{ I_N(mn_1) \vee I_N(n_1n_2) \vee I_N(n_2n_3) \vee \cdots \vee I_N(n_{k-1}n), n \in V \}.
\]

By routine computations, it is easy to show that \(G \) is a SVNG.

3. OPERATIONS ON SVNGS

In this section, we define four new kinds of operations on (SVNGs) including maximal product, residue product, rejection, and symmetric difference. We show that maximal product, residue product, and rejection of two (SVNGs) are a SVNG.

Definition 7. The maximal product \(G_1 \ast G_2 = (M_1 \ast M_2, N_1 \ast N_2) \) of two (SVNGs) \(G_1 = (M_1, N_1) \) and \(G_2 = (M_2, N_2) \) is defined as

![Figure 1 | SVNG(G).](image-url)
(i) \((T_{M_1} * T_{M_2}) ((m_1, m_2)) = \max \{ T_{M_1} (m_1), T_{M_2} (m_2) \} \)
\((I_{M_1} * I_{M_2}) ((m_1, m_2)) = \min \{ I_{M_1} (m_1), I_{M_2} (m_2) \} \)
\((F_{M_1} * F_{M_2}) ((m_1, m_2)) = \min \{ F_{M_1} (m_1), F_{M_2} (m_2) \} \)
\[\forall (m_1, m_2) \in (V_1 \times V_2), \]
for \(e \in V_1 \) and \(ab \in E_2 \). Now, for edge \((e, a)(f, a)\) we have:
\((T_{N_1} * T_{N_2}) ((e, a)(f, a)) = \max \{ T_{N_1} (e), T_{N_2} (a) \} \)
\(= \max \{ 0.3, 0.1 \} = 0.3, \)
\((I_{N_1} * I_{N_2}) ((e, a)(f, a)) = \min \{ I_{N_1} (e), I_{N_2} (a) \} \)
\(= \min \{ 0.5, 0.3 \} = 0.3, \)
\((F_{N_1} * F_{N_2}) ((e, a)(f, a)) = \min \{ F_{N_1} (e), F_{N_2} (a) \} \)
\(= \min \{ 0.5, 0.4 \} = 0.4, \)
for \(a \in V_2 \) and \(ef \in E_1 \).
Similarly, we can find membership, indeterminacy, and nonmembership value for all remaining vertices and edges.

Proposition 1. The maximal product of two (SVNGs) \(G_1 \) and \(G_2 \) is a SVNG.

Proof. Let \(G_1 = (M_1, N_1) \) and \(G_2 = (M_2, N_2) \) be two (SVNGs) on crisp graphs \(G_1 = (V_1, E_1) \) and \(G_2 = (V_2, E_2) \), respectively and \((m_1, m_2)(n_1, n_2) \in E_1 \times E_2 \). Then, by Definition 7, we have two cases:

(i) If \(m_1 = n_1 = m \)
\((T_{N_1} * T_{N_2})(m, m_2)(m, n_2)) \)
\(= \max \{ T_{M_1} (m), T_{M_2} (m_2) \} \)
\(\leq \max \{ T_{M_1} (m), \min \{ T_{M_2} (m_2), T_{M_1} (n_2) \} \} \)
\(= \min \{ \max \{ \{ T_{M_1} (m), T_{M_2} (m_2) \}, \min \{ T_{M_1} (m), T_{M_2} (n_2) \} \} \} \)
\(= \min \{ \{ T_{M_1} (m), T_{M_2} (m_2) \}, \{ T_{M_1} (m), T_{M_2} (n_2) \} \} \)
\((I_{N_1} * I_{N_2})(m, m_2)(m, n_2) \)
\(= \min \{ I_{M_1} (m), I_{M_2} (m_2) \} \)
\(\geq \min \{ I_{M_1} (m), \max \{ I_{M_2} (m_2), I_{M_1} (n_2) \} \} \)
\(= \max \{ \min \{ I_{M_1} (m), I_{M_2} (m_2) \}, \min \{ I_{M_1} (m), I_{M_2} (n_2) \} \} \)
\(= \max \{ I_{M_1} * I_{M_2}(m, m_2), (I_{M_1} * I_{M_2})(m, n_2) \} \)
\((F_{N_1} * F_{N_2})(m, m_2)(m, n_2) \)
\(= \min \{ F_{M_1} (m), F_{M_2} (m_2) \} \)
\(\geq \min \{ F_{M_1} (m), \max \{ F_{M_2} (m_2), F_{M_1} (n_2) \} \} \)
\(= \max \{ \min \{ F_{M_1} (m), F_{M_2} (m_2) \}, \min \{ F_{M_1} (m), F_{M_2} (n_2) \} \} \)
\(= \max \{ F_{M_1} * F_{M_2}(m, m_2), (F_{M_1} * F_{M_2})(m, n_2) \} \).

(ii) If \(m_2 = n_2 = z \)
\((T_{N_1} * T_{N_2})(m_1, z)(n_1, z) \)
\(= \max \{ T_{N_1} (m_1), T_{N_2} (z) \} \)
\(\leq \max \{ T_{N_1} (m_1), T_{N_2} (z) \} \)
\(= \max \{ \min \{ T_{N_1} (m_1), T_{N_2} (z) \}, \max \{ T_{N_1} (n_1), T_{N_2} (z) \} \}
\(= \max \{ \{ T_{M_1} * T_{M_2} \}(m_1, z), (T_{M_1} * T_{M_2}) (n_1, z) \} \).
\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4}
\caption{$G_1 \ast G_2$.}
\end{figure}

\[(I_{N_1} \ast I_{N_2}) \left((m_1, z) (n_1, z) \right) = \min \{I_{N_1} (m_1, n_1), I_{M_1} (z) \} \geq \min \{\max \{I_{N_1} (m_1, n_1), I_{M_1} (z) \} \}
= \max \{\min \{I_{M_1} (m_1), I_{M_1} (z) \}, \min \{I_{M_1} (n_1), I_{M_1} (z) \} \}
= \max \{I_{M_1} \ast I_{M_1} (m_1, z) , I_{M_1} \ast I_{M_1} (n_1, z) \}, \]

\[(F_{N_1} \ast F_{N_2}) \left((m_1, z) (n_1, z) \right) = \min \{F_{N_1} (m_1, n_1), F_{M_1} (z) \} \geq \min \{\max \{F_{N_1} (m_1, n_1), F_{M_1} (z) \} \]
= \max \{\min \{F_{M_1} (m_1), F_{M_1} (z) \}, \min \{F_{M_1} (n_1), F_{M_1} (z) \} \}
= \max \{F_{M_1} \ast F_{M_1} (m_1, z) , F_{M_1} \ast F_{M_1} (n_1, z) \}. \]

Therefore, $G_1 \ast G_2$ is a SVNG.

\textbf{Theorem 2.} The maximal product of two strong-(SVNGS) G_1 and G_2, is a strong-SVNG.

\textbf{Proof.} Let $G_1 = (M_1, N_1)$ and $G_2 = (M_2, N_2)$ be two strong-(SVNGS) on crisp graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, respectively and $(m_1, m_2) (n_1, n_2) \in E_1 \times E_2$. Then by Proposition 1, $G_1 \ast G_2$ is a SVNG. Now we have two cases:

(i) If $m_1 = n_1 = m$
\[(T_{N_1} \ast T_{N_2}) \left((m, m_2) (m, n_2) \right) = \max \{T_{M_1} (m), T_{N_1} (m_2) \}
= \max \{T_{M_1} (m), \min \{T_{M_1} (m_2), T_{M_1} (n_2) \} \}
= \min \{\max \{T_{M_1} (m), T_{M_1} (m_2) \}, \max \{T_{M_1} (m), T_{M_1} (n_2) \} \}
= \min \{T_{M_1} \ast T_{M_1} (m, m_2) , T_{M_1} \ast T_{M_1} (m, n_2) \}. \]

(ii) If $m_2 = n_2 = z$
\[(T_{N_1} \ast T_{N_2}) \left((m_1, z) (n_1, z) \right) = \max \{T_{N_1} (m_1), T_{M_1} (z) \}
= \max \{\min \{T_{N_1} (m_1), T_{N_1} (z) \}, \max \{T_{M_1} (n_1), T_{M_1} (z) \} \}
= \min \{\max \{T_{M_1} (n_1), T_{M_1} (z) \}, \min \{T_{M_1} (m_1), T_{M_1} (z) \} \}
= \min \{T_{M_1} \ast T_{M_1} (m_1, z) , T_{M_1} \ast T_{M_1} (n_1, z) \}. \]
Then and It is easy to see that Therefore, 1520 is not strong. Since \(T = (2 \times 1) = 2 \) and \(F = (2 \times 1) = 2 \), Figure 8 considers the strong-(SVNG) \((SVNG)\) and \((SVNG)\) need not be strong, in general.

Example 3. Consider the strong-(SVNG) \(G_1 \) and \(G_2 \) as in Figure 5.

It is easy to see that \(G_1 \ast G_2 \) is a strong-SVNG.

Remark 1. If the maximal product of two \((SVNG)\) \(G_1 = (M_1, N_1) \) and \(G_2 = (M_2, N_2) \) is strong, then \(G_1 = (M_1, N_1) \) and \(G_2 = (M_2, N_2) \) need not be strong, in general.

Example 4. Consider the \((SVNG)\) \(G_1 \) and \(G_2 \) as in Figures 6 and 7. We can see that the maximal product of two \((SVNG)\) \(G_1 \) and \(G_2 \), that is \(G_1 \ast G_2 \) in Figure 8.

Then \(G_1 \) and \(G_1 \ast G_2 \) are strong-(SVNG), but \(G_2 \) is not strong. Since \(T_{N_2}(m_2, n_2) = 0.1 \), but

\[
(F_{N_1} \ast F_{N_2}) (m_1, z) (n_1, z) \\
= \min \{ F_{N_1} (m_1, n_1), F_{M_2} (z) \} \\
= \min \{ \max \{ F_{N_1} (m_1, n_1), F_{M_2} (z) \} \} \\
= \max \{ \min \{ F_{M_1} (m_1), F_{M_2} (z) \}, \min \{ F_{M_1} (n_1), F_{M_2} (z) \} \} \\
= \max \{ (F_{M_1} \ast F_{M_2}) (m_1, z), (F_{M_1} \ast F_{M_2}) (n_1, z) \}.
\]

Hence, there exists at least one edge between any pair of the above “k” subgraphs. Thus we have \(T_{N_2} (m_1, n_1) (m_2, n_2) > 0 \) or \(F_{N_2} (m_1, n_1) (m_2, n_2) > 1 \) for \((m_1, n_1) (m_2, n_2) \) is adjacent to at least one of the vertices in \(V_2 \). Also, since \(G_1 \) is connected, each \(x_i \) is adjacent to at least one of the vertices in \(V_1 \).

Remark 2. The maximal product of two complete-(SVNG) is not a complete-SVNG, in general. Because we do not include the case \((m_1, m_2) \in E_1 \) and \((n_1, n_2) \in E_2 \) in the definition of the maximal product of two \((SVNG)\).

Remark 3. The maximal product of two complete-(SVNG) is a strong-SVNG.

Example 5. Consider the complete-(SVNG) \(G_1 \) and \(G_2 \) as in Figure 5. A simple calculation concludes that \(G_1 \ast G_2 \) is a strong-SVNG.

Definition 8. Let \(G_1 = (M_1, N_1) \) and \(G_2 = (M_2, N_2) \) be two \((SVNG)\). \(\forall (m_1, m_2) \in V_1 \times V_2 \) :

\[
(d_{T})_{G_1 \ast G_2} (m_1, m_2) = \\
\sum \{ T_{M_1} (m_1, m_2) \} (m_1, m_2) (n_1, n_2) \} + \\
\sum \{ T_{N_1} (m_1, n_1) \} (m_1, n_1) (m_2, n_2) \}
\]

\[
(d_{T})_{G_1 \ast G_2} (m_1, m_2) = \\
\sum \{ I_{N_1} (m_1, n_1) \} (m_1, m_2) (n_1, n_2) \} + \\
\sum \{ I_{M_1} (m_1, n_1) \} (m_1, n_1) (m_2, n_2) \}
\]
If T is $m \in N$ and $G_2 = (M_2, N_2)$ are two (SVNGs).

Then for every $(m_1, m_2) \in V_1 \times V_2$ we have:

$$(d_F)_{G_i \ast G_2} (m_1, m_2) = \sum_{m_1, m_2} (F_{N_1} * F_{N_2}) ((m_1, m_2) (n_1, n_2)) = \sum_{m_1, m_2} \min \{F_{M_1} (m_1), F_{N_2} (m_2)\} + \sum_{m_1, m_2} \min \{F_{N_1} (m_1), F_{M_2} (m_2)\}.$$

Theorem 4. Let $G_1 = (M_1, N_1)$ and $G_2 = (M_2, N_2)$ are two (SVNGs).

If $T_{M_1} \geq T_{N_1}, I_{M_1} \leq I_{N_1}, F_{M_1} \leq F_{N_1}$ and $T_{M_2} \geq T_{N_2}, I_{M_2} \leq I_{N_2}, F_{M_2} \leq F_{N_2}$ then for every $(m_1, m_2) \in V_1 \times V_2$ we have:

$$
(d_T)_{G_i \ast G_2} (m_1, m_2) = (d_{G_1} (m_1) T_{M_1} (m_1) + (d_{G_2} (m_2) T_{M_2} (m_2),

(d_I)_{G_i \ast G_2} (m_1, m_2) = (d_{G_1} (m_1) I_{M_1} (m_1) + (d_{G_2} (m_2) I_{M_2} (m_2),

(d_F)_{G_i \ast G_2} (m_1, m_2) = (d_{G_1} (m_1) F_{M_1} (m_1) + (d_{G_2} (m_2) F_{M_2} (m_2).

Example 6. Consider the (SVNGs) G_1, G_2, and $G_1 \ast G_2$ as in Figure 9.

Since $T_{M_1} \geq T_{N_1}, I_{M_1} \leq I_{N_1}, F_{M_1} \leq F_{N_1}, T_{M_2} \geq T_{N_2}, I_{M_2} \leq I_{N_2}$ and $F_{M_2} \leq F_{N_2}$ by Theorem 4, we have:

$$(d_T)_{G_i \ast G_2} (a, c) = (d_{G_2} (c) T_{M_1} (a) + (d_{G_1} (a) T_{M_2} (d),

(d_I)_{G_i \ast G_2} (a, c) = (d_{G_2} (c) I_{M_1} (a) + (d_{G_1} (a) I_{M_2} (d),

(d_F)_{G_i \ast G_2} (a, c) = (d_{G_2} (c) F_{M_1} (a) + (d_{G_1} (a) F_{M_2} (d).$$
Definition 9. Let $G_1 = (M_1, N_1)$ and $G_2 = (M_2, N_2)$ be two (SVNGs). For any vertex $(m_1, m_2) \in V_1 \times V_2$ we have

$$(td_{I})_{G_1 \ast G_2} (m_1, m_2) =$$

$$= \sum_{(m_1, m_2) \in E_{I} \times E_{I}} (T_{N_1} \ast T_{N_2}) ((m_1, m_2) (n_1, n_2)) + (T_{M_1} \ast T_{M_2}) (m_1, m_2)$$

$$= \sum_{m_1, m_2 \in E_{I}} \max \{ T_{M_1} (m_1), T_{N_1} (m_2 n_2) \}
+ \sum_{m_1, m_2 \in E_{I}} \max \{ T_{M_1} (m_1 n_1), T_{M_2} (m_2) \}
+ \max \{ T_{M_1} (m_1), T_{M_2} (m_2) \},$$

By direct calculations:

$$(d_1)_{G_1 \ast G_2} (a, c) = 0.3 + 0.2 = 0.5,$$

$$(d_1)_{G_1 \ast G_2} (a, d) = 0.4 + 0.3 = 0.7,$$

$$(d_1)_{G_1 \ast G_2} (b, c) = 0.3 + 0.3 = 0.6,$$

$$(d_1)_{G_1 \ast G_2} (b, d) = 0.3 + 0.2 = 0.5,$$

$$(d_1)_{G_1 \ast G_2} (c, b) = 0.3 + 0.3 = 0.6,$$

$$(d_1)_{G_1 \ast G_2} (c, d) = 0.3 + 0.4 = 0.7.$$

It is clear from the above calculations that the degrees of vertices calculated by using the formula of the above theorem and by directed method are the same.

Theorem 5. Let $G_1 = (M_1, N_1)$ and $G_2 = (M_2, N_2)$ be two (SVNGs). If $T_{M_1} \geq T_{N_2}, I_{M_1} \leq I_{N_2}, F_{M_1} \leq F_{N_2}$ and $T_{M_1} \geq T_{N_1}, I_{M_1} \leq I_{N_1}, F_{M_1} \leq F_{N_1}$, then for every $(m_1, m_2) \in V_1 \times V_2$ we have

$$(td_{I})_{G_1 \ast G_2} (m_1, m_2) =$$

$$= \sum_{(m_1, m_2) \in E_{I} \times E_{I}} (I_{N_1} \ast I_{N_2}) ((m_1, m_2) (n_1, n_2)) + (I_{M_1} \ast I_{M_2}) (m_1, m_2)$$

$$= \sum_{m_1, m_2 \in E_{I}} \min \{ I_{M_1} (m_1), I_{N_1} (m_2 n_2) \}
+ \sum_{m_1, m_2 \in E_{I}} \min \{ I_{N_1} (m_1 n_1), I_{M_2} (m_2) \}
+ \min \{ I_{M_1} (m_1), I_{M_2} (m_2) \},$$

$$(td_{F})_{G_1 \ast G_2} (m_1, m_2) =$$

$$= \sum_{(m_1, m_2) \in E_{I} \times E_{I}} (F_{N_1} \ast F_{N_2}) ((m_1, m_2) (n_1, n_2)) + (F_{M_1} \ast F_{M_2}) (m_1, m_2)$$

$$= \sum_{m_1, m_2 \in E_{I}} \min \{ F_{M_1} (m_1), F_{N_1} (m_2 n_2) \}
+ \sum_{m_1, m_2 \in E_{I}} \min \{ F_{N_1} (m_1 n_1), F_{M_2} (m_2) \}
+ \min \{ F_{M_1} (m_1), F_{M_2} (m_2) \}. $$
Proof.

\[
(td_T)_{G_1+G_2} (m_1, m_2) =
\sum_{(m,m')(n,n')\in E_1\times E_2} \left(T_{N_1} \ast T_{N_2} \right) \left((m_1, m_2) \right) \left((n_1, n_2) \right) +
\left(T_{M_1} \ast T_{M_2} \right) \left(m_1, m_2 \right)
\]

\[=
\sum_{m_1=m_2, m_1, n_1, n_2 \in E_1} \max \left\{ T_{M_1} (m_1), T_{N_1} (m_2, n_2) \right\}
+ \sum_{m_1, n_1, n_2 \in E_1, m_2 = n_2} \max \left\{ T_{N_1} (m_1, n_1), T_{M_1} (m_2) \right\}
+ \max \left\{ T_{M_1} (m_1), T_{M_2} (m_2) \right\}
\]

\[=
\sum_{m_1, n_2 \in E_2, m_1, n_1 \in E_1} T_{N_1} (m_2, n_2)
+ \sum_{m_1, n_1, n_2 \in E_1, m_2 = n_2} T_{N_1} (m_1, n_1)
+ \max \left\{ T_{M_1} (m_1), T_{M_2} (m_2) \right\}
\]

\[=
(d_{G_1}) (m_2) T_{M_1} (m_1) + (d_{G_2}) (m_1) T_{M_2} (m_2)
+ \max \left\{ T_{M_1} (m_1), T_{M_2} (m_2) \right\}
\]

\[
(td_I)_{G_1+G_2} (m_1, m_2) =
\sum_{(m,m')(n,n')\in E_1\times E_2} \left(I_{N_1} \ast I_{N_2} \right) \left((m_1, m_2) \right) \left((n_1, n_2) \right) +
\left(I_{M_1} \ast I_{M_2} \right) \left(m_1, m_2 \right)
\]

\[=
\sum_{m_1=m_2, m_1, n_1, n_2 \in E_1} \min \left\{ I_{M_1} (m_1), I_{N_1} (m_2, n_2) \right\}
+ \sum_{m_1, n_1, n_2 \in E_1, m_2 = n_2} \min \left\{ I_{N_1} (m_1, n_1), I_{M_1} (m_2) \right\}
+ \min \left\{ I_{M_1} (m_1), I_{M_2} (m_2) \right\}
\]

\[=
\sum_{m_1, n_2 \in E_2, m_1, n_1 \in E_1} I_{N_1} (m_2, n_2)
+ \sum_{m_1, n_1, n_2 \in E_1, m_2 = n_2} I_{N_1} (m_1, n_1)
+ \min \left\{ I_{M_1} (m_1), I_{M_2} (m_2) \right\}
\]

\[=
(d_{G_1}) (m_2) I_{M_1} (m_1) + (d_{G_2}) (m_1) I_{M_2} (m_2)
+ \min \left\{ I_{M_1} (m_1), I_{M_2} (m_2) \right\}
\]

Example 7. Consider the (SVNGs) G_1, G_2, and $G_1 \ast G_2$ as in Figures 2-4. We find the total degree of vertices in maximal product. Hence, we choose vertex (e,a).

\[
(td_T)_{G_1+G_2} (e, a) = (d_{G_1}) (e) T_{M_1} (a) + (d_{G_2}) (a) T_{M_2} (e)
\]

\[+ \max \left\{ T_{M_1} (e), T_{M_2} (a) \right\}
\]

\[= 1(0.1) + 3(0.3) + \max (0.1, 0.3)
\]

\[= 0.1 + 0.9 + 0.3 = 1.3
\]

\[
(td_I)_{G_1+G_2} (e, a) = (d_{G_1}) (e) I_{M_1} (a) + (d_{G_2}) (a) I_{M_2} (e)
\]

\[+ \min \left\{ I_{M_1} (e), I_{M_2} (a) \right\}
\]

\[= 1(0.3) + 3(0.4) + \min (0.3, 0.4)
\]

\[= 0.3 + 1.2 + 0.3 = 1.8
\]

\[
(td_I)_{G_1+G_2} (e, a) = (d_{G_1}) (e) F_{M_1} (a) + (d_{G_2}) (a) F_{M_2} (e)
\]

\[+ \min \left\{ F_{M_1} (e), F_{M_2} (a) \right\}
\]

\[= 1(0.4) + 3(0.5) + \min (0.4, 0.5)
\]

\[= 0.4 + 1.5 + 0.4 = 2.3
\]

In the same way we can find the total degree for all remaining vertices.

Definition 10. The rejection $G_1 | G_2 = (M_1 | M_2, N_1 | N_2)$ of two (SVNGs) $G_1 = (M_1, N_1)$ and $G_2 = (M_2, N_2)$ is defined as

(i) \[(T_{M_1} | T_{M_2}) \left((m_1, m_2) \right) = \min \left\{ T_{M_1} (m_1), T_{M_2} (m_2) \right\} \]
\[I_{M_1} | I_{M_2} \left((m_1, m_2) \right) = \max \left\{ I_{M_1} (m_1), I_{M_2} (m_2) \right\} \]
\[F_{M_1} | F_{M_2} \left((m_1, m_2) \right) = \max \left\{ F_{M_1} (m_1), F_{M_2} (m_2) \right\} \]
\[\forall \left(m_1, m_2 \right) \in \left(V_1 \times V_2 \right) . \]

(ii) \[(T_{N_1} | T_{N_2}) \left((m, m') \right) = \min \left\{ T_{M_1} (m), T_{M_2} (m') \right\} \]
\[I_{N_1} | I_{N_2} \left((m, m') \right) = \max \left\{ I_{N_1} (m), I_{N_2} (m') \right\} \]
\[F_{N_1} | F_{N_2} \left((m, m') \right) = \max \left\{ F_{N_1} (m), F_{N_2} (m') \right\} \]
\[\forall \left(m, m' \right) \in \left(V_1 \times V_2 \right) . \]

(iii) \[(T_{N_1} | T_{N_2}) \left((m, m') \right) = \min \left\{ T_{M_1} (m), T_{M_2} (m') \right\} \]
\[I_{N_1} | I_{N_2} \left((m, m') \right) = \max \left\{ I_{N_1} (m), I_{N_2} (m') \right\} \]
\[F_{N_1} | F_{N_2} \left((m, m') \right) = \max \left\{ F_{N_1} (m), F_{N_2} (m') \right\} \]
\[\forall \left(m, m' \right) \in \left(V_1 \times V_2 \right) . \]
Proposition 6. The rejection of two (SVNGs) \(G_1 \) and \(G_2 \) is a SVNG.

Proof. Let \(G_1 = (M_1, N_1) \) and \(G_2 = (M_2, N_2) \) be two (SVNGs) on crisp graphs \(G_1 = (V_1, E_1) \) and \(G_2 = (V_2, E_2) \), respectively and \((m_1, m_2) (n_1, n_2) \) \(\subseteq E_1 \times E_2 \). Then by Definition 10, we have

\[
\begin{align*}
(I_{N_1} \mid I_{N_2}) \left((m_1, m_2) (n_1, n_2) \right) &= \max \left\{ M_{M_1} (m_1) , I_{M_1} (m_2), M_{M_2} (n_2) \right\} \\
&= \max \left(\max \left\{ M_{M_1} (m_1) , M_{M_2} (m_2), M_{M_2} (n_2) \right\} \right) \\
&= \max \left(\left(M_{M_1} \mid I_{M_1} \right) (m_1, m_2), \left(M_{M_2} \mid I_{M_2} \right) (n_1, n_2) \right).
\end{align*}
\]

(i) If \(m_1 = n_1, m_2 n_2 \notin E_2 \)

\[
\begin{align*}
(T_{N_1} \mid T_{N_2}) \left((m_1, m_2) (n_1, n_2) \right) &= \min \left\{ M_{M_1} (m_1) , T_{M_1} (m_2), T_{M_2} (n_2) \right\} \\
&= \min \left\{ M_{M_1} (m_1) , M_{M_2} (m_2), T_{M_2} (n_2) \right\} \\
&= \min \left(\max \left\{ M_{M_1} (m_1) , M_{M_2} (m_2), T_{M_2} (n_2) \right\} \right) \\
&= \max \left(\left(M_{M_1} \mid I_{M_1} \right) (m_1, m_2), \left(M_{M_2} \mid T_{M_2} \right) (n_1, n_2) \right).
\end{align*}
\]

Similarly, we can find both membership and non-membership value for all remaining vertices and edges.
Figure 11 | G_2.

Figure 12 | $G_1|G_2$.

$\{I_{N_1} \mid I_{N_2}\} ((m_1, m_2) (n_1, n_2))$

$= \max \\{I_{M_1}(m_1), I_{M_1}(n_1), I_{M_2}(m_2)\}$

$= \max \\{ \max \{I_{M_1}(m_1), I_{M_1}(m_2)\} \}$

$\max \\{ \{I_{M_1}(n_1), I_{M_2}(n_2)\}\}$

$= \max \\{ (I_{M_2} \mid I_{M_2})(m_1, m_2), (I_{M_2} \mid I_{M_2})(n_1, n_2)\}$

$\{F_{N_1} \mid F_{N_2}\} ((m_1, m_2) (n_1, n_2))$

$= \min \\{F_{M_1}(m_1), F_{M_1}(n_1), F_{M_2}(m_2)\}$

$= \min \\{ \min \{F_{M_1}(m_1), F_{M_1}(m_2)\}, \min \{ F_{M_1}(n_1), F_{M_1}(n_2)\}\}$

$\min \\{ (F_{M_1} \mid F_{M_2})(m_1, m_2), (F_{M_1} \mid F_{M_2})(n_1, n_2)\}$.
(iii) If \(m_1, n_1 \notin E_1\) and \(m_2, n_2 \notin E_2\)
\[
(T_{N_1} \mid T_{N_2}) \left((m_1, m_2) \ (n_1, n_2) \right)
= \min \left\{ T_{M_1} (m_1), T_{M_1} (n_1), T_{M_2} (m_2), T_{M_2} (n_2) \right\}
= \min \left\{ \min \{ T_{M_1} (m_1), T_{M_1} (m_2) \}, \min \{ T_{M_1} (n_1), T_{M_1} (n_2) \} \right\}
= \min \left\{ \left(T_{M_1} \mid T_{M_1} \right) (m_1, m_2), \left(T_{M_1} \mid T_{M_1} \right) (n_1, n_2) \right\},
\]
\[
(I_{N_1} \mid I_{N_2}) \left((m_1, m_2) \ (n_1, n_2) \right)
= \max \left\{ I_{M_1} (m_1), I_{M_1} (n_1), I_{M_2} (m_2), I_{M_2} (n_2) \right\}
= \max \left\{ \max \{ I_{M_1} (m_1), I_{M_1} (m_2) \}, \max \{ I_{M_1} (n_1), I_{M_1} (n_2) \} \right\}
= \max \left\{ \left(I_{M_1} \mid I_{M_1} \right) (m_1, m_2), \left(I_{M_1} \mid I_{M_1} \right) (n_1, n_2) \right\}.
\]

Thus, \(G_1 | G_2 = (M_1 | M_2, N_1 | N_2)\) is a SVNG. \(\square \)

Remark 4. The rejection of two complete (SVNGs) \(G_1 = (M_1, N_1)\) and \(G_2 = (M_2, N_2)\) is a complete SVNG.

Definition 11. Let \(G_1 = (M_1, N_1)\) and \(G_2 = (M_2, N_2)\) be two (SVNGs). For any vertex \((m_1, m_2) \in V_1 \times V_2\) we have
\[
(d_{T})_{G_1 | G_2} \ (m_1, m_2) =
\sum_{(m_1, m_2)(n_1, n_2) \in E \times E} \left(T_{N_1} \mid T_{N_2} \right) \left((m_1, m_2) \ (n_1, n_2) \right)
= \sum_{m_1 = n_1, m_2 \not\in E_2} \min \left\{ T_{M_1} (m_1), T_{M_2} (m_2) \mid T_{M_2} (n_2) \right\}
+ \sum_{m_2 = n_2, m_1 \not\in E_1} \min \left\{ T_{M_1} (m_1), T_{M_2} (n_1), T_{M_2} (m_2) \right\}
+ \sum_{m_1 \not\in E_1 \text{ and } m_2 \not\in E_2} \min \left\{ T_{M_1} (m_1), T_{M_2} (n_1) \right\},
\]
\[
(d_{I})_{G_1 | G_2} \ (m_1, m_2) =
\sum_{(m_1, m_2)(n_1, n_2) \in E \times E} \left(I_{N_1} \mid I_{N_2} \right) \left((m_1, m_2) \ (n_1, n_2) \right)
= \sum_{m_1 = n_1, m_2 \not\in E_2} \max \left\{ I_{M_1} (m_1), I_{M_2} (m_2) \mid I_{M_2} (n_2) \right\}
+ \sum_{m_2 = n_2, m_1 \not\in E_1} \max \left\{ I_{M_1} (m_1), I_{M_2} (n_1), I_{M_2} (m_2) \right\}
+ \sum_{m_1 \not\in E_1 \text{ and } m_2 \not\in E_2} \max \left\{ I_{M_1} (m_1), I_{M_2} (n_1) \right\},
\]
\[
(d_{F})_{G_1 | G_2} \ (m_1, m_2) =
\sum_{(m_1, m_2)(n_1, n_2) \in E \times E} \left(F_{N_1} \mid F_{N_2} \right) \left((m_1, m_2) \ (n_1, n_2) \right)
= \sum_{m_1 = n_1, m_2 \not\in E_2} \max \left\{ F_{M_1} (m_1), F_{M_2} (m_2), F_{M_2} (n_2) \right\}
+ \sum_{m_2 = n_2, m_1 \not\in E_1} \max \left\{ F_{M_1} (m_1), F_{M_2} (n_1), F_{M_2} (m_2) \right\}
+ \sum_{m_1 \not\in E_1 \text{ and } m_2 \not\in E_2} \max \left\{ F_{M_1} (m_1), F_{M_2} (n_1) \right\},
\]

Definition 12. Let \(G_1 = (M_1, N_1)\) and \(G_2 = (M_2, Y_2)\) be two (SVNGs). \(\forall (m_1, m_2) \in V_1 \times V_2\)
\[
(td_{T})_{G_1 | G_2} \ (m_1, m_2) =
\sum_{(m_1, m_2)(n_1, n_2) \in E \times E} \left(T_{N_1} \mid T_{N_2} \right) \left((m_1, m_2) \ (n_1, n_2) \right) + \left(T_{M_1} \mid T_{M_2} \right) \ (m_1, m_2)
= \sum_{m_1 = n_1, m_2 \not\in E_2} \min \left\{ T_{M_1} (m_1), T_{M_2} (m_2) \mid T_{M_2} (n_2) \right\}
+ \sum_{m_2 = n_2, m_1 \not\in E_1} \min \left\{ T_{M_1} (m_1), T_{M_2} (n_1), T_{M_2} (m_2) \right\}
+ \sum_{m_1 \not\in E_1 \text{ and } m_2 \not\in E_2} \min \left\{ T_{M_1} (m_1), T_{M_2} (n_1) \right\},
\]
\[
(td_{I})_{G_1 | G_2} \ (m_1, m_2) =
\sum_{(m_1, m_2)(n_1, n_2) \in E \times E} \left(I_{N_1} \mid I_{N_2} \right) \left((m_1, m_2) \ (n_1, n_2) \right) + \left(I_{M_1} \mid I_{M_2} \right) \ (m_1, m_2)
= \sum_{m_1 = n_1, m_2 \not\in E_2} \max \left\{ I_{M_1} (m_1), I_{M_2} (m_2) \mid I_{M_2} (n_2) \right\}
+ \sum_{m_2 = n_2, m_1 \not\in E_1} \max \left\{ I_{M_1} (m_1), I_{M_2} (n_1), I_{M_2} (m_2) \right\}
+ \sum_{m_1 \not\in E_1 \text{ and } m_2 \not\in E_2} \max \left\{ I_{M_1} (m_1), I_{M_2} (n_1) \right\},
\]
\[
(td_{F})_{G_1 | G_2} \ (m_1, m_2) =
\sum_{(m_1, m_2)(n_1, n_2) \in E \times E} \left(F_{N_1} \mid F_{N_2} \right) \left((m_1, m_2) \ (n_1, n_2) \right) + \left(F_{M_1} \mid F_{M_2} \right) \ (m_1, m_2)
= \sum_{m_1 = n_1, m_2 \not\in E_2} \max \left\{ F_{M_1} (m_1), F_{M_2} (m_2), F_{M_2} (n_2) \right\}
+ \sum_{m_2 = n_2, m_1 \not\in E_1} \max \left\{ F_{M_1} (m_1), F_{M_2} (n_1), F_{M_2} (m_2) \right\}
+ \sum_{m_1 \not\in E_1 \text{ and } m_2 \not\in E_2} \max \left\{ F_{M_1} (m_1), F_{M_2} (n_1) \right\}.
\]
Example 9. In this example we find the degree and the total degree of vertex \((d, a)\) in Example 8.

\[
(d_T)_{G_1|G_2} (d, a) = \min \{ T_{M_1} (d), T_{M_1} (a), T_{M_1} (c) \} + \\
+ \sum_{m, n \not\in E_1 \text{ and } m, n \not\in E_2} \max \{ F_{M_1} (m_1), F_{M_1} (n_1) \} + \\
F_{M_2} (m_2), F_{M_2} (n_2) \}.
\]

\[
(d_I)_{G_1|G_2} (d, a) = \max \{ I_{M_1} (d), I_{M_1} (a), I_{M_1} (c) \} + \\
\min \{ T_{M_1} (d), T_{M_1} (a), T_{M_1} (c) \} + \\
\max \{ I_{M_1} (d), I_{M_1} (a), I_{M_1} (c) \}.
\]

Hence, \(d_{G_1|G_2} (a, c) = (0.3, 1.0, 1.3)\).

In addition, by definition of total vertex degree in rejection,

\[
(td_T)_{G_1|G_2} (d, a) = \min \{ T_{M_1} (d), T_{M_1} (a), T_{M_1} (c) \} + \\
\min \{ T_{M_1} (d), T_{M_1} (a), T_{M_1} (c) \} + \\
\min \{ T_{M_1} (d), T_{M_1} (a) \} + \\
\min \{ T_{M_1} (d), T_{M_1} (a) \} + \\
\min \{ 0.2, 0.1, 0.1 \} \text{ and } \min \{ 0.2, 0.1, 0.4, 0.1 \} + \\
\min \{ 0.2, 0.1, 0.1 \} + \\
\min \{ 0.2, 0.1 \} = 0.1 + 0.1 + 0.1 = 0.4,
\]

\[
(td_I)_{G_1|G_2} (d, a) = \max \{ I_{M_1} (d), I_{M_1} (a), I_{M_1} (c) \} + \\
\min \{ T_{M_1} (d), T_{M_1} (a), T_{M_1} (c) \} + \\
\max \{ I_{M_1} (d), I_{M_1} (a), I_{M_1} (c) \}.
\]

So, \(td_{G_1|G_2} (a, c) = (0.4, 1.3, 1.7)\).

Similarly, we can find the degree and the total degree of all vertices in \(G_1|G_2\).

Definition 13. The symmetric difference \(G_1 \oplus G_2 = (M_1 \oplus M_2, N_1 \oplus N_2)\) of two (SYNGs) \(G_1 = (M_1, N_1)\) and \(G_2 = (M_2, N_2)\) is defined as

\[
(i) \quad (T_{M_1} \oplus T_{M_2}) \left((m_1, m_2) \right) = \min \{ T_{M_1} (m_1), T_{M_2} (m_2) \} + \\
\min \{ I_{M_1} (m_1), I_{M_2} (m_2) \} + \\
\max \{ F_{M_1} (m_1), F_{M_2} (m_2) \} + \\
\max \{ I_{M_1} (m_1), I_{M_2} (m_2) \} + \\
\forall m_1, m_2 \in (V_1 \times V_2),
\]

\[
(ii) \quad (T_{N_1} \oplus T_{N_2}) \left((m_1, m_2) \right) = \min \{ T_{N_1} (m_1), T_{N_2} (m_2) \} + \\
\min \{ I_{N_1} (m_1), I_{N_2} (m_2) \} + \\
\max \{ F_{N_1} (m_1), F_{N_2} (m_2) \} + \\
\max \{ I_{N_1} (m_1), I_{N_2} (m_2) \} + \\
\forall m_1, m_2 \in (V_1 \times V_2),
\]

\[
(iii) \quad (T_{N_1} \oplus T_{N_2}) \left((m_1, m_2) \right) = \min \{ T_{N_1} (m_1), T_{N_2} (m_2) \} + \\
\min \{ I_{N_1} (m_1), I_{N_2} (m_2) \} + \\
\max \{ F_{N_1} (m_1), F_{N_2} (m_2) \} + \\
\max \{ I_{N_1} (m_1), I_{N_2} (m_2) \} + \\
\forall m_1, m_2 \in (V_1 \times V_2),
\]

\[
(iv) \quad (I_{N_1} \oplus I_{N_2}) \left((m_1, m_2) \right) = \min \{ I_{N_1} (m_1), I_{N_2} (m_2) \} + \\
\min \{ I_{N_1} (m_1), I_{N_2} (m_2) \} + \\
\max \{ I_{N_1} (m_1), I_{N_2} (m_2) \} + \\
\max \{ I_{N_1} (m_1), I_{N_2} (m_2) \} + \\
\forall m_1, m_2 \in (V_1 \times V_2).
\]
and the false membership value as follows:

Example 10. Consider the (SVNGs) G_1 and G_2 as in Figures 13 and 14. We can see the symmetric difference of two (SVNGs) G_1 and G_2, that is $G_1 \oplus G_2$, in Figure 15.

For vertex (a, f), we find the true membership value, indeterminacy, and the false membership value as follows:

$$(T_{M_1} \oplus T_{M_2}) ((a, f)) = \min \{T_{M_1}(a), T_{M_2}(f)\}$$

for $a \in V_1$ and $f \in V_2$.

For edge $(a, d)(a, e)$, we calculate the true membership value, indeterminacy, and the false membership value.

$$(T_{N_1} \oplus T_{N_2}) ((a, d)(a, e)) = \min \{T_{N_1}(a), T_{N_2}(de)\}$$

for $a \in V_1$ and $de \in E_2$.

Now, for edge $(a, d)(b, d)$ we have

$$(T_{N_1} \oplus T_{N_2}) ((a, d)(b, d)) = \min \{T_{N_1}(ab), T_{M_2}(d)\}$$

for $ab \in E_1$ and $d \in V_2$.

Finally, for edge $(a, c)(b, f)$ we can find the true membership value, indeterminacy, and the false membership value as follows:

$$(T_{N_1} \oplus T_{N_2}) ((a, c)(b, f)) = \min \{T_{M_2}(c), T_{M_2}(f)\}$$

$$(I_{N_1} \oplus I_{N_2}) ((a, c)(b, f)) = \max \{I_{M_2}(c), F_{M_2}(f)\}$$

$$(F_{N_1} \oplus F_{N_2}) ((a, c)(b, f)) = \max \{F_{M_2}(c), F_{M_2}(f)\}$$

for $ab \in E_1$ and $cf \in E_2$.

Proposition 7. The symmetric difference of two (SVNGs) G_1 and G_2, is a SVNG.

Proof. Let $G_1 = (M_1, N_1)$ and $G_2 = (M_2, N_2)$ be two (SVNGs) on crisp graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, respectively and $(m_1, m_2(n_1, n_2)) \in E_1 \times E_2$. Then by Definition 3.21 we have

(i) If $m_1 = n_1 = m$

$$\min \{T_{M_1}(m), T_{N_1}(m\ n_2)\}$$

$$\min \{T_{M_1}(m), \min \{T_{M_2}(m_2), T_{M_2}(n_2)\}\}$$

$$\min \{\{T_{M_1}(m), T_{M_2}(m_2)\}, \min \{T_{M_1}(m), T_{M_2}(n_2)\}\}$$

$$\max \{I_{M_1}(m), I_{N_2}(m_2)\}$$

$$\max \{I_{M_1}(m), \max \{I_{M_2}(m_2), I_{M_2}(n_2)\}\}$$

$$\max \{\max \{I_{M_1}(m), I_{M_2}(m_2)\}, \max \{I_{M_1}(m), I_{M_2}(n_2)\}\}$$

for $a \in V_1$ and $de \in E_2$.

Figure 13 | G_1.

Figure 14 | G_2.

for all $m, n_1 \in E_1$ and $m_2, n_2 \notin E_2$,

$$(F_{N_1} \oplus F_{N_2}) (m_1, m_2 (n_1, n_2)) = \max \{F_{M_1}(m_1), F_{M_1}(n_1)\}$$

$$= \max \{F_{M_2}(m_2), F_{M_2}(n_2)\}$$

or

$$(F_{N_1} \oplus F_{N_2}) (m_1, n_1) = \max \{F_{M_1}(m), F_{M_1}(n_1)\}$$

for all $m_1, n_1 \in E_1$ and $m_2, n_2 \notin E_2$.

for $ab \in E_1$ and $d \in V_2$.

for $ab \in E_1$ and $cf \in E_2$. In the same way, we can find the true membership value, indeterminacy, and the false membership value for all remaining vertices and edges.
\[(F_{N_1} \oplus F_{N_2})\left((m, m_2), (m, n_2)\right)\]
\[= \max \{F_{N_1}(m), F_{N_2}(m, n_2)\} \]
\[\geq \max \{F_{N_1}(m), \max \{F_{M_2}(m_2), F_{M_2}(n_2)\}\} \]
\[= \max \left\{\min \left\{\{F_{M_2}(m), F_{M_2}(m_2)\}, \{F_{M_2}(m), F_{M_2}(n_2)\}\right\}\right\} \]
\[= \max \left\{\{F_{M_2} \oplus F_{M_2}\}(m, m_2), (F_{M_2} \oplus F_{M_2})(m, n_2)\right\}.\]

\[(I_{N_1} \oplus I_{N_2})\left((m, z), (n_1, z)\right)\]
\[= \min \{I_{N_1}(m_1, n_1), I_{M_2}(z)\} \]
\[\leq \min \left\{\min \{I_{N_1}(m_1, n_1), I_{M_2}(z)\}\right\} \]
\[= \min \left\{\{T_{M_2}(m_1), T_{M_2}(z)\}, \{T_{M_2}(n_1), T_{M_2}(z)\}\right\} \]
\[= \min \{\{T_{M_2} \oplus T_{M_2}\}(m_1, z), (T_{M_2} \oplus T_{M_2})(n_1, z)\}.\]

\[(I_{N_1} \oplus I_{N_2})\left((m, z), (n_1, z)\right)\]
\[= \max \left\{I_{N_1}(m_1, n_1), I_{M_2}(z)\right\} \]
\[\geq \max \{\min \{I_{M_2}(m_1), I_{M_2}(z)\}\right\} \]
\[= \max \{\{I_{M_2}(m_1), I_{M_2}(z)\}, \{I_{M_2}(n_1), I_{M_2}(z)\}\right\} \]
\[= \max \{\{I_{M_2} \oplus I_{M_2}\}(m_1, z), (I_{M_2} \oplus I_{M_2})(n_1, z)\}.\]

\[(F_{N_1} \oplus F_{N_2})\left((m, z), (n_1, z)\right)\]
\[= \max \{F_{N_1}(m_1, n_1), F_{M_2}(z)\} \]
\[\geq \max \{\max \{F_{N_1}(m_1, n_1), F_{M_2}(z)\}\right\} \]
\[= \max \left\{\min \{\{F_{M_2}(m_1), F_{M_2}(z)\}, \{F_{M_2}(n_1), F_{M_2}(z)\}\right\}\right\} \]
\[= \max \{\{F_{M_2} \oplus F_{M_2}\}(m_1, z), (F_{M_2} \oplus F_{M_2})(n_1, z)\}.\]

(iii) If \(m_1, n_1 \in E_1\) and \(m_2, n_2 \in E_2\)
\[(T_{N_1} \oplus T_{N_2})\left((m_1, m_2), (m_1, n_1)\right)\]
\[= \min \{T_{M_1}(m_1), T_{M_1}(n_1), T_{N_1}(m_2)\} \]
\[\leq \min \{\min \{T_{M_1}(m_1), T_{M_1}(n_1), T_{N_1}(m_2)\}\right\} \]
\[= \min \{\min \{T_{M_1}(m_1), T_{M_1}(n_1), T_{M_1}(m_2)\}\right\} \]
\[= \min \{\{T_{M_1} \oplus T_{M_1}\}(m_1, m_2), (T_{M_1} \oplus T_{M_1})(m_1, n_1)\}.\]

(iv) If \(m_1, n_1 \in E_1\) and \(m_2, n_2 \in E_2\)
\[(F_{N_1} \oplus F_{N_2})\left((m_1, m_2), (m_1, n_1)\right)\]
\[= \max \{F_{N_1}(m_1), F_{M_2}(m_2)\} \]
\[\geq \max \{\max \{F_{N_1}(m_1), F_{M_2}(m_2)\}\right\} \]
\[= \max \left\{\min \{\{F_{M_2}(m_1), F_{M_2}(m_2)\}, \{F_{M_2}(n_1), F_{M_2}(m_2)\}\right\}\right\} \]
\[= \max \{\{F_{M_2} \oplus F_{M_2}\}(m_1, m_2), (F_{M_2} \oplus F_{M_2})(m_1, n_1)\}.\]
\[(I_{N_1} \oplus I_{N_1}')(m_1, m_2) (n_1, n_2)\]
\[= \max \left\{ I_{M_1}(m_2), I_{M_1}(n_2), I_{N_1}(m_n) \right\} \]
\[\geq \max \left\{ I_{M_1}(m_2), I_{M_1}(n_2), \max \left\{ I_{M_1}(m_1), I_{M_1}(n_1) \right\} \right\} \]
\[= \max \left\{ \max \left\{ I_{M_1}(m_2), I_{M_1}(n_2) \right\}, \max \left\{ I_{M_1}(m_1), I_{M_1}(n_1) \right\} \right\} \]
\[= \max \left\{ \left\{ I_{M_1} \oplus I_{M_1} \right\}(m_1, m_2), \left\{ I_{M_1} \oplus I_{M_1} \right\}(n_1, n_2) \right\}. \]

\[(F_{N_1} \oplus F_{N_1})(m_1, m_2)(n_1, n_2)\]
\[= \max \left\{ F_{M_1}(m_2), F_{M_1}(n_2), F_{N_1}(m_n) \right\} \]
\[\geq \max \left\{ F_{M_1}(m_2), F_{M_1}(n_2), \max \left\{ F_{M_1}(m_1), F_{M_1}(n_1) \right\} \right\} \]
\[= \max \left\{ \max \left\{ F_{M_1}(m_2), F_{M_1}(m_1) \right\}, \max \left\{ F_{M_1}(n_2), F_{M_1}(n_1) \right\} \right\} \]
\[= \max \left\{ \left\{ F_{M_1} \oplus F_{M_1} \right\}(m_1, m_2), \left\{ F_{M_1} \oplus F_{M_1} \right\}(n_1, n_2) \right\}. \]

Hence, \(G_1 \oplus G_2\) is a SVNG.

Remark 5. The symmetric difference of two connected-SVNGs \(G_1 = (M_1, N_1)\) and \(G_2 = (M_2, N_2)\) is connected. Because we include the case \((m_1, m_2) \in E_1\) and \((n_1, n_2) \in E_2\) in the definition of the symmetric difference of two SVNGs.

Definition 14. Let \(G_1 = (M_1, N_1)\) and \(G_2 = (M_2, N_2)\) be two SVNGs. For any vertex \((m_1, m_2) \in V_1 \times V_2\) we have

\[(d_T)_{G_1 \oplus G_2}(m_1, m_2) = \sum_{(m_1, m_2) \in E_1 \times E_2} (T_{N_1} \oplus T_{N_2})((m_1, m_2)(n_1, n_2)) \]
\[= \sum_{m_1, m_2, n_1, n_2 \in E_1} \min \left\{ T_{M_1}(m_1), T_{M_2}(n_2) \right\} \]
\[+ \sum_{n_1, n_2 \in E_1, m_1 \neq m_2} \min \left\{ T_{M_1}(m_1), T_{M_2}(n_1), T_{N_2}(m_2) \right\} \]
\[+ \sum_{m_1 \neq m_2, n_1, n_2 \in E_2} \min \left\{ T_{N_1}(m_1), T_{M_2}(m_2), T_{N_2}(n_2) \right\}.

\[(d_t)_{G_1 \oplus G_2}(m_1, m_2) = \sum_{(m_1, m_2) \in E_1 \times E_2} (I_{N_1} \oplus I_{N_2})((m_1, m_2)(n_1, n_2)) \]
\[= \sum_{m_1, m_2, n_1, n_2 \in E_1} \min \left\{ I_{M_1}(m_1), I_{M_2}(n_2) \right\} \]
\[+ \sum_{m_1 \neq m_2, n_1, n_2 \in E_1} \min \left\{ I_{M_1}(m_1), I_{M_2}(n_1), I_{N_2}(m_2) \right\} \]
\[+ \sum_{n_1, n_2 \in E_2, m_1 \neq m_2} \min \left\{ I_{N_1}(m_1), I_{M_2}(m_2), I_{N_2}(n_2) \right\}.

Theorem 8. Let \(G_1 = (M_1, N_1)\) and \(G_2 = (M_2, N_2)\) be two SVNGs. If \(T_{M_1} \geq T_{N_1}, I_{M_1} \leq I_{N_1}, F_{M_1} \leq F_{N_1}\) and \(T_{M_1} \geq T_{N_1}, I_{M_1} \leq I_{N_1}, F_{M_1} \leq F_{N_1}\), then for every \((m_1, m_2) \in V_1 \times V_2\) we have

\[(d_t)_{G_1 \oplus G_2}(m_1, m_2) = q(d_t)_{G_1}(m_1) + s(d_t)_{G_2}(m_2)\]

where \(s = |V_1| - (d_t)_{G_1}(m_1)\) and \(q = |V_2| - (d_t)_{G_2}(m_2)\).

Proof.

\[(d_t)_{G_1 \oplus G_2}(m_1, m_2) = \sum_{(m_1, m_2) \in E_1 \times E_2} (I_{N_1} \oplus I_{N_2})((m_1, m_2)(n_1, n_2)) \]
\[= \sum_{m_1, m_2, n_1, n_2 \in E_1} \max \left\{ I_{M_1}(m_1), I_{M_2}(n_2) \right\} \]
\[+ \sum_{m_1 \neq m_2, n_1, n_2 \in E_1} \max \left\{ I_{M_1}(m_1), I_{M_2}(n_1), I_{N_2}(m_2) \right\} \]
\[+ \sum_{n_1, n_2 \in E_2, m_1 \neq m_2} \max \left\{ I_{N_1}(m_1), I_{M_2}(m_2), I_{N_2}(n_2) \right\}.

\[= \sum_{m_1, m_2, n_1, n_2 \in E_1} \max \left\{ I_{N_1}(m_1), I_{M_2}(n_2) \right\} \]
\[+ \sum_{m_1 \neq m_2, n_1, n_2 \in E_1} \max \left\{ I_{N_1}(m_1), I_{M_2}(n_1), I_{N_2}(m_2) \right\} \]
\[+ \sum_{n_1, n_2 \in E_2, m_1 \neq m_2} \max \left\{ I_{N_1}(m_1), I_{M_2}(m_2), I_{N_2}(n_2) \right\}.

\[= \sum_{m_1, m_2, n_1, n_2 \in E_1} \max \left\{ I_{N_1}(m_1), I_{M_1}(n_2) \right\} \]
\[+ \sum_{m_1 \neq m_2, n_1, n_2 \in E_1} \max \left\{ I_{N_1}(m_1), I_{M_1}(n_1), I_{N_2}(m_2) \right\} \]
\[+ \sum_{n_1, n_2 \in E_2, m_1 \neq m_2} \max \left\{ I_{N_1}(m_1), I_{N_2}(m_2), I_{N_2}(n_2) \right\}.

\[= q(d_t)_{G_1}(m_1) + s(d_t)_{G_2}(m_2)\]
\[(d_t)_{G_1 \oplus G_2}(m_1, m_2) = q(d_t)_{G_1}(m_1) + s(d_t)_{G_2}(m_2),\]

where \(s = |V_1| - (d_T)_{G_1}(m_1)\) and \(q = |V_2| - (d_T)_{G_2}(m_2)\).

\[\Box\]

Example 11. In Figure 16, \(T_M \geq T_N, F_M \leq F_N, T_M \geq T_N,\) and \(F_M \leq F_N\). So, the total degree of vertex in symmetric difference is calculated by using the following formula:

\[(d_t)_{G_1 \oplus G_2}(a, c) = 1 \cdot (0.2) + 1 \cdot (0.1) = 0.3,\]
\[(d_t)_{G_1 \oplus G_2}(a, d) = 1 \cdot (0.2) + 1 \cdot (0.1) = 0.3,\]
\[(d_t)_{G_1 \oplus G_2}(a, c) = 1 \cdot (0.4) + 1 \cdot (0.3) = 0.7,\]
\[(d_t)_{G_1 \oplus G_2}(a, d) = 1 \cdot (0.4) + 1 \cdot (0.3) = 0.7,\]
\[(d_t)_{G_1 \oplus G_2}(a, c) = 1 \cdot (0.2) + 1 \cdot (0.1 + 0.2) = 0.5,\]
\[(d_t)_{G_1 \oplus G_2}(a, d) = 1 \cdot (0.4) + 1 \cdot (0.3 + 0.3) = 1.0,\]
\[(d_t)_{G_1 \oplus G_2}(a, c) = 1 \cdot (0.4) + 1 \cdot (0.3 + 1) = 0.8.\]

Hence, \((d_t)_{G_1 \oplus G_2}(a, c) = (0.3, 0.7, 0.7)\) and \((d_t)_{G_1 \oplus G_2}(a, d) = (0.5, 1.0, 0.8)\). In the same way, we can show that \((d_t)_{G_1 \oplus G_2}(b, c) = (d_t)_{G_1 \oplus G_2}(b, d) = (0.4, 0.9, 0.9)\). By direct calculations:

\[(d_t)_{G_1 \oplus G_2}(a, c) = 0.3,\]
\[(d_t)_{G_1 \oplus G_2}(a, d) = 0.7,\]
\[(d_t)_{G_1 \oplus G_2}(a, c) = 0.3,\]
\[(d_t)_{G_1 \oplus G_2}(a, d) = 0.7,\]
\[(d_t)_{G_1 \oplus G_2}(b, c) = 0.3,\]
\[(d_t)_{G_1 \oplus G_2}(b, d) = 0.7,\]
\[(d_t)_{G_1 \oplus G_2}(b, c) = 0.7,\]
\[(d_t)_{G_1 \oplus G_2}(b, d) = 0.7,\]
\[(d_t)_{G_1 \oplus G_2}(b, c) = 0.5,\]
\[(d_t)_{G_1 \oplus G_2}(b, d) = 1.0,\]
\[(d_t)_{G_1 \oplus G_2}(b, c) = 0.8,\]
\[(d_t)_{G_1 \oplus G_2}(b, d) = 0.8.\]

It is obvious from the above calculations that the degrees of vertices calculated by using the formula of the above theorem and by direct method are the same.
Definition 15. Let $G_1 = (M_1, N_1)$ and $G_2 = (M_2, N_2)$ be two (SVNGs). For any vertex $(m_1, m_2) \in V_1 \times V_2$ we have

$$(td_f)_{G_1 \oplus G_2} (m_1, m_2) = \sum_{(m_1, m_2)(n_1, n_2) \in E_1 \times E_2} (T_{M_1} \oplus T_{M_2}) ((m_1, m_2) (n_1, n_2)) + (T_{M_1} \oplus T_{M_2}) (m_1, m_2)
$$

(i) If $T_{M_1} \geq T_{N_2}$ and $T_{M_2} \geq T_{N_1}$, then $\forall (m_1, m_2) \in V_1 \times V_2$:

$$(td_f)_{G_1 \oplus G_2} (m_1, m_2) = q (td_f)_{G_1} (m_1) + s (td_f)_{G_2} (m_2) - (q-1) T_{G_1} (m_1) - \max \{ T_{G_1} (m_1), T_{G_2} (m_1) \}.
$$

(ii) If $I_{M_1} \leq I_{N_2}$ and $I_{M_2} \leq I_{N_1}$, then $\forall (m_1, m_2) \in V_1 \times V_2$:

$$(td_f)_{G_1 \oplus G_2} (m_1, m_2) = q (td_f)_{G_1} (m_1) + s (td_f)_{G_2} (m_2) - (q-1) I_{G_1} (m_1) - \min \{ I_{G_1} (m_1), I_{G_2} (m_1) \}.
$$

(iii) If $F_{M_1} \leq F_{N_2}$ and $F_{M_2} \geq F_{N_1}$, then $\forall (m_1, m_2) \in V_1 \times V_2$:

$$(td_f)_{G_1 \oplus G_2} (m_1, m_2) = q (td_f)_{G_1} (m_1) + s (td_f)_{G_2} (m_2) - (q-1) F_{G_1} (m_1) - \min \{ F_{G_1} (m_1), F_{G_2} (m_1) \}.
$$

\forall (m_1, m_2) \in V_1 \times V_2, s = |V_1| - (d)_{G_1} (m_1) \text{ and } q = |V_2| - (d)_{G_2} (m_2).

Proof. $\forall (m_1, m_2) \in V_1 \times V_2$ we have

$$(td_f)_{G_1 \oplus G_2} (m_1, m_2) = \sum_{(m_1, m_2)(n_1, n_2) \in E_1 \times E_2} (F_{M_1} \oplus F_{M_2}) ((m_1, m_2) (n_1, n_2)) + (F_{M_1} \oplus F_{M_2}) (m_1, m_2)
$$

Theorem 9. Let $G_1 = (M_1, N_1)$ and $G_2 = (M_2, N_2)$ be two (SVNGs).
\[(td_f)_{G_1 \oplus G_2} (m_1, m_2) = \sum_{(m_1, m_2) \in E_{G_1 \oplus G_2}} (I_{N_1} \oplus I_{N_2}) ((m_1, m_2), (n_1, n_2)) + \sum_{I_{M_1} \oplus I_{M_2} (m_1, m_2)} = \sum_{m_1, m_2} \max \{I_{M_1} (m_1), I_{N_2} (m_2)\} + \sum_{m_1, m_2} \max \{I_{M_1} (m_1), I_{N_1} (m_2)\} + \min \{I_{M_1} (m_1), I_{M_2} (m_2)\} = \sum_{m_1, m_2} I_{N_2} (m_2) + \sum_{m_1, m_2} I_{N_1} (m_1) + \min \{I_{M_1} (m_1), I_{M_2} (m_2)\} = \sum_{m_1, m_2} I_{N_2} (m_2) + \sum_{m_1, m_2} I_{N_1} (m_1) + \min \{I_{M_1} (m_1), I_{M_2} (m_2)\} \]

\[= q (td_f)_{G_1} (m_1) + s (td_f)_{G_2} (m_2) - (q - 1)F_{G_1} (m_1) - \min \{F_{G_1} (m_1), F_{G_2} (m_1)\} .\]

where \(s = |V_1| - (d)_{G_1} (m_1)\) and \(q = |V_2| - (d)_{G_2} (m_2)\).

Example 12. In this example, we calculate the total degree of vertices in Example 10.

\[(d_T)_{G_1 \oplus G_2} (a, e) = q (d_T)_{G_1} (a) + s (d_T)_{G_2} (e).\]

where \(s = |V_1| - (d)_{G_1} (a)\) and \(q = |V_2| - (d)_{G_2} (e)\).

Similarly,

\[q = |V_2| - (d)_{G_2} (e) = 4 - 2 = 2.\]

\[(td_f)_{G_1 \oplus G_2} (m_1, m_2) = q (td_f)_{G_1} (m_1) + s (td_f)_{G_2} (m_2) - (s - 1)T_{G_1} (e) - (q - 1)T_{G_2} (a) - \max \{T_{G_1} (a), T_{G_2} (e)\} = 2(0.2 + 0.2) + 10(0.3 + 0.3) = 2(0.4 + 0.8 - 0.2 - 0.3) = 1.1.\]

Definition 16. The residue product \(G_1 \bullet G_2 = (M_1 \bullet M_2, N_1 \bullet N_2)\) of two (SNGs) \(G_1 = (M_1, N_1)\) and \(G_2 = (M_2, N_2)\) is defined as

\[\begin{align*}
(t_M)_{G_1 \bullet G_2} (m_1, m_2) & = \sum_{m_1, m_2} (I_{N_1} \oplus I_{N_2}) ((m_1, m_2), (n_1, n_2)) + \sum_{I_{M_1} \oplus I_{M_2} (m_1, m_2)} = \sum_{m_1, m_2} \max \{I_{M_1} (m_1), I_{N_2} (m_2)\} + \sum_{m_1, m_2} \max \{I_{M_1} (m_1), I_{N_1} (m_2)\} + \min \{I_{M_1} (m_1), I_{M_2} (m_2)\} = \sum_{m_1, m_2} I_{N_2} (m_2) + \sum_{m_1, m_2} I_{N_1} (m_1) + \min \{I_{M_1} (m_1), I_{M_2} (m_2)\} = \sum_{m_1, m_2} I_{N_2} (m_2) + \sum_{m_1, m_2} I_{N_1} (m_1) + \min \{I_{M_1} (m_1), I_{M_2} (m_2)\} \end{align*}\]

It is clear from the above calculations that total degrees of vertices calculated by using the formula of the above theorem and by direct method are same.
for 1534 ∈ T\[N\].

In Figure 19.

Figure 17 | G_1.

Figure 18 | G_2.

(ii) \[
\begin{align*}
(T_{N_1} \cdot T_{N_2}) \left((m_1, m_2) \ (n_1, n_2) \right) &= T_{N_1} \left(m_1 n_1 \right) \\
(I_{N_1} \cdot I_{N_2}) \left((m_1, m_2) \ (n_1, n_2) \right) &= I_{N_1} \left(m_1 n_1 \right) \\
(F_{N_1} \cdot F_{N_2}) \left((m_1, m_2) \ (n_1, n_2) \right) &= F_{N_1} \left(m_1 n_1 \right)
\end{align*}
\]

∀m_1, n_1 ∈ E_1, m_2 \neq n_2.

Example 13. Consider the (SVNGs) G_1 and G_2 as in Figures 17 and 18. We can see the residue product of two (SVNGs) G_1 and G_2, that is $G_1 \cdot G_2$ in Figure 19.

For vertex (b, e), we find the true membership value, indeterminacy, and the false membership value as follows:

\[
\begin{align*}
(T_{M_1} \cdot T_{M_2}) \ (b, e) &= \max \left\{ T_{M_1} (b), T_{M_2} (e) \right\} \\
&= \max \{0.2, 0.1\} = 0.2, \\
(I_{M_1} \cdot I_{M_2}) \ (b, e) &= \min \left\{ I_{M_1} (b), I_{M_2} (e) \right\} \\
&= \min \{0.4, 0.2\} = 0.2, \\
(F_{M_1} \cdot F_{M_2}) \ (b, e) &= \min \left\{ F_{M_1} (b), F_{M_2} (e) \right\} \\
&= \min \{0.4, 0.4\} = 0.4,
\end{align*}
\]

for b \in V_1 and e \in V_2.

For edge $(a, c) (b, d)$, we calculate the true membership value, indeterminacy, and the false membership value as follows:

\[
\begin{align*}
(T_{N_1} \cdot T_{N_2}) \ ((a, c) (b, d)) &= T_{N_1} (ab) = 0.1, \\
(I_{N_1} \cdot I_{N_2}) \ ((a, c) (b, d)) &= I_{N_1} (ab) = 0.5, \\
(F_{N_1} \cdot F_{N_2}) \ ((a, c) (b, d)) &= F_{N_1} (ab) = 0.4,
\end{align*}
\]

for ab \in E_1 and c \neq d.

Similarly, we can find the true membership value, indeterminacy, and the false membership value for all remaining vertices and edges.

Proposition 10. The residue product of two (SVNGs) G_1 and G_2 is a SVNG.

Proof. Let $G_1 = (M_1, N_1)$ and $G_2 = (M_2, N_2)$ be two (SVNGs) on crisp graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, respectively and $(m_1, m_2) \ (n_1, n_2) \in E_1 \times E_2$. If $m_1 n_1 \in E_1$ and $m_2 \neq n_2$ then we have

\[
\begin{align*}
(T_{N_1} \cdot T_{N_2}) \ ((m_1, m_2) \ (n_1, n_2)) &= T_{N_1} \left(m_1 n_1 \right) \\
&\leq \min \left\{ T_{M_1} (m_1), T_{M_2} (n_1) \right\}, \\
&\leq \max \left\{ \min \left\{ T_{M_1} (m_1), T_{M_2} (n_1) \right\}, \right. \\
&\min \left\{ T_{M_2} (m_2), T_{M_2} (n_2) \right\} \} \\
= \min \left\{ \max \left\{ T_{M_1} (m_1), T_{M_2} (n_1) \right\}, \\
&\min \left\{ T_{M_2} (m_2), T_{M_2} (n_2) \right\} \} \\
= \min \left\{ \left\{ \left(T_{M_1} \cdot T_{M_2} \right) \ (m_1, m_2), \left(T_{M_1} \cdot T_{M_2} \right) \ (n_1, n_2) \right\} \right. \\
&\left. \left(I_{N_1} \cdot I_{N_2} \right) \ ((m_1, m_2) \ (n_1, n_2)) = I_{N_1} \left(m_1 n_1 \right) \right. \\
&\geq \max \left\{ I_{M_1} (m_1), I_{M_1} (n_1) \right\}, \\
&\max \left\{ \max \left\{ I_{M_1} (m_1), I_{M_2} (n_1) \right\}, \\
&\min \left\{ I_{M_2} (m_1), I_{M_2} (n_2) \right\} \right\} \\
= \max \left\{ \min \left\{ I_{M_1} (m_1), I_{M_2} (n_1) \right\}, \\
&\min \left\{ I_{M_2} (m_1), I_{M_2} (n_2) \right\} \right\} \\
= \max \left\{ \left\{ (I_{M_1} \cdot I_{M_2}) \ (m_1, m_2), \left(I_{M_1} \cdot I_{M_2} \right) \ (n_1, n_2) \right\} \right. \\
&\left. \left(F_{N_1} \cdot F_{N_2} \right) \ ((m_1, m_2) \ (n_1, n_2)) = F_{N_1} \left(m_1 n_1 \right) \right. \\
&\geq \max \left\{ F_{M_1} (m_1), F_{M_2} (n_1) \right\}, \\
&\max \left\{ \max \left\{ F_{M_1} (m_1), F_{M_2} (n_1) \right\}, \\
&\min \left\{ F_{M_2} (m_1), F_{M_2} (n_2) \right\} \right\} \right. \\
= \max \left\{ \min \left\{ F_{M_1} (m_1), F_{M_2} (n_1) \right\}, \\
&\min \left\{ F_{M_2} (m_1), F_{M_2} (n_2) \right\} \right\} \\
= \max \left\{ \left\{ \left(F_{M_1} \cdot F_{M_2} \right) \ (m_1, m_2), \left(F_{M_1} \cdot F_{M_2} \right) \ (n_1, n_2) \right\} \right. \\
\end{align*}
\]

Definition 17. Let $G_1 = (M_1, N_1)$ and $G_2 = (M_2, N_2)$ be two (SVNGs). For any vertex $(m_1, m_2) \in V_1 \times V_2$ we have

\[
(d_T)_{G_1 \cdot G_2} \left(m_1, m_2 \right) = \sum_{(m_1, m_2) \ (n_1, n_2) \in E_1 \times E_2} \left(T_{N_1} \cdot T_{N_2} \right) \ ((m_1, m_2) \ (n_1, n_2))
\]

\[
= \sum_{m_1 n_1 \in E_1, m_2 \neq n_2} T_{N_1} \left(m_1 n_1 \right) = (d_T)_{G_1} \left(m_1 \right)
\]

\[
(d_I)_{G_1 \cdot G_2} \left(m_1, m_2 \right) = \sum_{(m_1, m_2) \ (n_1, n_2) \in E_1 \times E_2} \left(I_{N_1} \cdot I_{N_2} \right) \ ((m_1, m_2) \ (n_1, n_2))
\]

\[
= \sum_{m_1 n_1 \in E_1, m_2 \neq n_2} I_{N_1} \left(m_1 n_1 \right) = (d_I)_{G_1} \left(m_1 \right).
\]
(d_f)_{G_1\oplus G_2} (m_1, m_2) = \sum_{(m,m')\in E_1 \times E_2} (F_{N_1} \cdot F_{N_2}) ((m_1, m_2) \cdot (n_1, n_2)) + \sum_{m,n \in E_1, n \neq n'} (F_{N_1} (m_1 n_1) = (d_f)_{G_1} (m_1).

\sum_{m,n \in E_1, m \neq m'} (T_{N_1} \cdot T_{N_2}) ((m_1, m_2) \cdot (n_1, n_2)) + \sum_{m,n \in E_1, m \neq m'} (T_{M_1} \cdot T_{M_2}) (m_1, m_2)

= \sum_{m,n \in E_1, m \neq m'} (T_{N_1} (m_1 n_1) + \min \{T_{M_1} (m_1), T_{M_2} (m_2)\})

= \sum_{m,n \in E_1, m \neq m'} (T_{N_1} (m_1 n_1) + T_{M_1} (m_1) + T_{M_2} (m_2) - \max \{T_{M_1} (m_1), T_{M_2} (m_2)\})

= (td_f)_{G_1} (m_1) + T_{M_2} (m_2) - \max \{T_{M_1} (m_1), T_{M_2} (m_2)\}.

(d_f)_{G_1\oplus G_2} (m_1, m_2) = \sum_{(m,m')\in E_1 \times E_2} (F_{N_1} \cdot F_{N_2}) ((m_1, m_2) \cdot (n_1, n_2)) + \sum_{m,n \in E_1, m \neq m'} (F_{N_1} (m_1 n_1) + \max \{F_{M_1} (m_1), F_{M_2} (m_2)\}) - \min \{F_{M_1} (m_1), F_{M_2} (m_2)\}

= (td_f)_{G_1} (m_1) + F_{M_2} (m_2) - \min \{F_{M_1} (m_1), F_{M_2} (m_2)\}.

Definition 18. Let \(G_1 = (M_1, N_1) \) and \(G_2 = (M_2, N_2) \) be two (SVNGs). For any vertex \((m_1, m_2) \in V_1 \times V_2\) we have

\((td_f)_{G_1\oplus G_2} (m_1, m_2) = \sum_{(m,m')\in E_1 \times E_2} (T_{N_1} \cdot T_{N_2}) ((m_1, m_2) \cdot (n_1, n_2)) + \sum_{m,n \in E_1, m \neq m'} (T_{M_1} \cdot T_{M_2}) (m_1, m_2) \)

Example 14. In this example we find the degree and the total degree of vertex \((b, e)\) in Example 13.

\((d_f)_{G_1\oplus G_2} (b, e) = (d_f)_{G_1} (b) = 0.1, \)

\((d_f)_{G_1\oplus G_2} (b, e) = (d_f)_{G_1} (b) = 0.5, \)

\((d_f)_{G_1\oplus G_2} (b, e) = (d_f)_{G_1} (b) = 0.4. \)

Therefore,

\((d_f)_{G_1\oplus G_2} (b, e) = (0, 1, 0, 5, 0, 7, 4). \)

Also, total degree of vertex \((a, e)\) is given by

\((td_f)_{G_1\oplus G_2} (a, e) = (td_f)_{G_1} (a) + T_{M_1}(e) - \max \{T_{M_1}(a), T_{M_1}(e)\} = (0.2 + 0.1) + 0.1 - \max(0.2, 0.1) = 0.2, \)

\((td_f)_{G_1\oplus G_2} (a, e) = (td_f)_{G_1} (a) = (0.4 + 0.5) + 0.2 - \min(0.4, 0.2) = 0.9, \)

\((td_f)_{G_1\oplus G_2} (a, e) = (td_f)_{G_1} (a) + F_{M_1}(e) - \min \{F_{M_1}(a), F_{M_1}(e)\} = (0.4 + 0.4) + 0.4 - \min(0.4, 0.4) = 0.8. \)
Table 1 SVNPR of the exporter from Pakistan.

<table>
<thead>
<tr>
<th>R_1</th>
<th>b_1</th>
<th>b_2</th>
<th>b_3</th>
<th>b_4</th>
<th>b_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_1</td>
<td>0.5, 0.5, 0.5</td>
<td>0.2, 0.8, 0.1</td>
<td>0.1, 0.6, 0.2</td>
<td>0.2, 0.3, 0.6</td>
<td>0.1, 0.2, 0.4</td>
</tr>
<tr>
<td>b_2</td>
<td>0.1, 0.2, 0.2</td>
<td>0.5, 0.5, 0.5</td>
<td>0.2, 0.4, 0.7</td>
<td>0.1, 0.4, 0.2</td>
<td>0.9, 0.3, 0.4</td>
</tr>
<tr>
<td>b_3</td>
<td>0.1, 0.4, 0.2</td>
<td>0.7, 0.6, 0.2</td>
<td>0.5, 0.5, 0.5</td>
<td>0.6, 0.3, 0.2</td>
<td>0.4, 0.2, 0.6</td>
</tr>
<tr>
<td>b_4</td>
<td>0.6, 0.7, 0.1</td>
<td>0.2, 0.6, 0.1</td>
<td>0.2, 0.7, 0.6</td>
<td>0.5, 0.5, 0.5</td>
<td>0.3, 0.2, 0.7</td>
</tr>
<tr>
<td>b_5</td>
<td>0.4, 0.8, 0.1</td>
<td>0.4, 0.7, 0.9</td>
<td>0.6, 0.8, 0.4</td>
<td>0.7, 0.8, 0.3</td>
<td>0.5, 0.5, 0.5</td>
</tr>
</tbody>
</table>

Table 2 SVNPR of the exporter from India.

<table>
<thead>
<tr>
<th>R_2</th>
<th>b_1</th>
<th>b_2</th>
<th>b_3</th>
<th>b_4</th>
<th>b_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_1</td>
<td>0.5, 0.5, 0.5</td>
<td>0.4, 0.6, 0.3</td>
<td>0.9, 0.4, 0.3</td>
<td>0.2, 0.1, 0.6</td>
<td>0.8, 0.3, 0.4</td>
</tr>
<tr>
<td>b_2</td>
<td>0.3, 0.4, 0.4</td>
<td>0.5, 0.5, 0.5</td>
<td>0.4, 0.8, 0.2</td>
<td>0.2, 0.1, 0.8</td>
<td>0.6, 0.3, 0.4</td>
</tr>
<tr>
<td>b_3</td>
<td>0.3, 0.6, 0.9</td>
<td>0.2, 0.2, 0.4</td>
<td>0.5, 0.5, 0.5</td>
<td>0.4, 0.2, 0.6</td>
<td>0.3, 0.2, 0.7</td>
</tr>
<tr>
<td>b_4</td>
<td>0.6, 0.9, 0.2</td>
<td>0.8, 0.9, 0.2</td>
<td>0.6, 0.8, 0.4</td>
<td>0.5, 0.5, 0.5</td>
<td>0.2, 0.1, 0.6</td>
</tr>
<tr>
<td>b_5</td>
<td>0.4, 0.7, 0.8</td>
<td>0.4, 0.7, 0.6</td>
<td>0.7, 0.8, 0.3</td>
<td>0.6, 0.9, 0.2</td>
<td>0.5, 0.5, 0.5</td>
</tr>
</tbody>
</table>

Table 3 SVNPR of the exporter from America.

<table>
<thead>
<tr>
<th>R_3</th>
<th>b_1</th>
<th>b_2</th>
<th>b_3</th>
<th>b_4</th>
<th>b_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_1</td>
<td>0.5, 0.5, 0.5</td>
<td>0.6, 0.4, 0.3</td>
<td>0.5, 0.3, 0.2</td>
<td>0.4, 0.3, 0.9</td>
<td>0.2, 0.1, 0.6</td>
</tr>
<tr>
<td>b_2</td>
<td>0.3, 0.6, 0.6</td>
<td>0.5, 0.5, 0.5</td>
<td>0.4, 0.3, 0.2</td>
<td>0.5, 0.1, 0.6</td>
<td>0.2, 0.3, 0.1</td>
</tr>
<tr>
<td>b_3</td>
<td>0.2, 0.7, 0.5</td>
<td>0.2, 0.7, 0.4</td>
<td>0.5, 0.5, 0.5</td>
<td>0.4, 0.3, 0.9</td>
<td>0.2, 0.6, 0.1</td>
</tr>
<tr>
<td>b_4</td>
<td>0.9, 0.7, 0.4</td>
<td>0.6, 0.9, 0.5</td>
<td>0.9, 0.7, 0.4</td>
<td>0.5, 0.5, 0.5</td>
<td>0.4, 0.3, 0.6</td>
</tr>
<tr>
<td>b_5</td>
<td>0.6, 0.9, 0.2</td>
<td>0.1, 0.7, 0.2</td>
<td>0.1, 0.4, 0.2</td>
<td>0.6, 0.7, 0.4</td>
<td>0.5, 0.5, 0.5</td>
</tr>
</tbody>
</table>

Table 4 Collective SVNPR of all above individuals SVNPRs.

<table>
<thead>
<tr>
<th>R</th>
<th>b_1</th>
<th>b_2</th>
<th>b_3</th>
<th>b_4</th>
<th>b_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_1</td>
<td>0.500, 0.5000, 0.5000</td>
<td>0.4231, 0.5769, 0.2080</td>
<td>0.6443, 0.4160, 0.2289</td>
<td>0.2732, 0.2080, 0.6868</td>
<td>0.4759, 0.1817, 0.4579</td>
</tr>
<tr>
<td>b_2</td>
<td>0.2388, 0.3634, 0.3634</td>
<td>0.5000, 0.5000, 0.5000</td>
<td>0.3936, 0.4579, 0.3037</td>
<td>0.2886, 0.1587, 0.4579</td>
<td>0.6825, 0.3000, 0.2520</td>
</tr>
<tr>
<td>b_3</td>
<td>0.2042, 0.5518, 0.4481</td>
<td>0.4231, 0.4380, 0.3175</td>
<td>0.5000, 0.5000, 0.5000</td>
<td>0.4759, 0.2621, 0.4762</td>
<td>0.3048, 0.2885, 0.3476</td>
</tr>
<tr>
<td>b_4</td>
<td>0.7480, 0.7612, 0.2000</td>
<td>0.6000, 0.7862, 0.2154</td>
<td>0.6825, 0.7319, 0.4579</td>
<td>0.5000, 0.5000, 0.5000</td>
<td>0.3048, 0.1817, 0.6316</td>
</tr>
<tr>
<td>b_5</td>
<td>0.4759, 0.7958, 0.2520</td>
<td>0.3132, 0.7000, 0.4762</td>
<td>0.5238, 0.6350, 0.2885</td>
<td>0.6366, 0.7958, 0.2885</td>
<td>0.5000, 0.5000, 0.5000</td>
</tr>
</tbody>
</table>

Hence,

$$(td)_{G_i}^G(a, c) = (0.2, 0.9, 0.8).$$

Similarly, the degree and the total degree of all vertices can be defined in $G_1 \cdot G_2$.

4. APPLICATION OF SVNG IN GROUP DECISION-MAKING

Definition 19. Let $[2] Q = \{q_1, q_2, \ldots, q_n\}$ be the set on which single-valued neutrosophic preference relation (SVNPR) is defined. It can be denoted by a matrix of $R = (m_{q_i q_j})_{n \times n}$, where $m_{q_i q_j} = \langle q_i, q_j, T(q_i, q_j), I(q_i, q_j), F(q_i, q_j) \rangle$ for all i and j varies from 1 to n.

4.1. Food and Agriculture Organization of United Nation Select a Most Suitable Company

FAO is attempting to help in the disposal of yearning, food instability, and creation strength the executives. Objectives can be accomplished when this association chooses the most reasonable organization for formers and works together with it which can assist former with developing more food, offer types of assistance, and suitable item. There are five organizations of Syngenta b_1, Bayer b_2, Investment organization Institute (ICI) b_3, Agria Corporation Company (ACC) b_4, and Fazal Mahmood Company (FMC) b_5. Three exporters from various nations are welcome to partake in the choice examination. One exporter is from Pakistan, the second is from India, and the third is from America. These exporters use SVNPRs $R_i = \left\{q_i^{(k)}\right\}_{k=1}^5$ SVNPGs D_i comparing to SVNPRs $R_i(i = 1, 2, 3)$ are given in Table 1–3. By using the aggregation operator to find all SVNPRs $R_i = \left\{q_i^{(k)}\right\}_{k=1}^5$ SVNPGs D_i comparing to SVNPRs $R_i(i = 1, 2, 3)$ are given in Table 4. For SVNPR, we use operator SVNWA

$[6].$ \[\text{SVNWA} \left(q_i^{(1)}, q_i^{(2)}, \ldots, q_i^{(k)}\right) = \left\langle \frac{1}{k} \sum_{i=1}^{k} \left(1 - T_{i}^{(k)}\right)^{-\frac{1}{k}}, \frac{1}{k} \sum_{i=1}^{k} \left(1 - I_{i}^{(k)}\right)^{-\frac{1}{k}}, \frac{1}{k} \sum_{i=1}^{k} \left(1 - F_{i}^{(k)}\right)^{-\frac{1}{k}} \right\rangle. \]
Data is converted in digraphs which shown in Figures 20–22. We can draw directed network corresponding to a collective SVNPR above, which is already shown in Figure 23. Under some conditions, $T_{xy} > 0.5$, where x and y ranges from 1 to 5. Likewise, we have a partial diagram of all fused SVNPR which shown in Figure 24.

We will find out the degrees which are denoted by $out - dout - d(b_x)$ with $x = 1, 2, 3, 4, 5$ of the whole criteria in a partial directed network as follows:

$$out - d(b_1) = (0.0000, 0.0000, 0.0000)$$
Figure 22 | Single-valued neutrosophic digraph D_3

Figure 23 | Directed network of all fused SVNPR.

\[
\text{out} - d(b_2) = (0.6825, 0.3000, 0.2520)
\]
\[
\text{out} - d(b_3) = (0.0000, 0.0000, 0.0000)
\]
\[
\text{out} - d(b_4) = (2.0305, 2.2793, 0.6733)
\]
\[
\text{out} - d(b_5) = (1.1604, 1.4308, 0.5770)
\]

According to the membership degree rule of \(\text{out} - d(b_x)\), for \(x = 1, 2, 3, 4, 5\), a ranking of factors which is given below is obtained:

\[
b_4 > b_5 > b_2 > b_1 \sim b_3.
\]

So the ranking of \(b_5\) is higher and serves as the best choice ACC \(b_4\). To discuss the application, we give an algorithm as follows:

5. CONCLUSION

The adaptability and equivalence of neutrosophic models are higher than fluffy models and intuitionistic fuzzy models. A SVNG is
broadly utilized in clinical sciences, financial matters, and logical designing. At the point when faltering happens in a genuine issue then the SVNG has a fundamental part to investigate the vulnerability since chart and the fluffy diagram don't think about the vulnerability among the relationship of the articles. We have examined the new properties on a SVNG known as the buildup item, maximal item, symmetric distinction, and dismissal of a chart. We likewise examined the thought with guides to discover the degree and absolute level of vertices of some specific charts. A few hypotheses of these diagrams were recently settled by utilizing the idea of degree and complete level of a vertex of a chart. Additionally, the hypotheses which were identified with these properties were demonstrated. Additionally, the fascinating and helpful use of a SVNG was examined which was a choice of reasonable organization by FAO. At last, a calculation which is the strategy of our application was introduced. Next, our motivation in future work is to introduce this idea on (1) complex bipolar-SVNG, (2) complex bipolar fuzzy graph, and (3) complex interval-valued fuzzy graph with their connected applications.

CONFLICTS OF INTEREST
The authors declare of no conflicts of interest.

AUTHORS’ CONTRIBUTIONS
All authors have equal contribution.

ACKNOWLEDGMENTS
This work is supported by the Social Sciences Planning Projects of Zhejiang (21QNYC11ZD).

REFERENCES

