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Systems of two nonlinear ordinary differential equations of the first order admitting nonlinear
superpositions are investigated using Lie’s enumeration of groups on the plane. It is shown that
the systems associated with two-dimensional Vessiot–Guldberg–Lie algebras can be integrated by
quadrature upon introducing Lie’s canonical variables. The knowledge of a symmetry group of a
system in question is not needed in this approach. The systems associated with three-dimensional
Vessiot–Guldberg–Lie algebras are classified into 13 standard forms 10 of which are integrable by
quadratures and three are reduced to Riccati equations.

Keywords: Nonlinear superposition; Vessiot–Guldberg–Lie algebras; standard forms of Lie algebras;
canonical variables.

1. Lie’s Classification of L2 and L3

1.1. Canonical variables for two-dimensional Lie algebras

Consider linearly independent first-order linear partial differential operators

X1 = ξ1(x, y)
∂

∂x
+ η1(x, y)

∂

∂y
, X2 = ξ2(x, y)

∂

∂x
+ η2(x, y)

∂

∂y
(1.1)

with two variables x, y. The commutator [X1,X2] of the operators (1.1) is a linear partial
differential operator defined by the formula

[X1,X2] = X1X2 − X2X1,

or equivalently

[X1,X2] = (X1(ξ2) − X2(ξ1))
∂

∂x
+ (X1(η2) − X2(η1))

∂

∂y
. (1.2)

The linear space L2 spanned by the operators (1.1) is a two-dimensional Lie algebra if

[X1,X2] ∈ L2. (1.3)
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138 N. H. Ibragimov

In order to formulate the result about canonical variables in two-dimensional Lie algebras
it is convenient to use, along with the commutator [X1,X2] of the operators (1.1), their
pseudoscalar product

X1 ∨ X2 = ξ1η2 − η1ξ2. (1.4)

Recall that the operators (1.1) are said to be linearly connected if the equation

λ1(x, y)X1 + λ2(x, y)X2 = 0

holds identically in x, y with certain functions λ1(x, y), λ2(x, y), not both zero.
A geometrical significance of the pseudo-scalar product is clarified by the following

statement: the operators (1.1) are linearly connected if and only if their pseudo-scalar product
(1.4) vanishes.

Lie’s method of integration of second-order ordinary differential equations by using their
symmetries is based on the existence of so-called canonical coordinates in two-dimensional
Lie algebras. These variables provide for every L2 the simplest form of its basis and therefore
reduce a differential equation admitting L2 to an integrable form. The basic statement is
formulated as follows (for the proof, see [1, Chapter 18, §1]; see also [2, Section 12.2.2]).

Theorem 1. Any two-dimensional Lie algebra can be transformed by a proper choice of its
basis and suitable variables, t and u, to one and only one of the four nonsimilar standard
forms presented in Table 1.

The variables, t and u, presented in Table 1 are called canonical variables. They are
found for each type by solving the following systems of first-order linear partial differential
equations:

Type I: X1(t) = 1, X2(t) = 0; X1(u) = 0, X2(u) = 1.

Type II: X1(t) = 0, X2(t) = 0; X1(u) = 1, X2(u) = t.

Type III: X1(t) = 0, X2(t) = t; X1(u) = 1, X2(u) = u.

Type IV: X1(t) = 0, X2(t) = 0; X1(u) = 1, X2(u) = u.

(1.5)

1.2. Three-dimensional Lie algebras

Lie showed that the basis X1,X2,X3 of any three-dimensional algebra of operators in two
variables can be mapped by a complex change of variables to one of the following 13 standard
forms (see Table 2) (see [1, Chapter 22]; see also [2, Section 7.3.8]).

Table 1. Structure and standard forms of L2.

Type Structure of L2 Standard form of L2

I [X1, X2] = 0, X1 ∨ X2 �= 0 X1 =
∂

∂t
, X2 =

∂

∂u

II [X1, X2] = 0, X1 ∨ X2 = 0 X1 =
∂

∂u
, X2 = t

∂

∂u

III [X1, X2] = X1, X1 ∨ X2 �= 0 X1 =
∂

∂u
, X2 = t

∂

∂t
+ u

∂

∂u

IV [X1, X2] = X1, X1 ∨ X2 = 0 X1 =
∂

∂u
, X2 = u

∂

∂u
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Table 2. Standard forms of three-dimensional Lie algebras.

A. The first derived algebra has dimension three:

(1) X1 =
∂

∂x
+

∂

∂y
, X2 = x

∂

∂x
+ y

∂

∂y
, X3 = x2 ∂

∂x
+ y2 ∂

∂y
,

(2) X1 =
∂

∂x
, X2 = 2x

∂

∂x
+ y

∂

∂y
, X3 = x2 ∂

∂x
+ xy

∂

∂y
,

(3) X1 =
∂

∂y
, X2 = y

∂

∂y
, X3 = y2 ∂

∂y
.

B. The first derived algebra has dimension two:

(4) X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
+ cy

∂

∂y
(c �= 0, �= 1),

(5) X1 =
∂

∂y
, X2 = x

∂

∂y
, X3 = (1 − c)x

∂

∂x
+ y

∂

∂y
(c �= 0, �= 1),

(6) X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
+ y

∂

∂y
,

(7) X1 =
∂

∂y
, X2 = x

∂

∂y
, X3 = y

∂

∂y
,

(8) X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = (x + y)

∂

∂x
+ y

∂

∂y
,

(9) X1 =
∂

∂y
, X2 = x

∂

∂y
, X3 =

∂

∂x
+ y

∂

∂y
.

C. The first derived algebra has dimension one:

(10) X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
,

(11) X1 =
∂

∂y
, X2 = x

∂

∂y
, X3 = x

∂

∂x
+ y

∂

∂y
,

(12) X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂y
.

D. The first derived algebra has dimension zero:

(13) X1 =
∂

∂y
, X2 = x

∂

∂y
, X3 = p(x)

∂

∂y
.

Recall that the derived algebra L′
3 of the Lie algebra L3 with a basis X1,X2,X3 is the

algebra spanned by the commutators [X1,X2], [X1,X3] and [X2,X3]. The higher derivatives
are defined by induction, L′′

3 = (L′
3)

′, etc. A Lie algebra is solvable if its derivative of a
certain order vanishes. It is obvious that L3 is solvable if dim L′

3 ≤ 2 and not solvable
if dimL′

3 = 3.

Remark 1. In (13) p(x) is any given function. Lie uses the algebras (1.1) and (1.2) also in
the following alternative forms:

(1′) X1 =
∂

∂x
+ x

∂

∂y
, X2 = x

∂

∂x
+ 2y

∂

∂y
, X3 = (x2 − y)

∂

∂x
+ xy

∂

∂y
,

(2′) X1 = x
∂

∂y
, X2 = x

∂

∂x
− y

∂

∂y
, X3 = y

∂

∂x
.

Remark 2. It is also useful to utilize, instead of Lie’s complex classification, the classifi-
cation of three-dimensional Lie algebras over the reals [3] (see also [4, Chapter 8] written
by N. H. Ibragimov and F. M. Mahomed).
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2. Systems with Nonlinear Superposition

2.1. Integration of systems associated with L2

A method for integrating systems of ordinary differential equations admitting nonlinear
superpositions with two-dimensional associated Lie algebras L2 was suggested in [2, Sec-
tion 11.2.6]. The result is formulated as follows.

Theorem 2. Consider a system of coupled nonlinear first-order ordinary differential equa-
tions of the form

dx

dt
= T1(t)ξ1

1(x, y) + T2(t)ξ1
2(x, y),

dy

dt
= T1(t)ξ2

1(x, y) + T2(t)ξ2
2(x, y)

(2.1)

admitting a nonlinear superposition principle. Let the operators

X1 = ξ1
1(x, y)

∂

∂x
+ ξ2

1(x, y)
∂

∂y
, X2 = ξ1

2(x, y)
∂

∂x
+ ξ2

2(x, y)
∂

∂y
(2.2)

associated with the system (2.1) span a two-dimensional Lie algebra L2, i.e.

[X1,X2] = c1X1 + c2X2, c1, c2 = const.

Then Eq. (2.1) can be solved by quadratures upon introducing canonical variables.

Proof. After a change of the variables x, y into new variables

x̃ = x̃(x, y), ỹ = ỹ(x, y) (2.3)

without changing t, the operators (2.2) are transformed into the operators

X1 = ξ̃1
1(x̃, ỹ)

∂

∂x̃
+ ξ̃2

1(x̃, ỹ)
∂

∂ỹ
, X2 = ξ̃1

2(x̃, ỹ)
∂

∂x̃
+ ξ̃2

2(x̃, ỹ)
∂

∂ỹ
, (2.4)

where the vectors (ξ̃1
α, ξ̃2

α), α = 1, 2 are obtained from the vectors (ξ1
α, ξ2

α) by the transfor-
mation law for contravariant vectors:

ξ̃1
α =

∂x̃(x, y)
∂x

ξ1
α +

∂x̃(x, y)
∂y

ξ2
α,

ξ̃2
α =

∂ỹ(x, y)
∂x

ξ1
α +

∂ỹ(x, y)
∂y

ξ2
α.

The derivative of (x, y) with respect to t obeys the same transformation law:

dx̃

dt
=

∂x̃(x, y)
∂x

dx

dt
+

∂x̃(x, y)
∂y

dy

dt
,

dỹ

dt
=

∂ỹ(x, y)
∂x

dx

dt
+

∂ỹ(x, y)
∂y

dy

dt
.
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Therefore Eq. (2.1) are written in the form

dx̃

dt
= T1(t)ξ̃1

1(x̃, ỹ) + T2(t)ξ̃1
2(x̃, ỹ),

dỹ

dt
= T1(t)ξ̃2

1(x̃, ỹ) + T2(t)ξ̃2
2(x̃, ỹ)

(2.5)

with the same coefficients T1(t), T2(t) as those in the system (2.1).
To complete the proof we chose for x̃, ỹ canonical variables mapping the operators (2.2)

to the standard forms from Table 1 and hence convert Eq. (2.1) to the simple integrable
forms given in the following table, where x̃, ỹ are denoted again by x, y.

Example 1. We apply the method to the following nonlinear system:

dx

dt
= xy2 − x

2t
,

dy

dt
= x2y − y

2t
. (2.6)

In this case we have Eq. (2.1) with

T1(t) = 1, ξ1
1(x, y) = xy2, ξ2

1(x, y) = x2y,

T2(t) = − 1
2t

, ξ1
2(x, y) = x, ξ2

2(x, y) = y.
(2.7)

Hence the operators (2.2) are written:

X1 = xy2 ∂

∂x
+ x2y

∂

∂y
, X2 = x

∂

∂x
+ y

∂

∂y
. (2.8)

We have

[X1, X2] = −2X1, X1 ∨ X2 ≡ ξ1η2 − η1ξ2 = xy(y2 − x2) �= 0.

Hence the operators (2.8) span a two-dimensional Lie algebra of type III. Therefore we can
transform the operators (2.8) and Eq. (2.6) to the form III from Table 3.

Let us find canonical variables x̃, ỹ for the first operator (2.8) by solving the equations

X1(x̃) = 0, X1(ỹ) = 1

Table 3. Standard forms of operators (2.2) and systems (2.1).

Standard forms of operators (2.2) Standard forms of Eq. (2.1)

I X1 =
∂

∂x
, X2 =

∂

∂y

dx

dt
= T1(t),

dy

dt
= T2(t)

II X1 =
∂

∂y
, X2 = x

∂

∂y

dx

dt
= 0,

dy

dt
= T1(t) + T2(t)x

III X1 =
∂

∂y
, X2 = x

∂

∂x
+ y

∂

∂y

dx

dt
= T2(t)x,

dy

dt
= T1(t) + T2(t)y

IV X1 =
∂

∂y
, X2 = y

∂

∂y

dx

dt
= 0,

dy

dt
= T1(t) + T2(t)y
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in accordance with Eq. (2.5) for Type III. These equations are written

xy2 ∂x̃

∂x
+ x2y

∂x̃

∂y
= 0, xy2 ∂ỹ

∂x
+ x2y

∂ỹ

∂y
= 1.

The characteristic equation

dx

y
− dy

x
= 0

for the equation X1(x̃) = 0 has the first integral x2 − y2 = const. Hence, x̃ is an arbitrary
function of x2 − y2. One can take it in the simplest form x̃ = x2 − y2.

We solve the equation X1(ỹ) = 1. Consider its characteristic system

dx

xy2
=

dy

x2y
= dỹ.

Using the integral x2 − y2 = a2 given by the first equation of this system we write the
second equation dx/(xy2) = dỹ of the characteristic system in the form

dỹ =
1
a2

[
1

2(x − a)
+

1
2(x + a)

− 1
x

]
dx.

The resulting integral

ỹ − 1
a2

[ln
√

x2 − a2 − ln |x|] = C

together with x2 − y2 = a2 provide the solution to the equation X1(ỹ) = 1:

ỹ =
ln |y| − ln |x|

x2 − y2
+ F (x2 − y2).

Letting F = 0 and assuming that x, y are positive, we obtain the following variables:

x̃ = x2 − y2, ỹ =
ln y − ln x

x2 − y2
. (2.9)

One can verify that the variables (2.9) are the canonical variables required for our algebra
L2. Indeed, the operators (2.8) are written in the form of Type III of Table 3 (up to
inessential constant factors in X2):

X1 =
∂

∂ỹ
, X2 = 2

(
x̃

∂

∂x̃
− ỹ

∂

∂ỹ

)
.

These operators have the form (2.4) with

ξ̃1
1 = 0, ξ̃2

1 = 1, ξ̃1
2 = 2x̃, ξ̃2

2 = −2ỹ.

Substituting these expressions into (2.5) (or differentiating (2.9) with respect to t and using
Eq. (2.6)) we see that Eq. (2.6) are written in the variables (2.9) as the following simple
linear equations:

dx̃

dt
= − x̃

t
,

dỹ

dt
= 1 +

ỹ

t
. (2.10)
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Integration of Eq. (2.10) yields:

x̃ =
C1

t
, ỹ = C2t + t ln t. (2.11)

Now we solve Eq. (2.9) with respect to x and y:

x =

√
x̃

1 − e2x̃ ỹ
, y =

√
x̃

e−2x̃ ỹ − 1
,

substitute here the solutions (2.11) and finally arrive at the following general solution to
the system of Eq. (2.6):

x =

√
k

t(1 − ζ2)
, y = ζ

√
k

t(1 − ζ2)
. (2.12)

Here ζ = Ctk, where C and k are arbitrary constants.

2.2. Integration of systems associated with L3

Using Lie’s classification of three-dimensional algebras, we can extend Theorem 2 from
Subsec. 2.1 as follows.

Theorem 3. Consider a system of coupled nonlinear first-order ordinary differential equa-
tions of the form

dx

dt
= T1(t)ξ1

1(x, y) + T2(t)ξ1
2(x, y) + T3(t)ξ1

3(x, y),

dy

dt
= T1(t)ξ2

1(x, y) + T2(t)ξ2
2(x, y) + T3(t)ξ1

3(x, y)
(2.13)

admitting a nonlinear superposition principle. Let the operators

X1 = ξ1
1(x, y)

∂

∂x
+ ξ2

1(x, y)
∂

∂y
,

X2 = ξ1
2(x, y)

∂

∂x
+ ξ2

2(x, y)
∂

∂y
,

X3 = ξ1
3(x, y)

∂

∂x
+ ξ2

3(x, y)
∂

∂y

(2.14)

associated with the system (2.13) span a three-dimensional Lie algebra L3. Then Eq. (2.13)
can be solved by quadratures if the algebra L3 is solvable and reduced to integration of Riccati
equations if L3 is not solvable.

Proof. We transform the Lie algebra L3 associated with the system (2.13) to an appropriate
standard form given in Table 2 and map Eq. (2.13) to the following forms (see Table 4).

In Table 4 ẋ and ẏ are the derivatives of x and y with respect to t.

It is manifest that the systems of forms B, C and D can be solved by quadratures. It is
also obvious that the systems in A require integration of Riccati equations and, in general,
cannot be solved by quadratures. This completes the proof of the theorem.
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Table 4. Standard forms of Eq. (2.13).

A. dim L′
3 = 3:

(1) ẋ = T1(t) + T2(t)x + T3(t)x
2, ẏ = T1(t) + T2(t)y + T3(t)y

2;

(2) ẋ = T1(t) + 2T2(t)x + T3(t)x
2, ẏ = T2(t)y + T3(t)xy;

(3) ẋ = 0, ẏ = T1(t) + T2(t)y + T3(t)y
2.

B. dim L′
3 = 2:

(4) ẋ = T1(t) + 2T2(t)x + T3(t)x
2, ẏ = T2(t)y + T3(t)xy (c �= 0, �= 1);

(5) ẋ = (1 − c)T3(t)x (c �= 0, �= 1), ẏ = T1(t) + T2(t)x + T3(t)y;

(6) ẋ = T1(t) + T3(t)x, ẏ = T2(t) + T3(t)y;

(7) ẋ = 0, ẏ = T1(t) + T2(t)x + T3(t)y;

(8) ẋ = T1(t) + T2(t)(x + y), ẏ = T2(t) + T3(t)y;

(9) ẋ = T3(t), ẏ = T1(t) + T2(t)x + T3(t)y.

C. dim L′
3 = 1:

(10) ẋ = T1(t) + T3(t)x, ẏ = T2(t);

(11) ẋ = T3(t)x, ẏ = T1(t) + T2(t)x + T3(t)y;

(12) ẋ = T1(t), ẏ = T2(t) + T3(t)x.

D. dim L′
3 = 0:

(13) ẋ = 0, ẏ = T1(t) + T2(t)x + T3(t)p(x).

Remark 3. The alternative forms mentioned in Remark 1 provide the following alternative
standard forms of Eq. (2.13):

(1′) ẋ = T1(t) + T2(t)x + T3(t)(x2 − 1), ẏ = T1(t)x + 2T2(t)y + T3(t)xy;

(2′) ẋ = T2(t)x + T3(t)y, ẏ = T1(t)x − T2(t)y.

In certain particular cases the systems in A can be integrated either by quadratures or
in terms of special functions. The simplest case is T3(t) = 0. Then Eqs. (2.1)–(2.3) become
easily solvable linear systems. Furthermore, if T1(t) = 0, the Riccati equations in systems
(2.1)–(2.3) can be linearized by a change of the dependent variables (see [5, Chapter 1]).
Moreover it is demonstrated in [5] that the Riccati equations in systems (2.1), (2.3) can be
linearized by a change of the dependent variables if

T3(t) = k[T2(t) − kT1(t)], k = const.

In the case of system (2.2) this condition is replaced by T3(t) = k[2T2(t) − kT1(t)].
It is well known that if T3(t) �= 0, one can transform the Riccati equations in question

to the equivalent form with T3(t) = −1 and T2(t) = 0. Assuming that this transformation
has been done, we consider, e.g., system (2.2),

ẋ + x2 = T1(t), ẏ + xy = 0. (2.15)

We set x = (ln |u|)′ and rewrite the first equation of this system in the form of a linear
second-order equation

u′′ = T1(t)u,

where u′ is the derivative of u with respect to t. The above equation can be solved in terms
of special functions if T1(t) is a linear function. Indeed, let T1(t) = αt+β, α �= 0. Then our
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equation

u′′ = (αt + β)u

becomes the Airy equation

d2u

dτ2
− τu = 0

upon introducing the new independent variable

τ = α−2/3[αt + β].

The general solution to the Airy equation is given by the linear combination

u = C1Ai(τ) + C2Bi(τ)

of the Airy functions

Ai(τ) =
1
π

∫ ∞

0
cos

(
sτ +

1
3

s3

)
ds,

Bi(τ) =
1
π

∫ ∞

0

[
exp

(
sτ − 1

3
s3

)
+ sin

(
sτ +

1
3

s3

)]
ds.

Assuming that C1 �= 0 and introducing the new constant K1 = C2/C1 we obtain

x(t) =
d

dt
ln |Ai(α−2/3[αt + β]) + K1Bi(α−2/3[αt + β])|. (2.16)

Now we substitute (2.16) into the second equation of the system (2.15) and obtain upon
integration:

y(t) = K2{Ai(α−2/3[αt + β]) + K1Bi(α−2/3[αt + β])}−1. (2.17)

Thus the solution of the system (2.15) with T1(t) = αt + β is given in terms of the special
functions (2.16) and (2.17).

Example 2. Consider the nonlinear system

dx

dt
= −T1(t)y exp

[
arctan

(
y

x

)]
+ T2(t)x + T3(t)y,

dy

dt
= T (t)x exp

[
arctan

(
y

x

)]
+ T2(t)y − T3(t)x

(2.18)

with arbitrary coefficients T1(t), T2(t), T3(t). The operators (2.14) associated with Eq. (2.18)
have the form

X1 = exp
[

arctan
(

y

x

)](
x

∂

∂y
− y

∂

∂x

)
,

X2 = x
∂

∂x
+ y

∂

∂y
,

X3 = y
∂

∂x
− x

∂

∂y

(2.19)
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and span a three-dimensional Lie algebra L3 with the following commutator relations:

[X1, X2] = 0, [X1, X3] = X1, [X2, X3] = 0. (2.20)

It follows that the derived algebra L′
3 has dimension one and hence our algebra L3 belongs

to the category C of Table 2. Specifically comparison of the commutator relations (2.20)
with the commutators of the standard operators (2.10), (2.11) or (2.12) from Table 2 shows
that the operators (2.19) can be mapped by a change of variables (2.3) either to (2.10) or to
(2.11). However, it is easy to show that they cannot be mapped to the form (2.11). Indeed
the change of variables (2.3) converts (2.19) to the form (2.11),

X1 =
∂

∂ỹ
, X2 = x̃

∂

∂ỹ
, X3 = x̃

∂

∂x̃
+ ỹ

∂

∂ỹ
,

if x̃ and ỹ solve the following over-determined system:

X1(x̃) = 0, X1(ỹ) = 1,

X2(x̃) = 0, X2(ỹ) = x̃,

X3(x̃) = x̃, X3(ỹ) = ỹ,

where X1,X2 and X3 are the operators (2.19). These equations are not compatible. For
example, the equations X1(x̃) = 0 and X3(x̃) = x̃ contradict each other because X1 differs
from X3 by a non-vanishing factor only. For another reasoning see the general construction
of similarity transformations given in [2, Section 7.3.7].

We find the change of variables (2.3) mapping (2.19) to the form (2.10), namely

X1 =
∂

∂x̃
, X2 =

∂

∂ỹ
, X3 = x̃

∂

∂x̃
. (2.21)

Now x̃ and ỹ should solve the following over-determined systems:

X1(x̃) = 1, X1(ỹ) = 0,

X2(x̃) = 0, X2(ỹ) = 1,

X3(x̃) = x̃, X3(ỹ) = 0.

Substituting the expressions (2.19) for X1,X2,X3 we write these equations in the form

x
∂x̃

∂y
− y

∂x̃

∂x
= e− arctan(y/x), x

∂ỹ

∂y
− y

∂ỹ

∂x
= 0,

x
∂x̃

∂x
+ y

∂x̃

∂y
= 0, x

∂ỹ

∂x
+ y

∂ỹ

∂y
= 1,

x
∂x̃

∂y
− y

∂x̃

∂x
= x̃, x

∂ỹ

∂y
− y

∂ỹ

∂x
= 0.

(2.22)

Comparison of the first and third equations for x̃ yields x̃ = e− arctan(y/x). One can readily
verify that this function solves all three equations (2.22) for x̃. The equations for ỹ are easy to
solve and yield ỹ = ln

√
x2 + y2. Thus the canonical variables mapping the operators (2.19)
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to the standard form (2.21) are given by

x̃ = exp
[
− arctan

(
y

x

)]
, ỹ = ln

√
x2 + y2. (2.23)

In these variables Eq. (2.18) are written in the integrable form (2.10) from Table 4:

dx̃

dt
= T1(t) + T3(t)x̃,

dỹ

dt
= T1(t). (2.24)

The results presented in this paper have been included in [6].
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