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We show that we can apply the Hirota direct method to some non-integrable equations. For this purpose,
we consider the extended Kadomtsev–Petviashvili–Boussinesq (eKPBo) equation with M variable which is

(uxxx − 6uux)x + a11uxx + 2
MX

k=2

a1kuxxk +
MX

i,j=2

aijuxixj = 0,

where aij = aji are constants and xi = (x, t, y, z, . . . , xM ). We will give the results for M = 3 and a detailed
work on this equation for M = 4. Then we will generalize the results for any integer M > 4.

Keywords: The Hirota direct method; non-integrable equations; exact solutions; solitons; Kadomtsev–
Petviashvili equation; Boussinesq equation.

1. Introduction

The Hirota direct method is one of the famous method to construct multi-soliton solutions of inte-
grable nonlinear partial differential equations. Hirota gave the exact solution of Korteweg-de Vries
(KdV) equation for multiple collisions of solitons by using the Hirota direct method in 1971 [1].
In his successive articles, he dealt with many other nonlinear evolution equations such as modified
Korteweg-de Vries (mKdV) [2], sine-Gordon (sG) [3], nonlinear Schrödinger (nlS) [4] and Toda lattice
(Tl) [5] equations. Hirota method was also applied to Kadomtsev–Petviashvili (KP) and Boussinesq
(Bo) equations. KP equation is

(uxxx − 6uux)x + uxt + 3uyy = 0 (1.1)

and it has been solved in [6]. Bo equation which is

(uxxx − 6uux)x + uxx − utt = 0 (1.2)

has been solved by again Hirota [7]. Both of these equations are in the class of KdV-type equations.
The first step of the Hirota direct method is to transform the nonlinear partial differential or

difference equation into a quadratic form in dependent variables. The new form of the equation is
called “bilinear form”. In the second step, we write the bilinear form of the equation as a polynomial
of a special differential operator called Hirota D-operator. This polynomial of D-operator is called
“Hirota bilinear form”. In fact, some equations may not be written in Hirota bilinear form but per-
haps in trilinear or multilinear forms [8]. The last step of the method is using the finite perturbation

127



128 A. Pekcan

expansion in Hirota bilinear form. The coefficients of the perturbation parameter and its powers are
analyzed separately. Depending upon the finite perturbation expansion one finds one-, two-, . . . and
N -soliton solutions.

The KdV-type equations which have Hirota bilinear form possess one- and two-soliton solutions
[9] automatically. The first difficulty arises at three-soliton solutions. In order that an equation to
have three-soliton solution, it should satisfy certain condition, called three-soliton solution condition.
This condition was used as a powerful tool to search the integrability of the equations by Hietarinta
[10]. Hietarinta also used this condition to produce new integrable equations in his articles [9, 11–13].
KP and Bo satisfy such condition immediately. For some of the equations although they have Hirota
bilinear form, this condition is not satisfied directly. Three-soliton solution condition can be used to
find exact solutions of such differential equations.

In this work we will consider a KdV-type equation unifying KP and Bo. A simple form of such
an equation was first considered by Johnson [14]. Johnson analyzed the equation

(uxxx − 6uux)x + uxx − utt + uyy = 0, (1.3)

which he called the two dimensional Boussinesq equation. It is introduced to describe the wave
propagation of gravity waves on the surface of the water of constant depth. This equation has one-
and two-soliton and resonant solutions. Also, even the two dimensional Boussinesq equation does
not have distributed solution, under some transformations and assumptions on its parameters it can
be transformable to KP which has distributed solution.

Here we further generalize Johnson’s equation as

(uxxx − 6uux)x + a11uxx + 2
M∑

k=2

a1kuxxk
+

M∑
i,j=2

aijuxixj = 0, (1.4)

where aij = aji are constants and xi = (x, t, y, z, . . . , xM ). We call this equation as M -dimensional
extended Kadomtsev–Petviashvili–Boussinesq (eKPBo) equation. Here we will analyze (1.4) for M =
3, M = 4 and for any integer M > 4.

2. M = 3, Three Dimensional EKPBo

Three dimensional eKPBo is

(uxxx − 6uux)x + a11uxx + 2a12uxt + 2a13uxy

+ a22utt + 2a23uty + a33uyy = 0. (2.1)

The second line of the equation can be simplified by letting

t′ = a1t + b1y,

y′ = a2t + b2y,
(2.2)

where a1, b1, a2 and b2 are some constants. Then the equation becomes

(uxxx − 6uux)x + a11uxx + 2a12uxt′ + 2a13uxy′

+ a22ut′t′ + 2a23ut′y′ + a33uy′y′ = 0, (2.3)

where

a12 = a1a12 + b1a13,

a13 = a2a12 + b2a13,

a22 = a2
1a22 + 2a1b1a23 + b2

1a33,

a23 = a1a2a22 + a2b1a23 + a1b2a23 + b1b2a33,

a33 = a2
2a22 + 2a2b2a23 + b2

2a33.

(2.4)
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Under the conditions a2
23 = a22a33 and a1

b1
= − a23

a22
we have a22 = a23 = 0 so (2.3) turns out to be

(uxxx − 6uux)x + a11uxx + 2a12uxt′ + 2a13uxy′ + a33uy′y′ = 0. (2.5)

This equation can be transformable to KP. If we consider a2
23 = a22a33 and a2

b2
= − a33

a23
we have

a23 = a33 = 0 so (2.3) becomes

(uxxx − 6uux)x + a11uxx + 2a12uxt′ + 2a13uxy′ + a22ut′t′ = 0. (2.6)

This is equivalent to KP if a12 �= 0 and a13 �= 0. If they are zero then the equation becomes Bo.

Lemma 1. For M = 3, if we have the condition a2
23 = a22a33, then Eq. (1.4) can be transformable

to either KP or Bo.

Now we will give the application of the Hirota method on four dimensional eKPBo.

3. M = 4, Four Dimensional EKPBo

Here we apply the Hirota method by using the properties of Hirota D-operator and steps given in
[15] to Eq. (1.4) with four variables.

Step 1. Bilinearization: We bilinearize the equation i.e. transform it to a quadratic form in depen-
dent variable by the transformation

u(x, t, y, z) = −2∂2
x log f(x, t, y, z), (3.1)

so the bilinear form of the equation is

fxxxxf − 4fxfxxx + 3f2
xx +

4∑
i,j=1

aij(ffxixj − fxifxj ) = 0. (3.2)

Step 2. Transformation to the Hirota bilinear form: We use Hirota D-operator which is simply
defined as

Dx1Dx2{f · f} = (∂x1 − ∂x′
1
)(∂x2 − ∂x′

2
)f(x1, x2).f(x′

1, x′
2) (x1 = x′

1, x2 = x′
2)

= 2(ffx1x2 − fx1fx2). (3.3)

By using some sort of combination of D-operator we write Hirota bilinear form of the equation as

P (D){f · f} =

⎛
⎝D4

x +
M∑

i,j=1

aijDxixj

⎞
⎠ {f · f} = 0, (3.4)

for M = 4.

Step 3. Application of the Hirota perturbation: We insert f = 1 +
∑N

n=1 εnfn into Eq. (3.4) so we
have

P (D){f · f} = P (D){1.1} + εP (D){f1.1 + 1.f1} + · · · + ε2NP (D){fN .fN } = 0. (3.5)

Here ε is a constant called the perturbation parameter.

Step 4. Examination of the coefficients of the perturbation parameter ε: We make the coefficients of
εm, m = 1, 2, . . . , N appeared in (3.5) to vanish. Here we shall consider only the case N = 3. Note
that since the equation is not integrable except for some conditions, we call the solutions obtained by
using the Hirota method as restricted N -soliton solution of the equation for N ≥ 3. Before passing
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to restricted three-soliton solution of eKPBo with four variables, let us give one- and two-soliton
solutions of it. One-soliton solution of eKPBo is

u(x, t, y, z) = − k2
1

2cosh2( θ1
2 )

. (3.6)

Here θ1 = (l1)1x+ (l2)1t + (l3)1y + (l4)1z + α1 where we denote l1 = k. The constants k1, (l2)1, (l3)1

and (l4)1 satisfy k4
1 +

∑4
i,j=1 aij(li)1(lj)1 = 0. Two-soliton solution of eKPBo is

u(x, t, y, z) = −2
E(x, t, y, z)
F (x, t, y, z)

,

where

E(x, t, y, z) = k2
1eθ1 + k2

2eθ2 + [(k1 − k2)2 + A(1, 2)((k1 + k2)2 + k2
1eθ2 + k2

2eθ1)]eθ1+θ2

and

F (x, t, y, z) = (1 + eθ1 + eθ2 + A(1, 2)eθ1+θ2)2

for θn = knx + (l2)nt + (l3)ny + (l4)nz + αn, n = 1, 2 and A(1, 2) = R(1, 2)/S(1, 2) where,

R(1, 2) = (k1 − k2)4 +
4∑

i,j=1

aij [(li)1 − (li)2][(lj)1 − (lj)2],

S(1, 2) = (k1 + k2)4 +
4∑

i,j=1

aij [(li)1 + (li)2][(lj)1 + (lj)2].

Now we apply the Hirota direct method to four dimensional eKPBo with the anzats which is used
to construct three-soliton solutions. We take

f = 1 + εf1 + ε2f2 + ε3f3,

where f1 = eθ1 +eθ2 +eθ3 with θn = (l1)nx+(l2)nt+(l3)ny +(l4)nz +αn where l1 = k for n = 1, 2, 3
and insert it into (3.5). The coefficient of ε0 is identically zero. By the coefficient of ε1, we have the
relation

P (−→pn) = k4
n +

4∑
i,j=1

aij(li)n(lj)n = 0, (3.7)

where −→pn = (kn, (l2)n, (l3)n, (l4)n) for n = 1, 2, 3. This relation is called the dispersion relation. From
the coefficient of ε2 we get

−P (∂)f2 =
(3)∑

n<m

eθn+θm

⎧⎨
⎩(kn − km)4 +

4∑
i,j=1

aij [(li)n − (li)m][(lj)n − (lj)m]

⎫⎬
⎭ , (3.8)

where (3) indicates the summation of all possible combinations of the three elements with n < m

for n, m = 1, 2, 3, 4. Thus to satisfy the equation, f2 should be of the form

f2 = A(1, 2)eθ1+θ2 + A(1, 3)eθ1+θ3 + A(2, 3)eθ2+θ3 . (3.9)

We insert f2 into Eq. (3.8) so we get A(n, m) as

A(n, m) = −P (−→pn − −→pm)
P (−→pn + −→pm)

, (3.10)

where n, m = 1, 2, 3, 4 with n < m. From the coefficient of ε3 we get

−P (∂){f3} = eθ1+θ2+θ3 [A(1, 2)P (−→p3 − −→p2 − −→p1)

+A(1, 3)P (−→p2 − −→p1 − −→p3) + A(2, 3)P (−→p1 − −→p2 − −→p3)]. (3.11)
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Hence f3 is of the form f3 = Beθ1+θ2+θ3 where B is found as

B = −[A(1, 2)P (−→p3 − −→p1 − −→p2) + A(1, 3)P (−→p2 − −→p1 − −→p3)

+ A(2, 3)P (−→p1 − −→p2 − −→p3)]/P (−→p1 + −→p2 + −→p3). (3.12)

The coefficient of ε4 gives us the coefficient B as

B = A(1, 2)A(1, 3)A(2, 3). (3.13)

To be consistent, the two expressions for B should be equivalent. This is satisfied when the following
condition holds:

P (−→p1 − −→p2)P (−→p1 − −→p3)P (−→p2 − −→p3)P (−→p1 + −→p2 + −→p3)

+ P (−→p1 − −→p2)P (−→p1 + −→p3)P (−→p2 + −→p3)P (−→p3 − −→p1 − −→p2)

+ P (−→p1 − −→p3)P (−→p1 + −→p2)P (−→p2 + −→p3)P (−→p2 − −→p1 − −→p3)

+ P (−→p2 − −→p3)P (−→p1 + −→p2)P (−→p1 + −→p3)P (−→p1 − −→p2 − −→p3) = 0.

This condition which we call restricted three-soliton solution condition (R3SC) can also be written as
∑

σr=±1

P (σ1
−→p1 + σ2

−→p2 + σ3
−→p3)P (σ1

−→p1 − σ2
−→p2)P (σ2

−→p2 − σ3
−→p3)P (σ1

−→p1 − σ3
−→p3) = 0, (3.14)

for r = 1, 2, 3. After some simplifications (R3SC) for four dimensional eKPBo turns out to be

k2
1k2

2k2
3 [(a22a33 − a2

23) det(K, L2, L3)2 + (a22a44 − a2
24) det(K, L2, L4)2

+ (a33a44 − a2
34) det(K, L3, L4)2 + 2(a22a34 − a23a24) det(K, L2, L4) det(K, L2, L3)

+ 2(a33a24 − a23a34) det(K, L2, L3) det(K, L4, L3)

+ 2(a44a23 − a24a34) det(K, L4, L2) det(K, L4, L3)] = 0, (3.15)

where K = (k1, k2, k3)T and Lr = ((lr)1, (lr)2, (lr)3)T for r = 2, 3, 4. In compact form, we can write
the above equation as

k2
1k2

2k2
3

4∑
i,j,m,n=2

aijamn det(K, Li, Lm) det(K, Lj , Ln) = 0, (3.16)

for i �= m, j �= n. Note that ai1i2 = ai2i1 for i1, i2 = 2, 3, 4.
Finally, the coefficients of ε5 and ε6 vanish trivially. We have completed the application of the

method and found the function f as

f = 1 + ε(eθ1 + eθ2 + eθ3) + ε2

⎛
⎝

3∑
i,j=1

Ai,jeθi+θj

⎞
⎠ + ε3(Beθ1+θ2+θ3), (3.17)

where i < j. Without loss of generality, we set ε = 1. Then by using (3.1) with this f we get a
restricted (by (3.16)) three-soliton solution.

4. Restricted Three-Soliton Solution Conditions

Even though we have given the application of the Hirota method only for four dimensional eKPBo
in detail, it is not hard to see the facts for eKPBo with M = 3 and M > 4 variables. Here we
will give restricted three-soliton solution conditions for eKPBo and we analyze the cases that these
conditions are satisfied.
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(a) M = 3 variables:

Restricted three-soliton solution condition of three dimensional eKPBo equation is

k2
1k2

2k2
3(a22a33 − a2

23)det(K, L2, L3) = 0, (4.1)

where K = (k1, k2, k3)T and Lr = ((lr)1, (lr)2, (lr)3)T for r = 2, 3. As we see this condition satisfied
when a2

23 = a22a33. This relation makes three dimensional eKPBo transformable to either integrable
KP or Bo equations. Except this case, we do not have integrable equations. Other cases satisfying
(4.1) are

Case 1. Any one of ki = 0, i = 1, 2, 3, the rest are different.

Case 2. The parameter vectors (K, L2, L3) are linearly dependent.

(b) M = 4 variables:
Restricted three-soliton solution condition (3.16) is equivalent to

k2
1k2

2k2
3

4∑
i,j,m,n=2

Cij det(K, Li, Lm) det(K, Lj , Ln) = 0, (4.2)

where Cij ’s are the cofactors of the coefficient matrix
⎛
⎝

a22 a23 a24

a32 a33 a34

a42 a43 a44

⎞
⎠ .

Let us denote det(K, Li, Lj) = εijkρk for i, j, k = 2, 3, 4 where εijk is Levi–Civita symbol. It is
possible to write (4.2) as

k2
1k2

2k2
3

4∑
i,j=2

Cij(εimkρk)(εjmlρl) = k2
1k2

2k2
3

4∑
i,j=2

Cijρkρlεimkεjml

= k2
1k2

2k2
3

4∑
i,j=2

Cijρiρj = 0, (4.3)

where m, k, l = 2, 3, 4, C is the matrix of Cij , Cij = Cij − tr(C)δij and δij is the Kronecker delta,
i, j = 2, 3, 4.

Example. Let us take aij = δij . In this case, Cij = δij . So Cij = −2δij. As we see to satisfy (4.3)
we should have ρi

2 = 0 so ρi = 0 for any i = 2, 3, 4.

The cases that (4.3) is satisfied are the followings:

Case 1. Any one of ki = 0, i = 1, 2, 3, the rest are different.

Case 2. Let C be the matrix of Cij . Suppose that C is a nonnegative (nonpositive) matrix i.e.
eigenvalues of the matrix are all positive (negative) or zero. Then (4.3) is satisfied when ρi = 0
for any i = 2, 3, 4. This implies that det(K, Li, Lj) = 0, i, j = 2, 3, 4 or the parameter vectors
(K, L2, L3, L4) are parallel in one of such ways:

(i) All vectors are parallel,
(ii) Li is parallel to Lj and Lm is parallel to Ln i, j, m, n = 1, 2, 3, 4, where all the indices are

different (Note that we denote L1 = k),
(iii) Only three of the parameter vectors are parallel to each other.



Solutions of the EKPBo Equation by the Hirota Direct Method 133

(c) M variables, M> 4:
For eKPBo equation with M variables we have (R3SC) similar to (3.16),

k2
1k2

2k2
3

M∑
i,j,m,n=2

aijamn det(K, Li, Lm) det(K, Lj , Ln) = 0, (4.4)

where i �= m, j �= n, ai1i2 = ai2i1 for i1, i2 = 2, 3, . . . , M , K = (k1, k2, k3)T and Lr =
((lr)1, (lr)2, (lr)3)T for r = 2, 3, . . . , M .

Case 1. Any one of ki = 0, i = 1, 2, 3, the rest are different.

Case 2. Let us consider the set of parameter vectors (K, L2, L3, . . . , LM ) as a union of two disjoint
subsets. If all vectors belonging to the same subset are parallel to each other, then the condition
(4.4) is satisfied.

Case 3. All the parameter vectors (K, L2, L3, . . . , LM ) are parallel to each other.

Remark. When Case 2 is satisfied for any M ≥ 3, then the solution of (1.4) becomes two-
dimensional. If we have Case 3 then solution turns to be one-dimensional.

5. Restricted Three-Soliton Solution of EKPBo

Application of the Hirota direct method to eKPBo gives us the functions fi, i = 1, 2, 3 in f =
1 + εf1 + ε2f2 + ε3f3 and some additional conditions. Finally we take ε = 1 and insert f into the
bilinearizing transformation. Hence restricted three-soliton solution of M dimensional eKPBo with
the condition (4.4) satisfied takes the form

u(x, t, y, z, . . . , xM ) = −2
T (x, t, y, z, . . . , xM )
V (x, t, y, z, . . . , xM )

,

where

T (x, t, y, z, . . . , xM ) = k2
1eθ1 + k2

2eθ2 + k2
3eθ3

+ e2θ1+θ2+θ3 [A(1, 2)A(1, 3)(k2 − k3)2 + B(k2 + k3)2]

+ eθ1+θ2+2θ3 [A(1, 3)A(2, 3)(k1 − k2)2 + B(k1 + k2)2]

+ eθ1+2θ2+θ3 [A(1, 2)A(2, 3)(k1 − k3)2 + B(k1 + k3)2]

+ eθ1+θ2 [(k1 − k2)2 + A(1, 2)(k2
1eθ2 + k2

2eθ1 + (k1 + k2)2)]

+ eθ1+θ3 [(k1 − k3)2 + A(1, 3)(k2
1eθ3 + k2

3eθ1 + (k1 + k3)2)]

+ eθ2+θ3 [(k2 − k3)2 + A(2, 3)(k2
2eθ3 + k2

3eθ2 + (k2 + k3)2)]

+ eθ1+θ2+θ3 [A(1, 2)(k2
1 + k2

2 + k2
3 + 2k1k2 − 2k1k3 − 2k2k3)

+ A(1, 3)(k2
1 + k2

2 + k2
3 + 2k1k3 − 2k1k2 − 2k2k3)

+ A(2, 3)(k2
1 + k2

2 + k2
3 + 2k2k3 − 2k1k2 − 2k1k3)

+ B(k2
1 + k2

2 + k2
3 + 2k1k2 + 2k1k3 + 2k2k3)

+ B(A(1, 2)k2
3eθ1+θ2 + A(1, 3)k2

2eθ1+θ3 + A(2, 3)k2
1eθ2+θ3)]

and

V (x, t, y, z, . . . , xM ) = [1 + eθ1 + eθ2 + eθ3 + A(1, 2)eθ1+θ2

+ A(1, 3)eθ1+θ3 + A(2, 3)eθ2+θ3 + Beθ1+θ2+θ3 ]2.

Here θn = knx +
∑M

i=2(li)nxi, n = 1, 2, 3 and

A(i, j) = − (ki − kj)4 +
∑3

i,j=1[(ln)i − (ln)j ][(lm)i − (lm)j ]

(ki + kj)4 +
∑3

i,j=1[(ln)i + (ln)j ][(lm)i + (lm)j ]
(5.1)

with l1 = k and i, j = 1, 2, 3 for i < j, n, m = 1, 2, . . . , M and B is as in (3.13).
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6. Explicit Solutions of EKPBo

Here, for illustration, we show the graphs of the solutions of the equation

(uxxx − 6uux)x + uxx + uty − uyy = 0. (6.1)

The Eq. (6.1) is one of the three-dimensional eKPBo equations. We give the graphs of restricted
three-soliton solutions of this equation. In order to determine the constants ki, wi and li we use the

−20

−10

0

10

20

x

−20

−10

0

10

20

y

−2

−1

0

−20

−10

0

10

20

x

−20

−10

0

10

20

y

−2

−1

0

(a) t = −15 (b) t = −6

−20

−10

0

10

20

x

−20

−10

0

10

20

y

−2

−1

0

−20

−10

0

10

20

x

−20

−10

0

10

20

y

−2

−1

0

(c) t = 0 (d) t = 6

−20

−10

0

10

20

x

−20

−10

0

10

20

y

−2

−1

0

(e) t = 15

Fig. 1. The behavior of restricted three-soliton solution at different times.



Solutions of the EKPBo Equation by the Hirota Direct Method 135

−2

−1.5

−1

−0.5

−20 −10 10 20
y

−2

−1.5

−1

−0.5

0

−20 −10 10 20
y

(a) x = 0, t = −15 (b) x = 0, t = −6

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

−20 −10 10 20y

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

−20 −10 10 20y

(c) x = 0, t = 0 (d) x = 0, t = 6

−2

−1.5

−1

−0.5

0

−20 −10 10 20y

(e) x = 0, t = 15

Fig. 2. The projection of the graphs in Fig. 1 with x = 0.



136 A. Pekcan

dispersion relation of (6.1) that is

k4
i + k2

i + wili − l2
i = 0, i = 1, 2, 3, (6.2)

and (R3SC) given in (4.1). We present the graphs in two groups. The first group that consists
Figs. 1 and 2 is plotted due to the Case 2. Figures 3 and 4, which constitute the second group
are plotted due to the Case 1 of restricted three-soliton solution conditions for three-dimensional
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eKPBo. According to these, we determine the constants for the first group as

k1 = 1, k2 = 1, k3 = −2,
w1 = −1, w2 = −1, w3 = 2,
l1 = −2, l2 = 1, l3 = 1 − √

21.

In Fig. 1, we note that our solution does not seem to have solitonic behavior. But in Fig. 2, when
the graphs are projected, we see the perfect movements of three waves. Indeed, they have solitonic
property.

Now we pass to the second group of graphs. The constants ki, wi and li, i = 1, 2, 3 are

k1 = 0, k2 = 2, k3 = −1,
w1 = −2, w2 = −1, w3 = 17/10,
l1 = −2, l2 = 4, l3 = −4/5.

We plotted Figs. 3 and 4 by taking k1 = 0. This makes the solution to lose one wave from the graphs.
Note that in Fig. 3, unlike Fig. 1 we have two waves and they seem to have solitonic property.

7. Conclusion

In this work, we have generalized the two dimensional Boussinesq equation given in (1.3). We have
studied on the most general nonlinear partial differential equation depending on four variables and
written in the form

(D4
x + quadratic part){f · f} = 0. (7.1)

We called this equation as extended Kadomtsev–Petviashvili–Boussinesq (eKPBo) equation. We
noted that it reduces to the KP and the Boussinesq (Bo) equations under some conditions on the
constants of the equation.

We applied the Hirota direct method to eKPBo equation. EKPBo equation is a KdV type-
equation. Since every KdV type-equation having Hirota bilinear form has one- and two-soliton
solutions immediately, we dealt with three-soliton solutions of eKPBo. We have shown that to have
three-soliton solution, it should satisfy a condition, which we called restricted three-soliton solution
condition (R3SC). Our equation is not integrable except for some cases. Hence it does not satisfy
(R3SC) automatically. So we have analyzed the cases which make this condition to hold. We have
seen that there is also a simple form of (R3SC) for M dimensional eKPBo. We have also given the
general form of restricted three-soliton solution of M dimensional eKPBo under the condition (4.4).
Finally, for some specific values of the parameters ki, wi and li, i = 1, 2, 3, we have plotted restricted
three-soliton solution of three dimensional eKPBo for different values of time parameter t.
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