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1. Introduction

Purpose and scope of this paper is to describe a simple technique to manufacture three
classes of solvable dynamical systems, characterized by the fact that the solution of the
initial-value problem with generic initial data is, for the first class, isochronous, for the
second multi-periodic, and for the third asymptotically isochronous. These three classes
appear as special cases of a class of solvable dynamical systems.

Terminology. In this paper a dynamical system is identified as solvable if the solution of
its initial-value problem can be achieved by solving systems of linear algebraic equations:
so that the solution can in fact be provided in explicit form, in term of determinants. It
is called (i) isochronous, (ii) multi-periodic, respectively (iii) asymptotically isochronous, if
the solution of its initial-value problem (with generic initial data, as explained below) is: (i)
completely periodic (periodic in all degrees of freedom) with a fixed period independent of the
initial data, (ii) expressed in terms of a finite set of functions of time each of which is periodic
with a fixed period independent of the initial data (iff all these periods are congruent the
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system is isochronous), (iii) neither isochronous nor multi-periodic but becomes isochronous
in the remote future, up to corrections vanishing exponentially as the time diverges to
positive infinity.

Our main motivation to exhibit these three classes of dynamical systems is in order
to offer to practitioners — in physics, chemistry, population dynamics, whatever — a
potentially useful tool to model observed phenomena or to perform appropriately designed
experiments.

Isochronous systems have been investigated since the beginnings of the modern theory
of dynamics by Newton, Huygens and by too many others to allow proper accounting here;
recently there has been a revival of interest in such systems, for a review see [1]. The results
reported below are — to the best of our knowledge — new, although an analogous — albeit
less general — finding is provided by the solvable matrix equation displayed as Eq. (5.4.3-
24) in [2], which also underpins the, quite different, class of solvable dynamical systems
introduced and discussed in [3].

2. A Trivially Solvable Linear Matrix ODE

In this section we review, mainly to establish our notation, well-known results concerning
the linear, constant-coefficient — hence solvable — matrix ODE of order N + 1

V (N+1) +
N∑

n=0

anV (n) = 0. (1a)

Notation. Here and hereafter N is an arbitrary positive integer (except when we restrict
it to some specific, small, value: see below), the dependent variable V ≡ V (t) is a matrix
of arbitrary order (the order might be just unity, in which case V is just a scalar), t is the
independent variable (“time”), and

V (m)(t) ≡
(

d

dt

)m

V (t). (1b)

The time variable t is of course real, and we generally assume it goes onwards from the
initial time t = 0 at which the initial data V (m)(0), with m = 0, . . . , N , are assigned; the
matrix V (t) shall be hereafter assumed to be complex, except in special cases as discussed
below. We also assume the N + 1 scalar coefficients an to be complex numbers — although
we eventually focus below on systems of real (first-order, nonlinear) evolution ODEs, which
are presumably more relevant for applications.

The general solution of (1a) reads of course

V (t) =
N+1∑
n=1

V [n] exp(iknωt), (2a)

where the N + 1 numbers kn are the N + 1 roots of the algebraic equation, of order N + 1
in k,

kN+1 +
N∑

n=0

[an(iω)n−N−1kn] = 0, (2b)
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so that

kN+1 +
N∑

n=0

[an(iω)n−N−1kn] =
N+1∏
n=1

(k − kn); (2c)

and the N + 1 constant matrices V [n] are identified, in the context of the initial-value
problem, as the solutions of the system of N linear algebraic (matrix) equations

N+1∑
n=1

[V [n](iknω)m] = V (m)(0), m = 0, 1, . . . , N. (2d)

Note that, here and hereafter, we restrict attention to the (generic) case when the N + 1
numbers kn are all different among themselves.

Here and hereafter ω is a real nonvanishing scaling constant having the dimensions of
inverse time, which is hereafter assumed to be adjusted so as to guarantee that one of the
numbers kn be unity, say k1 = 1. Note that this entails, see (2b), for a real ω, the following
restriction — hereafter assumed to hold — on the N coefficients an:

(iω)N+1 +
N∑

n=0

[an(iω)n] = 0. (3)

The Eqs. (2b) or (2c) institute a one-to-one correspondence between the ordered set of
the N + 1 coefficients an and the unordered set of the N + 1 (different!) roots kn (with
k1 = 1 via an appropriate assignment of ω); hereafter whenever using these quantities it
will be understood that such a correspondence holds. And let us emphasize that, while in
order to compute the N + 1 roots kn from the N + 1 coefficients an the algebraic equation
of order N + 1 (2b) must be solved, well known explicit formulas — implied by (2c) — are
instead available to compute the set of coefficients an corresponding to an assigned set of
numbers kn. This will be our main point of view in the following: for instance

a0 = (−iω)N+1
N+1∏
n=2

kn, aN = −iω

N+1∑
n=1

kn = −iω

[
1 +

N+1∑
n=2

kn

]
. (4)

Finally let us note that the general solution (2a) of the ODE (1a) is clearly isochronous
with period T ,

T =
2π
|ω| , (5a)

V (t + T ) = V (t), (5b)

if the N + 1 (different!) numbers kn are all real integers (positive, negative or zero), it
is isochronous with a larger period than T if all the numbers kn are rational, it is multi-
periodic if the N +1 (different!) numbers kn are all real and at least one of them is irrational
(recall that k1 = 1), and it is asymptotically isochronous if none of the N quantities kjω

(with j = 2, . . . , N + 1) has a negative imaginary part, at least one of them has a positive
imaginary part, and the real numbers kj are integers (or rationals): say,

Im[ωkj ] > 0 for 2 ≤ j ≤ L + 1; k� = real integer or rational, L + 2 ≤ � ≤ N + 1.

(6)
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3. A Class of Solvable Nonlinear Dynamical Systems

Now introduce the set of matrices Um ≡ Um(t) via the definition

Um(t) =

[(
∂

∂t

)m+1

V (t)

]
[V (t)]−1, m = 0, 1, 2 . . . , (7a)

so that, in particular,

U0(t) =
[(

∂

∂t

)
V (t)

]
[V (t)]−1. (7b)

Then to the solution V (t) (2a) of the linear matrix ODE (1a) there correspond the following
expression of Um(t):

Um(t) =

{
N+1∑
n=1

[V [n](iknω)m+1 exp(iknωt)]

}[
N+1∑
n=1

V [n] exp(iknωt)

]−1

. (8)

We now note that the definition (7) entails the relations

U̇m(t) = Um+1(t) − Um(t)U0(t), m = 0, 1, 2, . . . . (9)

Here and hereafter superimposed dots denote differentiations with respect to the time t.
It is moreover plain that the differential equation (1) entails, via (7), the relation

UN (t) = −
N∑

n=1

anUn−1(t) − a0. (10)

The insertion of this relation in the ODE (9) with m = N − 1 yields the ODE

U̇N−1 = −a0 −
N−1∑
m=0

am+1Um − UN−1U0, (11a)

and this ODE, together with the N − 1 ODEs (9) with m = 0, . . . , N − 2,

U̇m = Um+1 − UmU0, m = 0, . . . , N − 2 (11b)

(which are of course only present if N ≥ 2), constitute a system of N first-order nonlinear
ODEs for the N matrix variables Um ≡ Um(t), m = 0, . . . , N − 1. The initial data for
this dynamical system are the N matrices Um(0) with m = 0, . . . , N − 1; and clearly the
solution of its initial-value problem is provided, via (7), by the solution (2a) of the initial-
value problem for the ODE (1), with the constant matrices V [n] related via (2d) to the
initial data

V (0)(0) ≡ V (0) = 1; V (n)(0) = Un−1(0), n = 1, . . . , N, (12)

where 1 is of course the unit matrix having the same order as V (t).
It is therefore plain (see (7)) that the N matrices Um(t), with m = 0, . . . , N − 1, satis-

fying the system of N nonlinear matrix ODEs (11) inherit from the matrix V (t), solution
of the linear matrix ODE (1), of order N + 1, analogous (albeit not quite identical, see
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below) properties of isochrony, multi-periodicity or asymptotic isochrony — determined, as
explained above, by the values of the N + 1 numbers kn, themselves related to the N + 1
scalar coefficients an. With one proviso: while all solutions of the linear matrix ODE of
order N + 1 (1) are nonsingular — see (2a) — the solutions of the system of N nonlinear
ODEs (11) might instead become singular. This obviously happens, see (7), whenever the
determinant of the matrix V (t) vanishes, entailing that this matrix is not invertible. As long
as one works with complex matrices V (t) whose determinants are complex numbers, this
may happen, throughout the time evolution of V (t), only for some exceptional set of initial
data; it does not happen for generic initial data. Hence in that context it can be concluded
that, for generic initial data, the solution of the initial-value problem for the system of N

nonlinear first-order ODEs (11) inherits from the linear matrix ODE of order N + 1 (1)
analogous (albeit not quite identical, see below) properties — isochrony, multi-periodicity
or asymptotic isochrony — as determined by the N + 1 numbers kn, or equivalently by the
corresponding N + 1 coefficients an.

Another case we will not dwell on — but we mention it here as also potentially of
interest — is that in which one of the numbers knω, having a negative imaginary part,
dominates the asymptotic behavior of V (t) in the remote future: say, Im[kN+1ω] < Im[knω],
n = 1, . . . , N (implying Im[kN+1ω] < 0 since Im[k1ω] = 0). It is then clear from (2a) and
(7) that the generic solution of the system of nonlinear matrix ODEs (11) (i.e., any solution
such that in the corrresponding V (t) that dominant component is present) has the following
asymptotic property:

lim
t→∞[Um(t)] = (ikN+1ω)m+1, m = 0, . . . , N − 1. (13)

These asymptotic values correspond of course to the equilibrium configuration of the dynam-
ical system (11).

In the following sections we investigate the solvable systems of type (11) featuring the
three kinds of time evolution mentioned above — isochrony, multi-periodicity, asymptotic
isochrony — but focusing on systems characterized by evolution equations which are real.
Such real dynamical systems are provided directly by the system of (first-order, nonlinear)
evolution equations (11) when all the coefficients am are real, but in such a case one cannot
be certain that a real matrix V (t), solution of the corresponding linear matrix ODE (1a)
with generic initial data, is invertible for all time, hence that the corresponding generic
solution of the dynamical system (11) does not run into singularities; although there are
cases — as shown below — in which no singularities arise for an open subset of initial data
in phase space.

Hence our main device to manufacture real dynamical systems whose generic solutions
are nonsingular for all (real ) time, is to start from the system of complex ODEs (11) —
where we now generally assume also the coefficients an to be complex,

an = αn + iβn, n = 0, . . . , N, (14)

— and to consider as dependent variables the real and imaginary parts of the matrices
Um(t),

Um(t) = Xm(t) + iYm(t), m = 0, . . . , N − 1. (15)
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We thereby obtain from (11) the following system of 2N first-order real matrix ODEs for
the 2N dependent variables Xm(t) and Ym(t):

ẊN−1 = −α0 −
N−1∑
m=0

[αm+1Xm − βm+1Ym] − XN−1X0 + YN−1Y0, (16a)

ẎN−1 = −β0 −
N−1∑
m=0

[αm+1Ym + βm+1Xm] − XN−1Y0 − YN−1X0, (16b)

Ẋm = Xm+1 − XmX0 + YmY0, m = 0, . . . , N − 2, (16c)

Ẏm = Ym+1 − XmY0 − YmX0, m = 0, . . . , N − 2. (16d)

This system is the main protagonist of the following developments: and let us re-emphasize
that hereafter we assume the numbers αn and βn to be determined — in terms of the
corresponding numbers kn, assigned on a case-by-case manner, see below — via (2c) (see
in particular (4)) with (14).

4. Isochronous Nonlinear Dynamical Systems

In this section we focus on systems of nonlinear first-order real ODEs of type (16) — hence
solvable — such that the solution of their initial-value problem with generic initial data is
isochronous.

To arrive at this class one starts by assigning arbitrarily the real parameter ω as well
as N different real integers kn, n = 2, . . . , N + 1 (with k1 = 1), and then — by solving, for
the N + 1 unknowns am, m = 0, 1, . . . , N , the system of N + 1 linear algebraic equations
that obtains by inserting kn, n = 1, . . . , N + 1 in place of k in (2b) — one computes the
corresponding N + 1 coefficients am, which will then generally turn out (except in two
special cases, as tersely discussed at the end of this section) to be complex, see (14). The
(solvable, isochronous) dynamical system is then provided by the 2N first-order nonlinear
matrix ODEs (16).

This system is of course also isochronous if the N + 1 different real numbers kn, n =
1, . . . , N + 1 (with k1 = 1) are rational numbers rather than integers: in the following we
omit for simplicity to elaborate explicitly on this possibility.

In particular for N = 1 the system (16) yields (via (4)) the following solvable system of
2 first-order real matrix ODEs:

Ẋ = kω2 − (1 + k)ωY − X2 + Y 2, Ẏ = (1 + k)ωX − XY − Y X, (17)

where we of course set k2 ≡ k. It is easily seen (from (8) with (2d) and (12)) that the
solution of the initial-value problem for this system reads, in the scalar case, as follows:

X(t) = −(k − 1)ωA sin(τ + ϕ)
D(t)

, (18a)

Y (t) = ω

[
1 + (k + 1)A cos(τ + ϕ) + kA2

D(t)

]
, (18b)

D(t) = 1 + 2A cos(τ + ϕ) + A2, (18c)
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A =

√
[X(0)]2 + [Y (0) − ω]2

[X(0)]2 + [Y (0) − kω]2
, (18d)

ϕ = arctan
{

(k − 1)ωX(0)
[X(0)]2 + [Y (0) − ω][Y (0) − kω]

}
, (18e)

τ = (k − 1)ωt, (18f)

confirming its isochrony with period T/|k − 1|, see (8) and (5a), for arbitrary real ω and
provided k is an arbitrary integer different from unity, k = 0,−1, ±2, ±3, . . . . (In fact, if k

is an arbitrary real number rather than an integer, clearly this same conclusion holds.) Note
that this solution is nonsingular for all time, except for the special (non generic) initial data
such that

cos ϕ = −(k − 1)/(2A), i.e. Y (0) =
k + 1

2
ω. (19)

It is not difficult to obtain the solution in the, more general, matrix case in terms of the polar
decomposition of the matrix [kω − Y (0) + iX(0)]−1[ω − Y (0) + iX(0)] — but notationally
it is a bit more cumbersome, so we do not display it.

Let us on the other hand exhibit the form taken by this (solvable, isochronous) system
when the matrices X and Y have order 2 and are symmetrical:

X =
(

x1 ξ

ξ x2

)
, Y =

(
y1 η

η y2

)
. (20)

Then one gets the following system of 6 first-order nonlinear (scalar) ODEs:

ẋ1 = kω2 − (1 + k)ωy1 − x2
1 + y2

1 − ξ2 + η2,

ẋ2 = kω2 − (1 + k)ωy2 − x2
2 + y2

2 − ξ2 + η2,

ẏ1 = (1 + k)ωx1 − 2(x1y1 + ξη),
ẏ2 = (1 + k)ωx2 − 2(x2y2 + ξη),
ξ̇ = −(1 + k)ωη − (x1 + x2)ξ + (y1 + y2)η,

η̇ = (1 + k)ωξ − (x1 + x2)η − (y1 + y2)ξ.

(21)

We leave to the diligent reader the easy task to display the system of 8 first-order nonlin-
ear scalar ODEs that obtains from (17) when X and Y are generic (i.e., not symmetrical)
matrices of order 2; while we note that the system we just displayed can be reduced to
a system of 4 (rather than 6) first-order nonlinear ODEs via the (obviously compatible)
reduction

x1(t) = x2(t) = x(t), y1(t) = y2(t) = y(t). (22)

Likewise, for N = 2, we can assert that the following solvable system of 4 first-order
real matrix ODEs is isochronous with period T (more precisely, the period is the largest
common multiple among T/|k2 − 1| and T/|k3 − 1|: see (8)):

Ẋ0 = X1 − X2
0 + Y 2

0 , Ẏ0 = Y1 − X0Y0 − Y0X0, (23a)

Ẋ1 = (k2 + k3 + k2k3)ω2X0 − (1 + k2 + k3)ωY1 − X1X0 + Y1Y0, (23b)

Ẏ1 = −k2k3ω
3 + (k2 + k3 + k2k3)ω2Y0 + (1 + k2 + k3)ωX1 − X1Y0 − Y1X0, (23c)
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provided ω is real and k2, k3 are two arbitrary different integers both different from unity,
k2 �= k3, k2 �= 1, k3 �= 1.

Many more isochronous systems can obviously be manufactured in this manner by mak-
ing other choices of the number N and/or of the order of the two matrices X and Y.

Finally let us note that a reduction of this system, (23), obtains if k2 = −1 and k3 = 0
(or, equivalently, viceversa), since one can then set Y0 = Y1 = 0, thereby getting the
following system of 2 matrix ODEs:

Ẋ0 = X1 − X2
0 , Ẋ1 = −ω2X0 − X1X0. (24)

This system, however, is only isochronous in a sector of its phase space, indeed its general
solution reads (see (8)):

X0(t) =
[
X0(0) cos(ωt) + X1(0)

sin(ωt)
ω

]
·
[
1 + X0(0)

sin(ωt)
ω

+ X1(0)
1 − cos(ωt)

ω2

]−1

,

(25a)

X1(t) = [−ωX0(0) sin(ωt) + X1(0) cos(ωt)] ·
[
1 + X0(0)

sin(ωt)
ω

+ X1(0)
1 − cos(ωt)

ω2

]−1

.

(25b)

And this is nonsingular for all time only if the matrices X0(0) and X1(0) have sufficiently
small norm.

Note that this reduction corresponds to the case in which the real dynamical system
under consideration is (11) rather than (16), with the coefficients an being all real and yield-
ing roots kn of the Eq. (2b) which are also all real integers (all different among themselves),
which are then necessarily characterized, for even N , by the property k2j−1 = −k2j �= 0
for j = 1, . . . , N/2, with kN+1 = 0: the case we just treated corresponds to N = 2, but it
is easily seen that the situation is in fact analogous for larger even values of N. For odd
N and real coefficients an all the (different, integer) roots kn are characterized by the rule
k2j−1 = −k2j �= 0 for j = 1, . . . (N + 1)/2, and it is then easily seen that in this case all
solutions of the dynamical system (11) eventually run into singularities.

5. Multi-Periodic Nonlinear Dynamical Systems

In this terse section we focus on systems of nonlinear first-order real matrix ODEs of type
(16) — hence solvable — such that the solution of their initial-value problem with generic
initial data is multi-periodic. These systems are given by (16) with the simple requirement
that N ≥ 2, the N numbers kn, n = 2, . . . , N + 1 are all real, different among each other
and different from k1 = 1, and that the numbers kn − 1 are not congruent. For instance
the system (23) is such a system, provided k2 and k3 satisfy these requirements. The more
diligent reader — especially if capable to employ computer algebra — will enjoy producing
in explicit form the solution of this system. We only note here that the generic solution
thereby obtained shall never become singular, although it features a denominator which,
in the remote future, shall at times come closer and closer to zero: a behavior qualitatively
analogous to that of the real function 1/{[A1 sin(ω1t)]2 + [A2 sin(ω2t)]2} with the 4 real
constants A1, A2, ω1 and ω2 arbitrary except for the requirement that ω1 and ω2 not be
congruent, namely that the ratio ω1/ω2 be irrational.
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6. Asymptotically Isochronous Nonlinear Dynamical Systems

In this terse section we focus on systems of nonlinear first-order real matrix ODEs of type
(16) — hence solvable — such that the solution of their initial-value problem with generic
initial data is asymptotically isochronous. These systems are given by (16) with the require-
ments on the real parameter ω and the N +1 numbers kn (with k1 = 1) specified at the end
of Sec. 2 (but see below). Let us exhibit 2 cases, which constitute rather obvious extensions
of those treated above, so that the following treatment can be quite terse.

The first case is identified by the assignment

N = 1, k1 = 1, k2 = q + i
p

ω
, (26)

where q and ω are two arbitrary real numbers (of course ω �= 0) and p is an arbitrary
positive constant (with the dimension of inverse time), p > 0. The corresponding system of
two first-order real ODEs reads

Ẋ = qω2 − pX − (1 + q)ωY − X2 + Y 2, Ẏ = pω − pY + (1 + q)ωX − XY − Y X,

(27a)

and reduces of course to the isochronous system (17) for p = 0 and q = k. But of course the
solutions of this system, (27a), are not asymptotically isochronous: they converge asymp-
totically to the equilibrium configuration

X(∞) = 0, Y (∞) = ω, (27b)

as implied by (15) and (7) with (2a) and (26).
The second case is identified by the assignment

N = 2, k1 = 1, k2 = q1 + i
p

ω
, k3 = q2, (28)

where q1, q2 and ω are 3 arbitrary real numbers (of course ω �= 0 and q2 �= 1) and p is
an arbitrary positive number, p > 0. The corresponding system of 4 first-order real matrix
ODEs reads

Ẋ0 = X1 − X2
0 + Y 2

0 , Ẏ0 = Y1 − X0Y0 − Y0X0, (29a)

Ẋ1 = q2pω2 + (q1 + q2 + q1q2)ω2X0 − (1 + q2)pωY0

− pX1 − (1 + q1 + q2)ωY1 − X1X0 + Y1Y0, (29b)

Ẏ1 = −q1q2ω
3 + (q1 + q2 + q1q2)ω2Y0 + (1 + q2)pωX0

− pY1 + (1 + q1 + q2)ωX1 − X1Y0 − Y1X0, (29c)

and reduces of course to the isochronous system (23) for p = 0 and q1 = k2, q2 = k3. This
model is clearly asymptotically isochronous. Note however that, if k3 — rather than being
real — were also to feature, as k2, a positive imaginary part, then the corresponding system,
rather than being asymptotically isochronous, would converge asymptotically to equilibrium,
just as the system (27a), see above.

The task to obtain the general solution of these systems is again left to the diligent
reader.
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7. Outlook

Throughout this paper we have assumed that the dependent variables of the dynamical
systems under consideration are matrices of arbitrary rank. By appropriate parametrizations
of these matrices — see for instance [2] (in particular Subsecs. 5.5 and 5.6.5 of this book), [4]
and [5] — it is then possible to introduce interesting reformulations of these systems, also
in the guise of nonlinear systems of covariant vector ODEs. We leave for the moment these
developments to researchers interested in their applications. But let us end this paper by
emphasizing that the results presented above have an interesting potential for application
even when attention is restricted to matrices of unit order, namely to scalar dependent
variables — in which cases some of the formulas reported above simplify marginally (since
matrices of unit order of course commute).
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