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We prove the existence of solitary traveling wave solutions for an equation describing the evolution
of the free surface for waves of moderate amplitude in the shallow water regime. This nonlinear
third-order partial differential equation arises as an approximation of the Euler equations, modeling
the unidirectional propagation of surface water waves. We give a description of the solitary wave
profiles by performing a phase plane analysis and study some qualitative features of the solutions.
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1. Introduction

Ever since Scott Russell’s first recorded observation of “the great wave of translation“ [33],
there has been growing interest in the study of solitary wave solutions of the equations for
water waves. The existence theory for irrotational waves of small amplitude dates back to
works of Krasovski, Lavrentiev and Ter-Krikorov [26, 27, 34], and was later improved by
Friedrichs and Hyers [17], Beale [6] and Amick and Toland [4]. Although at the time no
existence results for waves with arbitrary amplitude were available, Keady and Pritchard
[24] proved that symmetric and monotone solitary wave solutions are necessarily waves of
elevation which propagate at supercritical Froude number. It was shown by Amick and
Toland [3] that such waves of elevation actually exist for all amplitudes from zero up to
the solitary wave of greatest height and that they decay exponentially at infinity, under the
assumption that the wave profile is symmetric and monotone from crest to trough. Craig
and Sternberg [16] proved that any supercritical solitary wave solution is symmetric and
decays monotonically to a constant on either side of the crest. More recently, results on
existence, symmetry and regularity were obtained in the rotational case, cf. [20, 29], and
the flow beneath an irrotational solitary wave was investigated in [11, 12]. In parallel with
the aforementioned research on the exact water wave problem, the past fifty years have seen
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a resurgence in interest in approximate model equations. With the appearance of integrable
equations like the KdV [25] or Camassa–Holm [7], whose solitary wave solutions are in
fact solitons (cf. [1, 8, 18, 22, 31]), approximations to the full governing equations received
renewed attention from the mathematical community. These same equations have long been
a staple of the applied ocean sciences, with myriad applications in coastal engineering and
tsunami modeling, cf. [13]. Many results have been obtained for waves of small amplitude,
but it is also interesting and important to look at larger amplitude waves. Departing from
an equation first derived by Johnson in [22], which at a certain depth below the fluid surface
is a Camassa–Holm equation, one can derive a corresponding equation for the free surface
valid for waves of moderate amplitude in the shallow water regime. Constantin and Lannes
discuss large-time well-posedness of this equation in [14] and prove existence and uniqueness
of solutions on some maximal time interval, also showing that singularities can develop only
in the form of wave breaking. To our knowledge, not a great deal is known so far about
global solutions. In this paper we prove existence of solitary traveling wave solutions for
this equation and provide some qualitative features of the wave profile including symmetry,
exponential decay at infinity and the fact that the profile has a unique crest point.

2. Preliminaries

Our mathematical model is based on a number of simplifying assumptions regarding the
fluid and the physical quantities that play a role in the equations of motion. We assume
that the water is inviscid, incompressible and that it has constant density. Furthermore we
restrict our attention to gravity water waves, meaning that the only external force relevant
to the propagation of the waves is due to the gravitational acceleration g. Concerning the
fluid domain Ω, our analysis is valid for fluid flows over a flat bed at depth y = −h0 that
extends to infinity in both horizontal directions. The fluid domain is bounded from above
by the one-dimensional free surface which describes the elevation of the wave above the
bed by means of η(x, t), a function of space x and time t. We denote the fluid velocity field
by (u, v) and impose the additional assumption that the flow is irrotational. The equations
governing the motion of the fluid are taken to be Euler’s equations (2.1), which arise from
Newton’s second law of motion. Furthermore, based on the assumption that mass is neither
generated nor destroyed anywhere in the fluid, we employ the equation of mass conservation
which reduces to (2.2), because the density is constant. Due to the fact that we consider

Fig. 1. The fluid domain Ω for one-dimensional surface waves.
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irrotational flows the curl of the velocity field (i.e. the vorticity) must be zero, which leads
to relation (2.3). In addition to these equations of motion we impose suitable conditions on
the surface and the bottom of the fluid. The kinematic boundary conditions express the fact
that the boundaries of the fluid domain behave like surfaces which move with the fluid. This
ensures that there is no flow through the bottom and that fluid particles do not leave the
fluid domain through the surface. The dynamic boundary condition decouples the motion
of air from that of water by setting the atmospheric pressure equal to a constant, which
is reasonable since the density of air is very small compared to that of water (see [9, 28]
for a justification of the assumptions on inviscid homogeneous fluid flows for gravity water
waves). In what follows we will be interested mostly in approximations of the full governing
equations. To this end, the variables are nondimensionalized and scaled using appropriate
reference quantities (cf. [21] for a detailed discussion). The resulting system of equations
valid in the fluid domain Ω = {(x, y)| − h0 < y < η(x, t)} reads in nondimensionalized and
scaled form

ut + ε(uux + vuy) = −Px,

δ2(vt + ε(uvx + vvy)) = −Py,

}
in Ω, (2.1)

ux + vy = 0 in Ω, (2.2)

uy − δ2vx = 0 in Ω, (2.3)

with boundary conditions

P = η, v = ηt + εuηx on y = εη,

v = 0 on y = −1,

where P is the nondimensional pressure relative to the hydrostatic pressure distribution.
The so-called amplitude and shallowness parameters

ε =
a

h0
, δ =

h0

λ
,

appearing in this formulation arise naturally in the process of nondimensionalization and
relate the average wave length λ, amplitude a and water depth h0. They characterize various
physical regimes in which simplified equations can be derived by means of asymptotic
expansions in terms of ε and δ. The resulting model equations serve as a basis to construct
approximate solutions to the full governing equations which, under certain circumstances,
still model accurately the type of waves of interest. In the following we shall focus on the
long-wave limit, or shallow water regime, where δ � 1, and are concerned with waves of
moderate amplitude, characterized by ε = O(δ).

3. An Equation for Waves of Moderate Amplitude in Shallow Water

In the shallow water regime, one can derive the Green–Naghdi equations (cf. [19]),


ηt + [(1 + εη)u]x = 0,

ut + ηx + εuux =
δ2

3
1

1 + εη
[(1 + εη)3(uxt + εuuxx − εu2

x)]x,
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which couple the free surface η to the vertically averaged horizontal velocity component

u(x, t) =
1

1 + εη(x, t)

∫ εη(x,t)

−1
u(x, y, t)dy.

For one-dimensional surface waves propagating over a flat bed, this set of equations provides
an approximation to the Euler equations up to terms of order δ2, cf. [2]. Under the additional
assumption that ε = O(δ), one can study an equation for the velocity, the Johnson equation

ut + ux +
3
2
εuux +

δ2

12
uxxx − δ2

12
uxxt +

7εδ2

24
uuxxx +

4εδ2

3
uxuxx = 0, (3.1)

which was first derived in [22] by means of asymptotic expansions in terms of ε and δ.
Constantin and Lannes showed in [14] that, defining η in terms of u by an expression which
arises in the asymptotic derivation of (3.1),

η = u +
ε

4
u2 − δ2

6
uxx − 5εδ2

12
uuxx − 17εδ2

48
u2

x, (3.2)

a solution u of the Johnson equation satisfies the Green–Naghdi equations up to terms of
order δ4, providing thus a good approximation to the governing equations for water waves.
The Johnson equation actually belongs to a wider family of equations of this type, none
of which is integrable unless the averaged horizontal velocity component is replaced by the
horizontal velocity evaluated at a specific depth in the fluid domain,

uρ(x, t) = ∂xΦ(x, y, t)|y=(1+εη)ρ−1,

where Φ is the velocity potential associated with the irrotational velocity field. Precisely at
the level line ρ = 1√

2
the Johnson equation turns out to be a Camassa–Holm equation and

is therefore integrable, cf. [7, 14, 22]. However, all of these equations describe the evolution
of the velocity at a certain depth below the water surface and, unlike the case of model
equations like the Korteweg–de Vries equation [25], they are not identical to the equation
for the free surface. Using the expression (3.2) in Johnson’s equation (3.1), one can derive
a corresponding evolution equation for the free surface of waves of moderate amplitude in
the shallow water regime,

ηt + ηx +
3
2
εηηx − 3

8
ε2η2ηx +

3
16

ε3η3ηx +
δ2

12
ηxxx − δ2

12
ηxxt +

7εδ2

24
(ηηxxx + 2ηxηxx) = 0.

(3.3)

Large-time well-posedness results were obtained for this equation in [14] using a semi-group
approach due to Kato, cf. [23]. It is shown that for any initial data η0 ∈ H3(R) and a
maximal existence time tm > 0 there exists a unique solution η ∈ C(H3(R); [0, tm)) ∩
C1(H2(R); [0, tm)) which depends continuously on initial data. Furthermore it is proved
that if the maximal existence time is finite blow-up occurs in the form of wave breaking,
e.g. the wave profile remains bounded but its slope becomes unbounded as t approaches tm
(cf. [10, 35] for discussions of this phenomenon). Proving results on global solutions seems
to be quite an intricate task as the third-order partial differential equation (3.3) contains
nonlinear terms of high-order. The aim of this paper is to prove existence of solitary traveling
wave solutions of (3.3) by performing a phase plane analysis of the corresponding system of
ordinary differential equations and providing a qualitative description of the wave profile.
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4. Existence of Solitary Traveling Wave Solutions

Traveling wave solutions have the property that wave profiles propagate at constant speed
c > 0 without changing their shape. Defining characteristic variables and scaling out the
amplitude and shallowness parameters by means of the transformation

τ =
1
δ
(x − ct), η(τ) =

ε

2
η(x, t), (4.1)

we transform (3.3) into the ordinary differential equation

η′(1 − c) + 3ηη′ − 3
2
η2η′ +

3
2
η3η′ +

1 + c

12
η′′′ +

7
12

(ηη′′′ + 2η′η′′) = 0,

which, upon integration with respect to τ , yields

12(1 − c)η + 18η2 − 6η3 +
9
2
η4 + (1 + c)η′′ +

7
2
((η′)2 + 2ηη′′) + C = 0, (4.2)

where C is a constant of integration. Among all the traveling wave solutions of (3.3) we
shall focus on solutions which have the additional property that the waves are localized and
that η and its derivatives decay at infinity, that is,

η(n)(τ) → 0 as |τ | → ∞, for n ∈ N. (4.3)

Under this decay assumption the constant of integration in (4.2) vanishes and we can
conveniently rewrite it as the planar autonomous system


η′ = ζ,

ζ ′ =
12(c − 1)η − 18η2 + 6η3 − 9/2η4 − 7/2ζ2

1 + c + 7η
.

(4.4)

Our goal is to determine a homoclinic orbit in the phase plane starting and ending in
(0, 0) which corresponds to a solitary traveling wave solution of (3.3). The existence of
such an orbit depends on the parameter c, the wave speed. In accordance with the results
in [3, 16, 24, 30], it appears only for c > 1 which reflects the fact that solitary waves
travel at supercritical speed with Froude number greater than one. We start our analysis
by determining the critical points of (4.4), that is, points where (η′, ζ ′) = (0, 0). After
linearizing the system in the vicinity of those points to determine the local behavior, we
prove existence of a homoclinic orbit by analyzing the phase plane.

System (4.4) has at most two critical points: one at the origin, P0 = (0, 0), and one
given by Pc = (ηc, 0), where ηc is the unique real root of the polynomial

p(η) = 12(c − 1) − 18η + 6η2 − 9/2η3. (4.5)

Indeed, one can show that the discriminant of p(η) is always negative, so there are no
multiple roots. Furthermore, its derivative p′(η) = −27/2η2 + 12η − 18 has no real roots,
so p(η) has no (local) extrema and therefore has exactly one real root. Since the highest
coefficient is negative and the constant term is a multiple of (c − 1), the real root ηc is
positive for c > 1 and negative for c < 1. When c = 1, the root is zero in which case the
two fixed points coincide at the origin. Hence, only for c > 1 both fixed points lie in the
right half-plane where η > 0 and we expect physically relevant solitary waves of elevation.
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To explicitly determine ηc (cf. also Fig. 3 in Sec. 5) one can use Cardano’s formula for
third-order polynomials to find that

ηc =
1
9
(f(c)1/3 − 92f(c)−1/3 + 4), (4.6)

where

f(c) = −1556 + 972c + 36
√

2469 − 2334c + 729c2.

To linearize the system near its critical points we compute the Jacobian Matrix J of (4.4)
and evaluate it at P0 and Pc. All fixed points lie on the horizontal axis of the phase plane,
so the Jacobian takes the form

J =

(
0 1

Jc 0

)
, where Jc = ∂ηζ

′.

Since the trace of J is zero, all eigenvalues at the critical points are of the form

λ± = ±
√

Jc,

and the behavior of the system in the vicinity of the fixed points depends on the sign of Jc.
At P0 we find that

Jc|(0,0) =
12(c − 1)

c + 1




<0 if c < 1,

=0 if c = 1,

>0 if c > 1,

so the eigenvalues of J at the origin are λ±
0 = ±

√
12(c−1)

c+1 . When c > 1, we get two distinct
real eigenvalues of opposing sign and hence P0 is a saddle point for the linearized system.
For c < 1, the number Jc is negative, so the eigenvalues are purely imaginary and hence P0

is a center for the linearized system. Evaluating Jc at the other critical point Pc = (ηc, 0)
we find that

Jc|(ηc,0) =
p′(ηc)ηc

1 + c + 7ηc




>0 if c < 1,

=0 if c = 1,

<0 if c > 1,

where p(η) was defined in (4.5) and has ηc as its unique real root. Indeed, since p′ has no real
roots and is negative in zero it is always negative, hence Jc(ηc, 0) < 0 if and only if ηc > 0
which holds true whenever c > 1. The other case follows by the same argument. Hence, the
two fixed points P0 and Pc exchange stability as c passes from less than 1 to greater than
1. Important for our analysis is the fact that only when c > 1, the fixed point Pc lies in the
right half-plane where η > 0. In this case, we can hope to find a homoclinic orbit emerging
and returning to the origin since Pc is a center whereas P0 is a saddle point for the linearized
system. Observe that, since Jc is nonzero whenever c �= 1, both fixed points are hyperbolic
which means that a (topological) saddle point for the linearized system remains a saddle
also for the nonlinear system (cf. [32, p. 140]). Since (4.4) is symmetric with respect to the
horizontal axis, i.e. invariant under the transformation (t, ζ) �→ (−t,−ζ), a linear center
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remains a center for the nonlinear system (cf. [32, p. 144]). When c = 1 the two fixed points
coincide at the origin and the Jacobian evaluated at P0 reduces to

J(0, 0) =

(
0 1

0 0

)
(4.7)

which is a nilpotent matrix, so P0 = Pc is a non-hyperbolic fixed point. In particular, J has
two zero eigenvalues in which case one can show, using an approach described in [5], that
the origin is a degenerate equilibrium state, i.e. a cusp.a

To prove existence of a homoclinic orbit we look for a solution of (4.4) which leaves
the saddle point P0 in the direction of the unstable Eigenspace spanned by the eigenvector
(1, λ+

0 ), encircles the center fixed point Pc and returns to the fixed point at the origin.
Such a solution exists for all times, because the right-hand side of (4.4) is analytic for
η > −(1 + c)/7. Since η′ > 0 in the upper half-plane, a solution which leaves the origin in
the direction (1, λ+

0 ) goes to the right and eventually has to cross the vertical line where
η = ηc, because ζ ′ is bounded from above. Indeed,

ζ ′ =
ηp(η) − 7/2ζ2

1 + c + 7η
≤ ηp(η) − 7/2ζ2 ≤ Pm,

where Pm is the unique maximum of ηp(η), with p(η) defined in (4.5). Then the solution goes
down and to the right, since η′ = ζ > 0 and ζ ′ < 0 whenever η > ηc. Consequently, it has to
cross the horizontal axis since otherwise, assuming that ζ tends monotonically to a constant
this would imply ζ ′ → −∞ in view of (4.4), which is a contradiction. Once the solution has
crossed the horizontal axis, it returns to the origin in the same way in the lower half-plane
by symmetry. The solution cannot return to the origin without encircling the fixed point
Pc since in this case, P0 would have an elliptic sector but we already showed that it is a
saddle point (i.e. there are four hyperbolic sectors plus separatrices in the neighborhood of
Pc, see [5]). This concludes the proof of existence of a homoclinic orbit starting and ending
in the origin which corresponds to a solitary traveling wave solution of (3.3), cf. Fig. 2.

Remark 4.1. For c < 1 and as long as ηc > −(1 + c)/7, the fixed point at the origin is
a center and Pc = (ηc, 0) a saddle point which now lies in the left half-plane of the phase
space, so we could still hope for the existence of a homoclinic orbit emerging from (ηc, 0),

aIt is shown in [5, Theorem 67, p. 362] that if a system can be put in the form(
η′ = ζ,

ζ′ = akηk[1 + h(η)] + bnηnζ[1 + g(η)] + ζ2f(η, ζ),

where h(η), g(η) and f(η, ζ) are analytic in a neighborhood of the origin, h(0) = g(0) = 0, k ≥ 2, ak �= 0 and
n ≥ 1, then, if k = 2m, m ≥ 1 and bn = 0, the equilibrium state is degenerate. In our case when c = 1, we
can write the system (4.4) as (

η′ = ζ,

ζ′ = −9η2[1 + h(η)] − 7
2(2+7η)

ζ2,

where h(η) = −23/6η + O(η2), which satisfies the assumptions of the theorem. Hence we infer that the
origin is degenerate and that the neighborhood of zero consists of the union of two hyperbolic sectors and
two separatrices.
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Fig. 2. Phase portrait of system (4.4) for c = 2 with a homoclinic orbit emerging from the origin which
corresponds to a solitary wave solution of the equation for surface waves of moderate amplitude in the
shallow water regime.

which would correspond to a solitary wave solution of (3.3) with negative water level far
out. This contradicts, however, the fact that we assumed η to decay to zero at infinity.

5. Qualitative Study of Solitary Traveling Wave Solutions

Despite the fact that we are not able to explicitly solve (4.4) we can work out certain
features of its solitary traveling wave solutions for c > 1 along the lines of ideas in [15], to
qualitatively describe the wave profile. Let η be a solitary traveling wave solution of (4.4).
We claim that η has a single maximum. To this end, multiply equation (4.2) by η′ and
integrate, using the decay assumption (4.3). This gives

6(1 − c)η2 + 6η3 − 3
2
η4 +

9
10

η5 +
1 + c

2
[η′]2 +

7
2
η [η′]2 = 0,

which we rewrite as

[η′]2 = η2 m(η)
1 + c + 7η

, (5.1)

where

m(η) = 12(c − 1) − 12η + 3η2 − 9/5η3. (5.2)

The discriminant of this third-order polynomial is always negative, so there are no multiple
roots. Furthermore, its derivative m′(η) has no real roots, so m(η) has no local extremum.
Hence, m(η) has only one real root which is positive since the highest coefficient is negative
and the constant term is positive for c > 1. We conclude that η′ vanishes precisely at the
unique real root ηm of m(η), so there exists a unique maximal wave height. Furthermore,
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this value ηm is attained at a single value of τ . To see this, assume to the contrary that
there exists an interval (τ1, τ2) with η(τ) = ηm for all τ ∈ (τ1, τ2). Hence, ηm would have to
satisfy equation (4.2) in that interval, which reduces to

12(1 − c) + 18ηm − 6η2
m + 9/2η3

m = 0.

On the other hand, since ηm is a root of m(η), it must also satisfy the equation

12(1 − c) + 12ηm − 3η2
m + 9/5η3

m = 0,

but this is not possible. Also, assuming that there are two distinct and isolated values τ1, τ2

with η(τ1) = η(τ2) = ηm, there must be another maximum or minimum between these
points since η decays for |τ | → ∞. Hence, there exists τ0 ∈ (τ1, τ2) where η′(τ0) = 0 but
η(τ0) �= ηm which contradicts the fact that m(η) has a unique real root. To determine ηm,
one can use again Cardano’s formula to find that

ηm =
5
9
− 155

81
r(c)−1/3 + r(c)1/3, (5.3)

where

r(c) = 5/729(−731 + 486c + 18
√

3(703 − 731c + 243c2)).

It is important to notice that the maximal height of the wave ηm is an increasing function of
the wave speed, cf. Fig. 3, which means that higher waves travel faster. To see this, recall that
ηm is the positive real root of the polynomial m(η) which displays a dependence on c only
in the constant term. Hence, since for c1 < c2 we have m(η, c1)−m(η, c2) = 12(c1 − c2) < 0,
the graph of m(η) is shifted upwards if we increase c and the zero of m(η) is shifted to the
right. We will use the fact that ηm grows with c in the comparison of solitary wave profiles
of different speeds below.

We claim that the wave profile is symmetric with respect to the vertical axis, that is, we
have to show that η(τ) is an even function of τ . To get a heuristic idea of this statement,
recall (5.1) and regard η′ as a function of η. This relation ensures that for every height of
the profile η we get two values for the steepness of the wave at that point which only differ
by sign. Hence the wave cannot be steeper on one side of the crest than on the other at the

2 4 6 8 10
c

1

2

3

4

Fig. 3. The x-coordinate ηc of the critical point Pc = (ηc, 0) and the maximum height ηm of the wave profile
as a function of the wave speed c.
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same height above the bed. To make this more precise, fix c > 0 and let η be a solution of
(4.2) with crest point at τ = 0. Define the function

η̃(τ) =

{
η(τ) for τ ∈ (−∞, 0],

η(−τ) for τ ∈ [0,∞),
(5.4)

which is even by construction. On [0,∞), both η and η̃ satisfy (4.2) and since η, η̃ ∈ C1 in
τ = 0, there exists a unique solution to the right of zero. Hence, η = η̃ on [0,∞) and in
particular η(τ) = η̃(τ) = η(−τ) on [0,∞) which proves the claim.

The solitary wave profile decays exponentially at infinity, which can be seen by per-
forming a Taylor expansion of the right-hand side of (5.1) in η around zero. This yields
(η′)2 = 12 c−1

c+1η2 + O(η3) for |τ | → ∞ and we conclude that

η(τ) = O

(
exp

(
−
√

12
c − 1
c + 1

|τ |
))

as |τ | → ∞. (5.5)

Note that the decay rate at infinity is given by the eigenvalue λ−
0 of the Jacobian matrix at

the fixed point P0, which determines the angle at which the homoclinic orbit corresponding
to the solitary wave solution leaves the origin.

It is also interesting to investigate variations of the wave profile η upon changing the
wave speed c. We show that two wave profiles with different speeds intersect precisely in
two points. Indeed, let η be a solitary solution of (4.4) with crest point at τ = 0. Since our
system displays an analytic dependence on the parameter c, so does its solution and we can
define the even function f(τ) = ∂cη(τ) for which we claim that it has precisely two zeros
on R. At τ = 0, f is positive since the maximal height η(0) = ηm is an increasing function
of the wave speed c. Furthermore, notice that the decay rate of η at infinity is faster for
larger c, since differentiating (5.5) with respect to c yields

∂cη ≈ − 12|τ |√
12 c−1

c+1

1
(1 + c)2

η < 0 for |τ | → ∞,

so f is negative for large |τ |. Moreover we show that the graph of f is decreasing whenever
it crosses the horizontal axis, i.e. if there exists τ0 > 0 such that f(τ0) = 0, then f ′(τ0) < 0.
Indeed, differentiating (5.1) with respect to c gives

(1 + 7f)(η′)2 + (2 + 2c + 14η)η′f ′ = 2ηfm(η) + η2f(−27/5η2 + 6η − 12) + 12η2,

where ′ denotes the derivative with respect to τ and we used that ∂cη
′ = f ′. Evaluating this

equation at τ0, so that all the terms involving f disappear, we find that

(2 + 2c + 14η)η′f ′ = 12η2 − (η′)2 > 0.

The fact that the right-hand side is positive follows from (5.1), noting that m(η)
1+c+7η < 12.b

Since the wave profile is decreasing to the right of the crest point, η′(τ0) < 0 and it follows

bThis inequality follows by showing that −9/5η3 + 3η2 − 96η − 24 < 0, which amounts to proving that
the polynomial has only one negative real root and then, since the highest-order coefficient is negative, the
left-hand side is negative for all η > 0.
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Fig. 4. Solitary wave profiles with two different speeds.

from the above inequality that also f ′(τ0) < 0 which proves the claim. For the solitary wave
solutions of (4.4) this means that, if we fix a wave speed c1 and find for the corresponding
wave profile η(τ, c1) the unique value τ0 at which f vanishes, then a wave profile η(τ, c2)
corresponding to a higher speed c2 > c1 lies above the original wave profile η(τ, c1) to the
left of τ0 where f is positive, and below η(τ, c1) to the right of τ0 where f is negative. Since
the wave profiles are symmetric with respect to the vertical axis, the same is true on the
other side of the crest point, cf. Fig. 4.
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