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Using the Inverse Scattering Method with a nonvanishing boundary condition, we obtain an explicit
breather solution with nonzero vacuum parameter b of the focusing modified Korteweg–de Vries
(mKdV) equation. Moreover, taking the limiting case of zero frequency, we obtain a generalization
of the double pole solution introduced by M. Wadati et al.
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1. Introduction and Main Results

This paper is concerned with the integrability of the focusing modified Korteweg–de Vries
equation (mKdV)

kt + ksss + 2(k3)s = 0, (s, t) ∈ R × R, (1.1)

where k ≡ k(s, t) is a real valued function. Specifically, we use here the Inverse Scattering
Method (ISM) under a nonvanishing boundary condition (NVBC), as it was devised by
Kawata and Inoue [10], to obtain explicit breather solutions of mKdV (1.1) which at infinity
behave as a nontrivial constant parameter, e.g. b ∈ R. We also consider here the limiting
case of zero frequency of these breather solutions, obtaining a nonzero mean generalization
of a special solution (the double pole solution) introduced by Wadati et al. [17].

The mKdV (1.1) is a nonlinear dispersive and integrable equation with infinitely many
conservation laws and well known Lax pair (see [1]). It is characterized to contain a nonlinear
part given by the cubic term (k3)s. The competition between this nonlinear term together
with the linear dispersive term ksss allows the existence of well-known soliton as well as exact
real breather solutions (see [15, 20] and references therein). These breathers are nonlinear
oscillatory modes, defined by means of a periodical-in-time and spatially localized real
function (indeed, exponentially decaying in space). Breather solutions of mKdV (1.1) in
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the line were found by Wadati [20] (see also [15]). Those breather solutions are defined in
all the real line, vanish exponentially at infinity and, qualitatively describe traveling wave
packets. They were used by Kenig, Ponce and Vega in the proof of the discontinuity of the
flowmaps associated to mKdV equation in the Sobolev spaces Hσ, constituted by functions
with σ derivatives in L2(R) (see [12]).

Explicitly, real breather solutions of mKdV in the line are determined by four real param-
eters, two of them given by the amplitude (β) of the envelope and the frequency (α) of the
carried wave and the other two given by time and spatial translations (represented by y10, y20

below). Taking α, β ∈ R\{0}, it is well known that such breather solutions can be written as
follows

k(s, t) = −i ∂
∂s

log
(
f(y1) + ig(y2)
f(y1) − ig(y2)

)
= 2

∂

∂s
arctan

(
g(y2)
f(y1)

)
, (1.2)

where y1 = 2βs+ γt+ y10, y2 = 2αs+ δt+ y20, γ = 8β(−β2 + 3α2), δ = 8α(α2 − 3β2), anda

g(y2) =
β

α
sin
(
y2 − arctan

(
β

α

))
, (1.3)

f(y1) = cosh(y1). (1.4)

Note that δ �= γ, for all values of α and β different from zero. This means that variables
2αs+ δt and 2βs + γt are always independent. Indeed, if δ = γ, one has from (1.2)

4(α2 + β2) = 0,

which means α = β = 0, a contradiction. Moreover, note that for each fixed time, the
breather of the mKdV (1.2) is a function in the Schwartz class, with zero mean:∫

R

k(s, t)ds = 0.

Therefore, in what follows, we may suppose α, β > 0, without loss of generality. The
parameter γ will be for us the velocity of the breather solution. In general, calculations
involving the real breather of mKdV (1.2) are cumbersome, but in the particular case
of (1.2), it is easy to see that selecting α large such that β/α � 1, the breather (1.2)
approximates to

k(s, t) ≈ 2β cos(2α(s + 4(α2 − 3β2)t)) sech(2β(s + 4(3α2 − β2)t)), (1.5)

where now the traveling wave packet nature of the breather (1.2) is apparent.
From a physical point of view the mKdV (1.1) appears to be relevant in a number of

different physical systems (e.g. phonons in anharmonic lattices, models of traffic congestion,
curve motion and fluid mechanics). From a mathematical point of view, the mKdV (1.1) has
been the focus of an extensive study in the past, being necessary to comment the particular
issues about well-posedness of the Cauchy problem (see [11], and references therein) and

aThe arctan phase in the argument of g can be dropped with a suitable translation in time and space, but
it will not be done for comparison purposes.
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about the asymptotic decomposition of solitons and breathers announced by Schuur (see
[19, p. 114, Chap. 5]).

The motivation for this work is focused on the obtention of explicit breather solutions
that can be used as the curvature of closed curves. The interest of this kind of solutions
of the mKdV with NVBC comes from the problem of the evolution of closed planar curves
under the mKdV flow. By the work of Goldstein and Petrich [8], the mKdV equation (1.1) is
considered as the evolution equation of the curvature of a curve. Therefore, a closed curve
can be considered as those whose associated curvature satisfies that its mean is nonzero
(indeed, it is propotional to 2π). Moreover, those curvatures with nonzero mean can be
obtained from a solution of the focusing mKdV constructed by the nonlinear superposition
of a constant (e.g. b) plus a traveling wave. In fact, it is possible to find some special breather
solutions associated to simple closed curves that, when evolving under the mKdV flow, they
create and annihilate self-intersections (see [2]).

In this paper we use the ISM under a NVBC (e.g. [10]) to get explicit real breather
solutions of mKdV with nonzero mean. In this case, in comparison with the previous
works related with the use of this technique (e.g. [5]), some difficulties arise since it is
necessary to consider a pair of complex eigenvalues λ1, λ2 = −λ∗1. Moreover, since these
complex eigenvalues appear inside of squared roots, it is necessary to simplify the com-
plex expressions involved in the calculations and re-define the parameters corresponding
to the frequency α and the amplitude β of the breather solution. In this work, we also
factorize and simplify the final expression in order to obtain this breather solution with
nonzero vacuum parameter b. We also show the structure of the matricial expression that
comes from the ISM for this breather solution. Finally, taking the limiting case of zero fre-
quency, we obtain a generalization of the double pole solution introduced by Wadati et al.
in [17].

As far as we know, this is the first result in which a breather solution with NVBC of the
mKdV (1.1) is obtained by using the ISM, since the previous results of Au-Yeung et al. [5]
reduce to build, by means of the ISM, the exact squared two-soliton solution with NVBC
(see [5]) and the results obtained by Grimshaw, Slunyaev and Pelinovsky (see [9, 18]) for
the Gardner equationb (further details on this equation in Miura et al. [4, 7, 16]) do not
contain a detailed description of the ISM. Note that the mKdV breather solutions mentioned
above can be obtained alternatively using the Hirota method with a suitable selection of
the wavenumbers (e.g. in Chow and Lai [6]). Finally, we believe that breather solutions with
NVBC we have built in this work are easily compared with the classical breather solution
(1.2) of the mKdV obtained by Wadati [20]. Our main results are the following:

Theorem 1.1 (Breather solution of the mKdV with NVBC). Let α, β, b ∈ R\{0}
such that ∆ = α2 + β2 − b2 > 0. Then, up to translations, the real breather solution of the
mKdV (1.1) with nonvanishing asymptotic constant value b is

k(s, t) = b+ 2
∂

∂s
arctan

[
g̃(s, t)
f̃(s, t)

]
, (1.6)

bNote that solutions of the mKdV equation with NVBC are also solutions of the Gardner equation with
zero boundary condition and a translation.
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where

g̃(s, t) =
β

α

√
∆ + b2

∆
cos(2αs + δt) +

bβ

∆
(cosh(2βs + γt) − sinh(2βs + γt)),

f̃(s, t) = cosh(2βs + γt) +
bβ

α
√

∆
sin
(

2αs + δt − arctan
(
β

α

))
, (1.7)

and γ = 8β(3α2 − β2) − 12b2β, δ = 8α(α2 − 3β2) − 12b2α.

Corollary 1.2 (Double pole solution of the mKdV with NVBC). Let β, b ∈ R\{0}
such that β2 − b2 > 0. Then, up to translations, the double pole solution of the mKdV (1.1)
with nonvanishing asymptotic constant value b is

k(s, t) = b+ 2
∂

∂s
arctan

[
G̃(s, t)
F̃ (s, t)

]
, (1.8)

where

G̃(s, t) =
β(1 − 2β(s − 6(2β2 + b2)t))√

β2 − b2
+
bβ(cosh(y) − sinh(y))

β2 − b2
,

F̃ (s, t) = cosh(y) +
2bβ(s− 6(2β2 + b2)t)√

β2 − b2
, y = β(2s− 4(2β2 + 3b2)t).

Before explaining the main techniques and steps behind the proof of these results, some
remarks are in order.

Remarks. (1) Note that it is possible to obtain new solutions of the defocusing mKdV
equation

kt + ksss − 2(k3)s = 0, (s, t) ∈ R × R (1.9)

from the focusing mKdV breather solutions (1.6) with a special choice of their free
parameters b, β, α. First of all, and having this goal in mind, we apply the translation

−15 −10 −5 5 10 15
s

−1

1

2

k(s,0) k(s,5)

−5 5 10 15 20
s

−1.0

−0.5

0.5

1.0

Fig. 1. Left: Breather solution (1.6) with α = 7, β = 1, b = 0.3 at t = 0. Right: Double pole solution (1.8)
with β = 1, b = 0.3 at t = 5.
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arctan[β/α] + π/2 in the argument of the oscillatory functions of (1.6). Then, we perform
the following change of parameters in (2.69): b becomes ib, β becomes −β and α becomes iα.
Finally, we get a new purely complex solution ik̃(s, t) of the focusing mKdV equation (1.1).
Hence k̃(s, t) is a real and regular two soliton solution of the defocusing mKdV equation (1.9)
with nonvanishing boundary value b at infinity. Explicitly (with α, β, b ∈ R\{0} such that
α > β and ∆̃ = b2 − α2 + β2 > 0),

k̃(s, t) = b− 2
∂

∂s
arctanh

[
g̃def (s, t)
f̃def (s, t)

]
, (1.10)

where

g̃def (s, t) =
β

α

√
b2 − ∆̃

∆̃
sinh(2αs + δt) − bβ

∆̃
(cosh(2βs + γt) − sinh(2βs+ γt)),

f̃def (s, t) = cosh(2βs + γt) +
bβ

α
√

∆̃
cosh

(
2αs + δt + arctanh

(
β

α

))
, (1.11)

and γ = 8β(−3α2 − β2) + 12b2β, δ = 8α(−α2 − 3β2) + 12b2α.

With other choices of the parameters, b, β, α and with the same procedure, we obtain
different complex and regular or singular (depending on the selected parameters) solutions
of the Eq. (1.9) with nonvanishing boundary value b at infinity.

(2) We believe that there exist periodic breather solutions of the mKdV (1.1) with
nonzero mean. First results on the existence of periodic breathers were obtained by
Kevrekidis, Khare and Saxena in [13, 14]. In these works, they showed regular and sin-
gular periodic breathers for the focusing and defocusing mKdV by using suitable ansätze
with free parameters to be adjusted. Unfortunately for geometrical purposes, these peri-
odic breathers have zero mean and therefore they cannot be the curvature of a close curve.
Henceforth, at least as geometrical motivation, it is necessary to find periodic breathers
with nonzero mean which play the role of the curvature of closed curves. We base our con-
jecture about the existence of these periodic breathers with nonzero mean on the numerical
results obtained by the author in [2]. In this work, some examples of closed curves and their
numerical evolution under the geometric mKdV flow were given. The starting point to build
those close curves was to use, as initial curvature, the breathers with nonzero mean (1.6)
and (1.8) obtained in the present work.

2. Breather Solutions of the Focusing mKdV with Nonvanishing
Boundary Condition

In this section we obtain explicit real breather solutions of the focusing mKdV (1.1) with
a nonvanishing boundary condition by using the ISM for potentials that are not trivial
at infinity, as it was developed by Kawata and Inoue in [10]. We also recall the work of
Au-Yeung et al. [5], in which the same approach was used to obtain one and two soliton
solutions with nontrivial values at infinity. First of all, we summarize some basic results
from Kawata and Inoue [10] and Au-Yeung et al. [5], necessary for our research.
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2.1. Basic results of Kawata and Inoue: General

formalism for the mKdV

Kawata and Inoue considered in [10] a generalized AKNS eigenvalue problem for nonvan-
ishing potentials. The AKNS eigenvalue problem for the mKdV equation is given by the
following spatial and time evolution equations:

vs = D(λ)v, D(λ; s, t) =

( −iλ q(s, t)

r(s, t) iλ

)
, (2.1)

vt = F (λ)v, F (λ; s, t) =

(
A(λ) B(λ)

C(λ) −A(λ)

)
, (2.2)

where

A(λ) = −4iλ3 − 2iλqr + rqs − qrs,

B(λ) = 4λ2q + 2iλqs + 2q2r − qss,

C(λ) = 4λ2r − 2iλr + 2qr2 − rss,

(2.3)

and the potential q(s, t) = k(s, t) and r(s, t) = −q(s, t). Matrices D(λ) and F (λ) satisfy the
well known integrable condition associated to Eqs. (2.1) and (2.2) (i.e. ∂t (2.1)= ∂s (2.2)):

Dt − Fs +DF − FD = 0. (2.4)

They sought a real potential solution q(s, t) under the following boundary condition:

q(s, t) → b as s→ ±∞; b2 = −λ2
0, (2.5)

moreover, requiring that q(s, t) is sufficiently smooth and all the s derivatives of q tend to
zero as s → ±∞. For this purpose, they considered potentials q(s, t) and r(s, t) with the
following nonvanishing conditions:

q(s, t)(or r(s, t)) → q±(or r±) as s→ ±∞,

q+r+ = q−r− = λ2
0,

(2.6)

where q±, r± and λ2
0 are constants. Then, the spatial evolution matrix D(λ; s, t) can be

written as follows:

D(λ; s, t) = D±(λ) + ∆D±(s, t), (2.7a)

D±(λ) = lim
s→±∞D(λ; s, t) =

(
−iλ q±

r± iλ

)
, (2.7b)

∆D±(s, t) = D(λ; s, t) −D±(λ) =

(
0 q(s, t) − q±

r(s, t) − r± 0

)
, (2.7c)

1250009-6
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and the characteristic roots of D±(λ) are ±iζ, with ζ =
√
λ2 − λ2

0. Now, they defined

T±(λ, ζ) = lim
s→±∞T (λ, ζ; s), (2.8)

where

T (λ, ζ; s) =

(
−iq1(s) λ− ζ

λ− ζ ir1(s)

)
,

and q1, r1 are suitable smooth and satisfy that q1(s)r1(s) = λ2
0 for all s ∈ R. The matrices

D±(λ) can be diagonalized by T±(λ, ζ) as

D±(λ) = −iζT±(λ, ζ)σ3[T±(λ, ζ)]−1. (2.9)

Using (2.9), they could define Jost matrices Φ± as the solutions of (2.1) under conditions

Φ±(λ, ζ; s, t) → T±(λ, ζ)J(ζs) as s→ ±∞, (2.10)

where

J(ζs) =

(
e−iζs 0

0 eiζs

)
.

Then, a scattering matrix S was defined by

Φ−(λ, ζ; s, t) = Φ+(λ, ζ; s, t)S(λ, ζ; t), (2.11)

and using relations (2.2), (2.9) and (2.11) it was easy to derive the following equation:

St + SW− −W+S = 0, S|t=0 = S0, (2.12)

where S0 is given by the direct scattering, and

W± = ζσ3 ·
N∑
n=1

anλ
n−1 + i

(
a0

ζ

)( −iλ r±e2iζs

q±e−2iζs iλ

)
. (2.13)

As they indicated, the solution of (2.12) is easily obtained by integrating directly

S(λ, ζ; t) = eW
+tS0(λ, ζ)e−W

−t. (2.14)

Now, they assumed that zeros of the S11(λ, ζ; 0) matrix element in the region Im(ζ) > 0
were (λj , ζj), j = 1, 2 where

ζj =
√
λ2
j + b2, j = 1, 2, for y > s. (2.15)

Defining the scattering data by e2iθ(s) = q1(s)/r1(s), θ± = lims→±∞ θ(s), it could be seen
that the Jost functions satisfy the following equation (see [10, p. 1724] for further details)

φ+
1 (λ, s)eiζs = T (λ, s)[1 + exp(θ(∞) − θ(s))]

(
1
0

)

− 1
2πi

∫
Γ+

dλ′

λ′ − λ
ρ1(λ′)T (λ, s)T−1(λ′, s)φ+

2 (λ′, s)eiζ
′s, (2.16)
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where Φ± = (φ±1 , φ
±
2 ) and ρ1(λ′) = S21(λ, ζ)/S11(λ, ζ). Repeating the procedure, it was

possible to obtain an equation for the φ+
2 component,

φ+
2 (λ, s)e−iζs = T (λ, s)[1 + exp(−θ(∞) + θ(s))]

(
0
1

)

− 1
2πi

∫
Γ+

dλ

λ′ − λ
ρ2(λ′)T (λ, s)T−1(λ′, s)φ+

1 (λ′, s)e−iζ
′s, (2.17)

ρ2(λ′) = S12(λ, ζ)/S22(λ, ζ).

Defining the following representation about the Jost matrices

Φ±(λ, s) = T±(λ)J(λs) +
∫ s

−∞
K±(s, τ)T±(λ)J(λτ)dτ, (2.18)

and substituting (2.18) into (2.1) and (2.2), the functions K±(s, ·) satisfy the following
equations (for the shake simplicity, we drop the time dependence in K± and Hc defined
below):

∂K±

∂s
(s, y) + σ3

∂K±

∂y
(s, y)σ3 + σ3K

±(s, y)σ3[D±(λ) + iλσ3]

−
(

0 q(s, t)

−q(s, t) 0

)
K±(s, y) = 0, (2.19a)

σ3K
±(s, s)σ3 −K±(s, s) + ∆D±(λ; s, t) = 0, (2.19b)

K±(s, y) → 0 as y → ±∞, (2.19c)

where D±(λ) and ∆D±(λ; s, t) were defined by (2.7) and σ3 ≡
(

1 0
0 −1

)
. Due to the char-

acteristics in (2.19a), given the potentials q and r, there exists a solution of (2.19a) which
satisfies the conditions (2.19b) and (2.19c). Therefore, the representation (2.18) is suitable.
From (2.18), it was possible to define the following types

φ+
1 (λ, s) := T+(λ)e−iζs

(
1
0

)
+
∫ s

−∞
K+(s, τ)T+(λ)e−iζτds

(
1
0

)
, (2.20a)

φ+
2 (λ, s) := T+(λ)eiζs

(
0
1

)
+
∫ s

−∞
K+(s, τ)T+(λ)eiζτds

(
0
1

)
. (2.20b)

Substituting (2.20) in (2.16), they got an equation without Jost functions. Next applying
the integrator 1

4π

∫
B+

ei(y−s)ζ

ζ dλ (y > s) to both sides of this equation, they finally obtained
the Gelfand–Levitan integral equation

K+(s, y) ·
(

0
1

)
+H1(s+ y)

(
0
1

)
−
∫ ∞

s
K+(s, τ)H1(y + τ)dτ

(
0
1

)
= 0 (y > s), (2.21)

where H1(z) is given by

H1(z) =
1
4π

∫
Γ+

eiζz

ζ
ρ1(λ, ζ)T+(λ, ζ)dλ. (2.22)
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Now we refer to the symmetries arising in Eqs. (2.1) and (2.2)

(1) This eigenvalue problem has a proper symmetry caused by the fact that potentials do
not vanish at infinity. The matrices Φ±(λ,−ζ; s) also satisfy Eqs. (2.1) and (2.2), then
we can set

Φ±(λ, ζ; s) = Φ±(λ,−ζ; s)P±(λ, ζ), (2.23)

where P± are constant matrices given by

P±(λ, ζ) =
i

λ+ ζ

(
0 r±

−q± 0

)
. (2.24)

From Eqs. (2.11) and (2.23) we get

S(λ, ζ) = [P+(λ, ζ)]−1S(λ,−ζ)P−(λ, ζ), (2.25)

or

S11(λ, ζ) = (q−/q+)S22(λ,−ζ), S11(λ,−ζ) = (q−/q+)S22(λ, ζ),

S12(λ, ζ) = (−r−/q+)S21(λ,−ζ), S12(λ,−ζ) = −(r−/q+)S21(λ, ζ).
(2.26)

(2) The symmetries that arise in the mKdV case (r(s) = −q(s)) are

S11(λ, ζ) = S22(−λ,−ζ), S11(−λ,−ζ) = S22(λ, ζ),

S12(λ, ζ) = −S21(−λ,−ζ), S12(−λ,−ζ) = −S21(λ, ζ),
(2.27)

and also K±(s, y) has the additional property

K±(s, y) = (−σ2)K±(s, y)(−σ2), (2.28)

where the matrix σ2 is defined by

σ2 =
(

0 −i
i 0

)
. (2.29)

Now, from direct calculations as they indicated, it is possible to rewrite H1(z) as fol-
lows (quantities Hd(z),Hc(z) are called as the discrete and continuous components of H1,
respectively).

H1(z) = Hd(z) −Hc(z), Hd,c(y)
(

0
1

)
=

(
i(∂h1d,c/∂y)(y) + h2d,c(y)

ir+h1d,c(y)

)
, (2.30)

where

h1d(y) =
1
4π

∮
eiζy

ζ

S21(λ, ζ)
S11(λ, ζ)

dλ, h1c(y) =
1
4π

∫ +∞

−∞

eiζy

µ

(
S21(µ, ζ)
S11(µ, ζ)

− S21(−µ, ζ)
S11(−µ, ζ)

)
dζ,

h2d(y) =
1
4π

∮
λeiζ

ζ

S21(λ, ζ)
S11(λ, ζ)

dλ, h2c(y) =
1
4π

∫ +∞

−∞
eiζy

(
S21(µ, ζ)
S11(µ, ζ)

+
S21(−µ, ζ)
S11(−µ, ζ)

)
dζ,

µ =
√
ζ2 − λ2

0.

(2.31)
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Once we have introduced the basic concepts and tools of the ISM with NVBC by Kawata
and Inoue [10], we apply them to obtain explicit breather solutions of the mKdV (1.1) with
NVBC.

2.2. Proof of Theorem 1.1

We will follow the next steps, presented in the subsections below.

2.2.1. Gelfand–Levitan equation for the mKdV

We first calculate, from (2.13), the temporal evolution of the elements of the scattering
matrix (Sij) in the case of mKdV. For that purpose (see [10, p. 1723]), we select N = 3
and a0 = a2 = 0, a1 = 2ib2, a3 = −4i in (2.13), so that:

S11(λ, ζ; t) = S11(λ, ζ; 0), S12(λ, ζ; t) = S12(λ, ζ; 0)e−4iζ(2λ2−b2)t,

S21(λ, ζ; t) = S21(λ, ζ; 0)e4iζ(2λ
2−b2)t, S22(λ, ζ; t) = S22(λ, ζ; 0).

Now, assuming that zeros of S11(λ, ζ; 0) in the region Im ζ > 0 are given by

λj , ζj =
√
λ2
j − λ2

0, j = 1, 2, (2.32)

and the expressions (2.30) and (2.31), the Gelfand–Levitan equation (2.21) for the function
K+(s, y) is rewritten as

K+(s, y) ·
(

0

1

)
+

2∑
j=1

(
cj

c̃j

)
eiζj(s+y) −Hc(s+ y)

(
0

1

)

−
∫ +∞

s
K+(s, y′)

2∑
j=1

(
cj
c̃j

)
eiζj(y+y

′)dy′ +
∫ +∞

s
K+(s, y′)Hc(s+ y′)

(
0
1

)
dy′ = 0,

(2.33)

where

cj =
i

2
(λj − ζj)m(λj)e4iζj(2λ

2
j−b2)t, (2.34)

c̃j =
b

2
m(λj)e4iζj (2λ2

j−b2)t, (2.35)

m(λ) =
S21(λ, ζ; 0)

ζ d
dλS11(λ, ζ; 0)

. (2.36)

We rewrite (2.33) taking into account that m(−λ∗) = m(λ)∗, that (q−/q+)S11(λ, ζ) =
S11(−λ, ζ) (see [10, p. 1728]), and assuming

(a) Continuous component

Hc(y; 0) = 0. (2.37)
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(b) Zeros of S11(λ, ζ) in the region Im(ζ) > 0 are (λj , ζj) and (−λj , ζj), j = 1, 2, where

ζj =
√
λ2
j + b2, λ1 = α+ iβ, λ2 = −λ∗1 = −α+ iβ. (2.38)

Then (2.33) becomes

K+(s, y)

(
0

1

)
+

2∑
j=1

(
−iζjm(λj)e4iζj (2λ2

j−b2)t

bm(λj)e4iζj(2λ
2
j−b2)t

)
eiζj(s+y)

−
∫ +∞

s
K+(s, y′)

2∑
j=1


−iζjm(λj)e4iζj (2λ2

j−b2)t

bm(λj)e4iζj (2λ2
j−b2)t


 eiζj(y+y

′)dy′ = 0. (2.39)

We choose a representation of
(

K+
12

K+
22

)
as follows

(
K+

12(s, y)

K+
22(s, y)

)
=

2∑
j=1

(
Kj(s)

K̃j(s)

)
eiζjy, (2.40)

and the matrix K± writes as follows

K+(s, y) =

(
K+

11(s, y) K+
12(s, y)

K+
21(s, y) K+

22(s, y)

)
=

(
K+

22(s, y) K+
12(s, y)

−K+
12(s, y) K+

22(s, y)

)
. (2.41)

Now, substituting (2.40) and (2.41) into Eqs. (2.19), the potential q can be obtained as
follows

q2(s, t) = b2 − 2
dK+

22(s, s)
ds

. (2.42)

Now, taking into account the Eq. (2.40) and (2.41) in (2.39), we obtain the system (for
j = 1, 2)

Kj(s) +
2∑

n=1

Kn(s)ãj
ei(ζj+ζn)s

i(ζj + ζn)
+

2∑
n=1

K̃n(s)aj
ei(ζj+ζn)s

i(ζj + ζn)
+ aje

iζjs = 0,

K̃j(s) +
2∑

n=1

K̃n(s)ãj
ei(ζj+ζn)s

i(ζj + ζn)
−

2∑
n=1

Kn(s)aj
ei(ζj+ζn)s

i(ζj + ζn)
+ ãje

iζjs = 0,

(2.43)

where

aj = −iζjm(λj)e4iζj (2λ2
j−b2)t, ãj = bm(λj)e4iζj (2λ2

j−b2)t. (2.44)
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This system can be rewritten in a matricial form as

(
E B

−B E

) �K

�̃K


 =


 �A

�̃A


, (2.45)

where

�K =

(
K1

K2

)
, �̃K =

(
K̃1

K̃2

)
, �A =

(−a1e
iζ1s

−a2e
iζ2s

)
, �̃A =

(−ã1e
iζ1s

ã2e
iζ2s

)
,

E = (Ejn) = δjn + ãj
ei(ζj+ζn)s

i(ζj + ζn)
, j, n = 1, 2, (2.46)

B = (Bjn) = aj
ei(ζj+ζn)s

i(ζj + ζn)
, j, n = 1, 2. (2.47)

Defining the determinant of the coefficient matrix by

∆ =

∣∣∣∣∣
E B

−B E

∣∣∣∣∣ , (2.48)

and using (2.40), we obtain that the solution of the system (2.43) is

K+
22(s, s) = −1

2
d

ds
(log ∆). (2.49)

From (2.42), we remember that the mKdV solution is written as k2(s, t) = b2 −
2 d
dsK22(s, s). Inserting (2.49) into this relation, we finally obtain the expression of the mKdV

solution as

k2(s, t) = b2 +
d2(log ∆)
ds2

. (2.50)

2.2.2. Matricial expression for the breather solution of mKdV with NVBC

Now, our aim is to obtain from (2.50) an explicit expression of the focusing mKdV breather
solution k. With this goal in mind, we rewrite the determinant (2.48) in the four-dimensional
case (as it corresponds to the breather case) as a product of two simpler 2 × 2 determi-
nants. Before that, we remark the following facts about the roots (ζ1, ζ2) and the temporal
dependence of the coefficient S11 of the scattering matrix. First, recall that in the breather
case with nonvanishing boundary condition, the roots of S11(λ, ζ) are given by

ζj =
√
λ2
j + b2, j = 1, 2, λ1 = α+ iβ, λ2 = −λ∗1 = −α+ iβ. (2.51)

We express ζi, i = 1, 2 as complex numbers as

ζ1 = α̃(α, β, b) + iβ̃(α, β, b),

ζ2 = −α̃(α, β, b) + iβ̃(α, β, b),
(2.52)
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where we only consider the region Im(ζ) > 0 so that

α̃(α, β, b) = 4
√

(α2 − β2 + b2)2 + 4α2β2 cos
(

1
2

arctan
(

2αβ
α2 − β2 + b2

))
, (2.53)

β̃(α, β, b) = 4
√

(α2 − β2 + b2)2 + 4α2β2 sin
(

1
2

arctan
(

2αβ
α2 − β2 + b2

))
, (2.54)

which satisfy

α̃(α, β, 0) =
√
α2 + β2 cos

(
arctan

(
β

α

))
= Re(α+ iβ) = α,

β̃(α, β, 0) =
√
α2 + β2 sin

(
arctan

(
β

α

))
= Im(α+ iβ) = β.

Now, by using (2.52), the exponents of the temporal dependence given by (2.44) are rewrit-
ten as

4iζ1(2λ2
1 − b2) = −γ̃(α, β, b) + iδ̃(α, β, b),

4iζ2(2λ2
2 − b2) = −γ̃(α, β, b) − iδ̃(α, β, b),

(2.55)

and, again, we only consider the region Im(ζ) > 0 so that

γ̃(α, β, b) = 8β̃(3α̃2 − β̃2) − 12b2β̃, (2.56)

δ̃(α, β, b) = 8α̃(α̃2 − 3β̃2) − 12b2α̃, (2.57)

which satisfy

γ̃(α, β, 0) = 8β(3α2 − β2) = γ, (2.58)

δ̃(α, β, 0) = 8α(α2 − 3β2) = δ. (2.59)

For the sake of simplicity and without loss of generality, we rename α̃, β̃, γ̃, δ̃ as α, β, γ, δ,
respectively. Now, we are able to rewrite the determinant ∆ as a product of two simpler
2 × 2 determinants.

∆ = det((I − iM − ibN) · (I + iM − ibN))

= det(I − iM − ibN) det(I + iM − ibN)

= Re{det(I − iM(s, t) − ibN(s, t))}2 + Im{det(I − iM(s, t) − ibN(s, t))}2, (2.60)

where

I ≡ 112x2 =
(

1 0
0 1

)
,

M(s, t) =




−me2i(α+iβ)s+(−γ+iδ)t

2
i(α + iβ)me−2βs+(−γ+iδ)t

2β
i(−α+ iβ)m∗e−2βs−(γ+iδ)t

2β
−m∗e2i(−α+iβ)s−(γ+iδ)t

2


,
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N(s, t) =



me2i(α+iβ)s+(−γ+iδ)t

2(α+ iβ)
−ime−2βs+(−γ+iδ)t

2β
−im∗e−2βs−(γ+iδ)t

2β
m∗e2i(−α+iβ)s−(γ+iδ)t

2(−α+ iβ)


 .

(2.61)

Then, substituting (2.60) in (2.50), and resorting to the identity

2
∂

∂s
arctan

(
z(s)
w(s)

)
= i

∂

∂s
log
(
w(s) − z(s)
w(s) + z(s)

)
, (2.62)

we get

k2(s, t) = b2 +
d2

ds2
log

[
Re{det(I − iM(s, t) − ibN(s, t))}2

+ Im{det(I − iM(s, t) − ibN(s, t))}2
]

=


b+ i

∂

∂s
log




Re{det(I − iM(s, t) − ibN(s, t))}
− i Im{det(I − iM(s, t) − ibN(s, t))}

Re{det(I − iM(s, t) − ibN(s, t))}
+ i Im{det(I − iM(s, t) − ibN(s, t))}







2

=
(
b+ 2

∂

∂x
arctan

[
Im{det(I − iM(s, t) − ibN(s, t))}
Re{det(I − iM(s, t) − ibN(s, t))}

])2

, (2.63)

which gives directly the matricial expression for the breather solution of the focusing mKdV
with nonvanishing boundary value:

k(s, t) = b+ 2
∂

∂s
arctan

[
Im{det(I − iM(s, t) − ibN(s, t))}
Re{det(I − iM(s, t) − ibN(s, t))}

]
. (2.64)

2.2.3. Final expression for the breather solution with NVBC

We first calculate the determinant in (2.64) (we assume m = |m|eiφ):

f(s, t) + ig(s, t) ≡ det(I − iM(s, t) − ibN(s, t))

= 1 +
(

1 − b2

α2 + β2

)
α2|m|2

4β2
e−4βs−2γt + i

m

2
e2i(α+iβ)s+(−γ+iδ)t

+ i
m∗

2
e2i(−α+iβ)s−(γ+iδ)t + i

bα2|m|2
2β(α2 + β2)

e−4βs−2γt

+
b|m|

α2 + β2
e−2βs−γt(α sin(2αs + δt+ φ) − β cos(2αs + δt+ φ)), (2.65)
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so that

g(s, t) =
m

2
e2i(α+iβ)s+(−γ+iδ)t +

m∗

2
e2i(−α+iβ)s−(γ+iδ)t

+
bα2|m|2

2β(α2 + β2))
e−4βs−2γt, (2.66a)

f(s, t) = 1 +
(

1 − b2

α2 + β2

)
α2|m|2

4β2
e−4βs−2γt

+
b|m|

α2 + β2
e−2βs−γt(α sin(2αx + δt+ φ) − β cos(2αs + δt+ φ)). (2.66b)

By defining e−2ψ = (1 − b2

α2+β2 )α
2|m|2
4β2 , the expression of g andf simplifies to

g(s, t) = 2e−2βs−γt−ψ g̃(s, t), (2.67a)

f(s, t) = 2e−2βs−γt−ψ f̃(s, t), (2.67b)

where

g̃(s, t) =
β

α

√
α2 + β2

α2 + β2 − b2
cos(2αs + δt+ φ)

+
bβ

α2 + β2 − b2
(cosh(2βs + γt+ ψ) − sinh(2βs + γt+ ψ)), (2.68a)

f̃(s, t) = cosh(2βs + γt+ ψ) +
bβ

α
√
α2 + β2 − b2

sin
(

2αs + δt + φ− arctan
(
β

α

))
.

(2.68b)

Hence, the explicit expression for the breather solution of the focusing mKdV with nonva-
nishing boundary value b (or b-breather) is:

k(s, t) = b+ 2
∂

∂s
arctan

[
Im[f(s, t) + ig(s, t)]
Re[f(s, t) + ig(s, t)]

]
= b+ 2

∂

∂s
arctan

[
g̃(s, t)
f̃(s, t)

]
, (2.69)

with f̃ , g̃ given by (2.68). This completes the proof of Theorem 1.1 (up to translations in
time and space).

Remark. Note that if we take the formal limit b → 0, (2.69) reduces to the well known
breather solution (1.2) of the focusing mKdV equation (see Wadati [20], up to translations
in time and space).

Once proved the main result, it is possible to obtain the generalization with a non-
vanishing boundary value at infinity of the double pole solution presented by M. Wadati
et al. [17].

Proof of Corollary 1.2. First of all, perform the translation ỹ = y − arctan(βα ), where
y = 2αs + δt + φ is the argument of the oscillatory functions in (2.68), and calculate the
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formal limit α→ 0. Then, the generalization of the double pole solution presented by Wadati
et al. [17] is given by the explicit formula

k(s, t) = b+ 2
∂

∂s
arctan

(
G̃(s, t)
F̃ (s, t)

)
, (2.70)

where

G̃(s, t) =
β(1 − 2β(s − 6(2β2 + b2)t))√

β2 − b2
+
bβ (cosh(y) − sinh(y))

β2 − b2
,

F̃ (s, t) = cosh(y) +
2bβ(s − 6(2β2 + b2)t))√

β2 − b2
, y = β(2s − 4(2β2 + 3b2)t).

Taking into account the point-wise convergence of (2.70) to b when time goes toc t → +∞,
it is possible to guess its asymptotic form at the mentioned limit, which is

k(s, t) ≈ b+
2β2√
β2 + b2

sech(y − δ+) − 2β2√
β2 + b2

sech(y − δ−), (2.71)

with

δ± = β log

(
12β

(
β2 − b2

β2 + b2

)± 1
2

(4β2 + 2b2)t

)
. (2.72)

The phases δ± determine how evolves the distance between the soliton and the antisoliton
of (2.70).

3. Summary and Remarks

In this paper we have obtained the breather solution of the focusing mKdV equation with
nonvanishing boundary condition at infinity (2.69) by using the inverse scattering method
for potentials that are not trivial at infinity as it was devised by Kawata and Inoue in [10].
As far as we know, it has not been reported before a systematic work on the obtention of
this kind of breather solutions of mKdV under the ISM. These solutions play an important
role in the construction of closed curves with localized perturbations, which evolve under
the mKdV flow of curves (see [2]). We have also generalized the double pole solution found
by Wadati et al. [17] to the case when it takes nontrivial values b at infinity. We have
shown that even in this generalization, the distance between humps grows proportionally to
log(t), as the formula (2.72) shows. Moreover, the associated closed curve to this (double pole
curvature) solution is a closed curve with two loops. These two loops enclose asymptotically
the same area, they point in- and outward respectively the closed curve, travel in the same
direction and the distance between them grows slowly (proportionally to log(t) as t goes
to ∞) (see [2]). We think that the asymptotic property (2.72) could be useful to check
the accuracy of numerical methods (e.g. difference and pseudo spectral methods) for t big
enough, as it was shown in Alejo, Gorria and Vega [3] when b = 0.

cThe case t → −∞ is equivalent.
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