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A classical Korteweg capillarity system with a Kármán-Tsien type (κ ,ρ) constitutive relation is shown, via a
Madelung transformation and use of invariants of motion, to admit integrable Hamiltonian subsystems.

1. Introduction

The Kármán-Tsien pressure-density (p, ρ) model law

p = A+
C
ρ

, (1.1)

where A, C are appropriate parameters has been widely used historically to approximate real gas
behaviour in both subsonic and supersonic gasdynamics (see e.g. Tsien [48], von Kármán [15], von
Mises [27] and Coburn [6]). In particular, the classical hodograph equations of planar gasdynamics
may be reduced to Cauchy-Riemann canonical form under such a law. This important reduction
may be set in the broader context of work by Loewner [23,24] whereby reduction of the hodograph
equations to appropriate canonical form is obtained via the systemic application of Bäcklund trans-
formations [31]. The class of infinitesimal Bäcklund transformations applied in subsonic régimes
in [24], under re-interpretation and extension results in a linear representation for a 2+1-dimensional
master soliton system [16–18].

In classical Korteweg capillarity theory [19] the free energy adopts the form

E =
1
2

κ(ρ)|∇ρ|2 + K
ρ

, (1.2)

where ρ is the liquid density and K is an arbitrary constant. In recent work, interest has arisen in
model capillarity laws of the type [4, 5]

κ = A+
C
ρ

. (1.3)

In analogy with (1.1), we here term these Kármán-Tsien capillarity laws. It turns out that, as in the
gasdynamic case, such Kármán-Tsien laws are privileged in that, in the capillarity context they are
here shown to lead to integrable reductions of the Korteweg system.
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2. The Capillarity System

The classical Korteweg inviscid capillarity system [19]

∂ρ
∂ t

+div(ρv) = 0 ,

∂v
∂ t

+v ·∇v−∇[ Π(ρ)+κ(ρ)∇2ρ +
1
2

κ ′(ρ)|∇ρ |2 ] = 0 ,

(2.1)

has been the subject of recent research interest (see e.g. [4,5,20,21,26] and references cited therein).
It is remarked that the system (2.1) may be set in the more general context of the isothermal, inviscid
capillarity system derived ab initio by Antanovskii [1], namely

∂ρ
∂ t

+div(ρv) = 0 ,

∂v
∂ t

+v ·∇v+∇ [
δ (ρ E )

δρ
−Π ] = 0 ,

(2.2)

where v is the velocity and E (ρ ,α) with α = 1
2 |∇ρ|2 is the specific free energy. Here,

δΦ
δρ

:=
∂Φ
∂ρ

−∇ [
∂Φ
∂α

∇ρ ] (2.3)

and Π denotes an external potential. The quantity

ζ =
δ

δρ
[ ρ E ] (2.4)

is the chemical potential of the system.
The Korteweg system (2.1), by virtue of (1.2), arises as the specialisation

E (α,ρ) = κ(ρ)
α
ρ
+

K
ρ

, (2.5)

in the capillarity system (2.2). The canonical Boussinesq capillarity system, in turn, is obtained as
the particular case with κ constant in the Korteweg model. An analogous system arises mutatis
mutandis in plasma physics [3].

If the irrotational constraint v = ∇Φ is imposed (c.f. Antanovskii [1]) then the momentum equa-
tion (2.2)2 admits the Bernoulli integral

∂Φ
∂ t

+
1
2
|∇Φ|2 + δ

δρ
(ρ E )−Π = B(t) (2.6)

where B(t) may be absorbed into the potential Φ without loss of generality, while the equation of
continuity becomes

∂ρ
∂ t

+∇ρ ·∇Φ+ρ ∇2Φ = 0 . (2.7)

On introduction of the Madelung transformation [25]

Ψ = ρ1/2 exp
(

iΦ
2

)
, (2.8)
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it is seen that the capillarity system (2.6)−(2.7) may be embodied in the NLS-type equation

i
∂Ψ
∂ t

+∇2Ψ+[
−∇2|Ψ|
|Ψ|

− 1
2

δ (ρ E )

δρ
+

Π
2
] Ψ = 0 (2.9)

which incorporates a de Broglie-Bohm potential type term
∇2|Ψ|
|Ψ|

.

In previous work, integrable 1+1-dimensional reductions of (2.9) for particular capillarity mod-
els have been obtained both to the standard cubic nonlinear Schrödinger (NLS) equation in [2]
and to its ‘resonant’ counterpart in [35]. In 2+1-dimensions, with appropriately ‘driven’ Π cou-
pled to the momentum equation (2.2)2, integrable capillarity models may be isolated which lead
to the Davey-Stewartson I system [36] or a novel ‘resonant’ Davey-Stewartson system originally
introduced in [37] and subsequently investigated in [22, 41].

Here, our concern is with the Korteweg capillarity system (2.1) with associated NLS-type equa-
tion under the Madelung transformation (2.8), given by

i
∂Ψ
∂ t

+∇2Ψ+

[
−∇2|Ψ|
|Ψ|

+
1
2
( κ(ρ)∇2ρ +

1
2

κ ′(ρ)(∇ρ)2 )+
Π
2

]
Ψ = 0 , (2.10)

that is,

i
∂Ψ
∂ t

+∇2Ψ+

[
−(1+κ ′(ρ)ρ2)

∇2|Ψ|
|Ψ|

+
1
2
( κ(ρ)+κ ′(ρ)ρ )∇2|Ψ|2 + Π

2

]
Ψ = 0 , (2.11)

on use of the relation

∇2ρ1/2

ρ1/2 =
1

2ρ
∇2ρ − 1

4

(
∇ρ
ρ

)2

(2.12)

with ρ = |Ψ|2. The nonlinear NLS equation (2.11) is not integrable in general. However, it will be
seen for a plane wave packet ansatz to admit an integrable Hamiltonian reduction if a ‘Kármán-
Tsien’ type constitutive law of the type (1.3) is adopted. Moreover, in 2+1-dimensions, an elliptic
vortex ansatz leads to a remarkable reduction to an integrable Ermakov-Ray-Reid subsystem.

3. A Plane Wave Integrable Hamiltonian Reduction

Here, a plane wave ansatz

Ψ = [ ϕ ( k · r−µt )+ i ψ ( k · r−µt ) ]exp i ( h · r−λ t ) (3.1)
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is introduced where k = (k1,k2,k3), h = (h1,h2,h3) are constant vectors and r = (x,y,z). Substitu-
tion into the NLS-type equation (2.11) associated with the Korteweg capillarity system yields:

|k|2ϕ̈ +( λ −|h|2 ) ϕ − ( 2k ·h−µ ) ψ̇ +

[
−|k|2( 1+κ ′(ρ)ρ2 )

{
(ϕϕ̇ +ψψ̇ )•

ϕ 2 +ψ2

−
(

ϕϕ̇ +ψψ̇
ϕ 2 +ψ2

)2
}
+ |k|2(κ(ρ)+κ ′(ρ)ρ )( ϕϕ̇ +ψψ̇ )•+

Π
2

]
ϕ = 0 ,

|k|2ψ̈ +( λ −|h|2 ) ψ +( 2k ·h−µ ) ϕ̇ +

[
−|k|2( 1+κ ′(ρ)ρ2 )

{
(ϕϕ̇ +ψψ̇ )•

ϕ 2 +ψ2

−
(

ϕϕ̇ +ψψ̇
ϕ 2 +ψ2

)2
}
+ |k|2(κ(ρ)+κ ′(ρ)ρ )( ϕϕ̇ +ψψ̇ )•+

Π
2

]
ψ = 0

(3.2)

where all dots indicate a derivative with respect to the argument k · r− µt. The nonlinear coupled
system (3.2) is readily seen to admit the dynamical invariant

ϕ̇ψ − ψ̇ϕ − 1
2|k|2

( 2k ·h−µ )( ϕ 2 +ψ2 ) = I . (3.3)

This integral of motion for the system (3.3) may be contrasted with that characteristic of Ermakov-
Ray-Reid systems [29, 30, 33, 34, 38–40, 42–44, 47] which admit an invariant of the type

1
2
( ϕ̇ψ − ψ̇ϕ )2 + Ē ( ϕ/ψ ) = I . (3.4)

Extended Ermakov-Ray-Reid systems with characteristic invariants which subsume both of the
types (3.3) and (3.4) have recently been introduced in [45]. Here, in addition,

|k|2 ( ϕ̈ ϕ̇ + ψ̈ψ̇ )+
1
2
[ λ −|h|2 + Π

2
] Σ̇

−|k|2 ( 1+κ ′(ρ)ρ2 )[
1
4

Σ̈Σ̇
Σ

− 1
8

Σ̇3

Σ2 ]+
|k|2

4
( κ(ρ)+κ ′(ρ)ρ ) Σ̈ Σ̇ = 0 ,

(3.5)

whence, subject to the Kármán-Tsien type relation (1.3), a second dynamical invariant is obtained,
namely the Hamiltonian

H =
1
2
[ ϕ̇ 2 + ψ̇2 +

1
|k|2

( λ −|h|2 )Σ+
1

2|k|2
∫

Π(Σ)d Σ

−1
4
( 1−C )

Σ̇2

Σ
+

A
4

Σ̇2 ]

(3.6)

where Σ = ϕ 2 +ψ2 is the squared wave amplitude and here it is assumed that Π = Π(Σ) .
The pair of invariants (3.3) and (3.6) now allow reduction of the nonlinear coupled system (3.2)

for ϕ , ψ to quadrature. Thus, use of the identity

( ϕ 2 +ψ2 )( ϕ̇ 2 + ψ̇2 )− ( ϕ̇ψ − ψ̇ϕ )2 ≡ ( ϕϕ̇ +ψψ̇ )2 (3.7)
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shows that

Σ [ 2H − 1
|k|2

(λ −|h|2) Σ− 1
2|k|2

∫
Π(Σ)d Σ+

1
4
( 1−C )

Σ̇2

Σ
− A

4
Σ̇2 ]

−[ I +
1

2|k|2
( 2k . h−µ )Σ ]2 =

1
4

Σ̇2 .

(3.8)

Hence, if Π = −ρ g, corresponding to gravitational action, the squared amplitude Σ is determined
by

Σ [ 2H − 1
|k|2

(λ −|h|2)Σ+
g

4 |k|2
Σ2 ]

− [ I +
1

2 |k|2
( 2k . h−µ )Σ ]2 =

1
4

˙̄Σ2 [ AΣ+C ] .

(3.9)

If we now set Σ∗ ≡ AΣ+C, (A ̸= 0) then (3.9) reduces to the form

Σ̇∗2 Σ∗ = α Σ∗3 +β Σ∗2 + γ Σ∗+δ , α ̸= 0 (3.10)

whence ∫ √ Σ∗

α Σ∗3 +β Σ∗2 + γ Σ∗+δ
d Σ∗ = t . (3.11)

With u = Σ∗−1, (3.11) yields

−
∫ du√

δu5 + γu4 +βu3 +αu2
= t (3.12)

and the integral therein, can be evaluated in terms of the canonical elliptic integrals of the 1st and
2nd kind, namely

F (φ ,k ) =
∫ φ

0

d α√
1− k2 sin2 α

= sn−1(sinφ,k) (3.13)

and

E (φ ,k ) =
∫ φ

0

√
1− k2 sin2 α d α =

∫ φ

0
dn2 vdv (3.14)

(see Gradshtyn and Ryzhnik [12]). The nature of the solution in terms of these elliptic integrals
depends critically on the parametric values of α, β , γ, δ .

The variable ∆ is now introduced according to

∆ =
ϕ
ψ

(3.15)

whence, the Wronskian relation (3.3) shows that

d
dt

[ tan−1 ∆ ] =
1
Σ
[ I +

1
2 |k|2

( 2k . h−µ )Σ ]
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so that

∆ = tan [
1

2 |k|2
( 2k . h−µ ) t +I

∫ 1
Σ

dt ] . (3.16)

The original quantities ϕ ,ψ are now given by

ϕ =±∆
√

Σ
1+∆2 , ψ =±

√
Σ

1+∆2 . (3.17)

4. An NLS Reduction under the Kármán Tsien Type Law

With the Kármán-Tsien type constitutive relation (1.3), the NLS equation (2.11) becomes

i
∂Ψ
∂ t

+∇2Ψ+[ −(1−C)
∇2|Ψ|
|Ψ|

+
A
2

∇2|Ψ|2 + Π
2
]Ψ = 0 , (4.1)

and, on setting Ψ = eR−iS where R, S are real, this decomposes into the coupled nonlinear system

St +C [ ∇2R+(∇R)2 ]− (∇S )2 +A [ ∇2R+2(∇R)2 ]− 1
2

Π = 0 ,

Rt −∇2S−2(∇R) . (∇S ) = 0 .

(4.2)

If C> 0, then on introduction of new variables according to

t̃ = C1/2 t , S̃ = C−1/2 S ,

R̃ = R
(4.3)

it is seen that the system (4.2) is reduced to the canonical form

S̃t̃ +∇2R̃+(∇ R̃)2 − (∇ S̃ )2 +
A
C

[ ∇2R̃+2(∇R̃)2 ]− 1
2C

Π = 0 (4.4)

associated with a reduced NLS-type equation with the de-Broglie Bohm potential term removed,
namely

i
∂Ψ̃
∂ t̃

+∇2Ψ̃+[
Ã
2

∇2|Ψ̃|2 + Π̃
2
]Ψ̃ = 0 (4.5)

where Ψ̃ = eR̃−iS̃ and Ã = A/C, Π̃ = Π/C. The preceding reduction extends to 3+1-dimensions a
result originally obtained in the 1+1-dimensional case by Pashaev and Lee [28]. It is noted that, in
recent work Carles et al [5] investigated the system

∂ρ
∂ t

+div(ρ v) = 0 ,

∂v
∂ t

+v ·∇v−∇Π(ρ) =
ε2

2
∇
(

∇2√ρ
√ρ

) (4.6)

corresponding to the special case of the Kármán-Tsien law with

κ =
ε2

4ρ
(4.7)

so that C =
ε2

4
> 0 and accordingly the de Broglie-Bohm potential term in the associated NLS

equation obtained via the Madelung transformation, may be removed via the transformation (4.3).
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5. An Elliptic Vortex Reduction to an Integrable Ermakov-Ray-Reid System

Here, we consider the Korteweg system (2.11) with the Kármán-Tsien type capillarity law [5]

κ =
C
ρ

(5.1)

so that the governing equations become

∂ρ
∂ t

+div(ρ v) = 0 ,

∂v
∂ t

+v ·∇v−∇[Π(ρ)+2C
∇2ρ1/2

ρ1/2 ] = 0 .

(5.2)

Thus, it is seen that the presence of capillarity here just contributes to the incorporation of a de
Broglie-Bohm type potential in the momentum equation. It is remarked that the capillarity system
(5.2) with such a Kármán-Tsien type law has recently been investigated by Benzoni-Gavage [4] in
a recent study of the propagation of planar capillary waves.

Integrable nonlinear dynamical subsystems of (5.2) are sought corresponding to 2+1-
dimensional elliptic vortex motions with

v = L(t)x+M(t) ,

ρ = σ(t)exp[ xT E(t)x ]
(5.3)

where

x =

(
x−q(t)

y− p(t)

)
(5.4)

and

L(t) =

(
u1(t) u2(t)

v1(t) v2(t)

)
, E(t) =

(
a(t) b(t)

b(t) c(t)

)
, M =

(
q̇(t)

ṗ(t)

)
. (5.5)

Here, we proceed with the pure capillarity case in the absence of an external loading term Π such
as that due to gravity.

Insertion of the ansatz (5.1) into the capillarity system (5.2) produces the nonlinear coupled
2×2 matrix subsystem

Ė+EL+LT E = 0 , (5.6)

L̇+L2 −4CE2 = 0 (5.7)

together with

σ̇ +( trL)σ = 0 (5.8)

and

p̈ = q̈ = 0 . (5.9)

where here, and in what follows, a dot indicates a derivative with respect to time t.
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In the sequel, it is convenient to introduce new variables according to

G = u1 + v2 , GR =
1
2
(v1 −u2) ,

GS =
1
2
(v1 +u2) , GN =

1
2
(u1 − v2) ,

B = a+ c , BS = b , BN =
1
2
(a− c) ,

(5.10)

whence, the system (5.6)−(5.7) yields

Ḃ+BG+4(BNGN +BSGS ) = 0 ,

ḂS +BSG+GSB−2BNGR = 0 ,

ḂN +BNG+BGN +2BSGR = 0 ,

Ġ+
1
2

G2 +2(G2
S +G2

N −G2
R )−8C(

B2

4
+B2

N +B2
S ) = 0 ,

ĠR +GGR = 0 ,

ĠS +GGS −4CBBS = 0 ,

ĠN +GGN −4CBBN = 0 ,

(5.11)

while (5.8) gives that

σ̇ +Gσ = 0 . (5.12)

On introduction of Ω via

G =
2Ω̇
Ω

, (5.13)

(5.11)5 and (5.12) in turn, yield

GR = c0 Ω−2 , σ = cI Ω−2 (5.14)

where c0, cI are arbitrary constants of integration.
In terms of new modulated variables

B̄ = Ω2B , B̄S = Ω2BS , B̄N = Ω2BN ,

ḠS = Ω2GS , ḠN = Ω2GN

(5.15)
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the residual six equations of the nonlinear system (5.11) reduce to

˙̄B+4( B̄NḠN + B̄SḠS )/Ω2 = 0 ,

˙̄BS +( B̄GS −2c0B̄N )/Ω2 = 0 ,

˙̄BN +( B̄GN +2c0B̄S )/Ω2 = 0 ,

˙̄GS −4CB̄B̄S/Ω2 = 0 ,

˙̄GN −4CB̄B̄N/Ω2 = 0

(5.16)

together with

Ω3Ω̈− c2
0 + Ḡ2

S + Ḡ2
N −C( B̄2 +4B̄2

S +4B̄2
N ) = 0 . (5.17)

Combination of (5.16)1−(5.16)3 and integration produces the invariant relation

B̄2
S + B̄2

N − B̄2

4
= cII (5.18)

while, similarly, (5.16)4 and (5.16)5 together produce the integral of motion

Ḡ2
S + Ḡ2

N +CB̄2 = cIII (5.19)

In what follows, we proceed with the particular parametrisation of the relations (5.18) and (5.19)
with

B̄S =−
√

cII + B̄2/4 cosϕ(t) , B̄N =−
√

cII + B̄2/4 sinϕ(t) ,

ḠS =−
√

cIII −C B̄2 sinθ(t) , ḠN =
√

cIII −C B̄2 cosθ(t) .

(5.20)

Thus,

B̄SḠS + B̄NḠN =
√

cII + B̄2/4
√

cIII −CB̄2 sin(θ −ϕ) , (5.21)

so that (5.16)1 yields

˙̄B+
4

Ω2

√
cII + B̄2/4

√
cIII −CB̄2 sin(θ −ϕ) = 0 . (5.22)

Conditions (5.16)2,3 reduce to a single requirement, namely√
cII + B̄2/4( ϕ̇ +

2c0

Ω2 )− B̄
Ω2

√
cIII −CB̄2 cos(θ −ϕ) = 0 , (5.23)

while (5.16)4,5 reduce to the single relation

θ̇
√

cIII −CB̄− 4CB̄
Ω2

√
cII + B̄2/4 cos(θ −ϕ) = 0 . (5.24)

At this stage, we state the following result which is readily validated by symbolic computation:
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Theorem 5.1.

Ṁ =−2GM (5.25)

and

Ṅ =−2GN (5.26)

where

M = au2 +b(v2 −u1)− cv1 (5.27)

and

N =−a(u2
2 + v2

2)+2b(u1u2 + v1v2)− c(u2
1 + v2

1)+4∆−4C∆(a+ c) (5.28)

with

∆ = ac−b2 =− 1
Ω4 [ B̄

2
S + B̄2

N − 1
4

B̄2 ] =− cII

Ω4 . (5.29)

The relation (5.25) may now be employed to obtain the explicit solution of (5.22). Thus, (5.25)
together with (5.13) show that, on integration

M = [−c0B̄+2( B̄NḠS − B̄SḠN ) ]Ω−4 = cIVΩ−4 (5.30)

whence, since

B̄NḠS − B̄SḠN =
√

cII + B̄2/4
√

cIII −CB̄2 cos(θ −ϕ) , (5.31)

it is seen that

c0B̄ =−cIV +2
√

cII + B̄2/4
√

cIII −CB̄2 cos(θ −ϕ) . (5.32)

Elimination of cos(θ −ϕ) in (5.23) and (5.24) by means of (5.32) now shows that

ϕ̇ =
2

Ω2

[
B̄(c0B̄+ cIV)

B̄2 +4cII
− c0

]
(5.33)

and

θ̇ =

(
2CB̄
Ω2

)
c0B̄+ cIV

cIII −CB̄2 . (5.34)

A second key result stated below is embodied in:

Theorem 5.2.

( ¨Ω2B̄) =−2(N −4∆)Ω4 . (5.35)

The relation (5.35) in the above is readily validated by symbolic computation and has an analog
in the theory of the evolution of elliptical ocean warm-core eddies ([8, 14, 32]).
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Substitution of (5.13) into (5.26) and integration shows that

N = cVΩ−4 (5.36)

whence (5.35) becomes, in view of (5.29),

( ¨Ω2B̄)+2(cV +4cII ) = 0 . (5.37)

On elimination of θ −ϕ in (5.22) via the relation (5.32) and use of (5.37) is seen that, B̄ is given
by the elliptic integral relation∫ B̄

cVIII

dσ̄
σ̄
√

(σ̄2 +4cII)(cIII −Cσ̄ 2)− (c0σ̄ + cIV)2
=±2

∫ t

0

dτ
−(cV +4cII)τ2 + cVIτ + cVII

. (5.38)

Here, B̄|t=0 = cVIII and B̄ is assumed non-constant. Once B̄ has been obtained, Ω is given by the
relation

Ω2 = [−(cV +4cII) t2 + cVIt + cVII ]/B̄ (5.39)

while ϕ(t) and θ(t) are obtained by integration, in turn, of (5.33) and (5.34).
The matrices L(t) and M(t) is the original ansatz (5.3) are now given by

L =
1

Ω2

ΩΩ̇+
√

cIII −CB̄2 cosθ −(c0 +
√

cIII −CB̄2) sinθ

c0 −
√

cIII −CB̄2 sinθ ΩΩ̇−
√

cIII −CB̄2 cosθ

 (5.40)

and

E =
1

Ω2


B̄
2
−
√

1
4

B̄2 + cII sinϕ −
√

cII +
1
4

B̄2 cosϕ

−
√

cII +
1
4

B̄2 cosϕ
B̄
2
+

√
1
4

B̄2 + cII sinϕ

 (5.41)

while σ is given by (5.14)2 and p, q by (5.9).
It is noted that an analogous parametrization procedure may be employed mutatis mutandis

when B̄ = const.

6. An Ermakov-Ray-Reid Connection

Here, it is established that the governing nonlinear system (5.6)−(5.7) has a remarkable Ermakov-
Ray-Reid connection. Moreover, the system is shown to be Hamiltonian.

It proves convenient to introduce the quantities

Φ = Ω
√√√√ σ

(B2
N +B2

S)
1/2 − B

2

= Ω
√√√√ cI

(cII +
B̄2

4
)1/2 − B̄

2

(6.1)

and

Ψ = Ω
√√√√ σ

−(B2
N +B2

S)
1/2 − B

2

= Ω
√√√√ cI

−(cII +
B̄2

4
)1/2 − B̄

2

(6.2)
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where it is assumed that B̄ < 0 and cI > 0. Thus,

Φ
Ψ

=
−1√
−cII

[
B̄
2
+

√
cII +

B̄2

4

]
(6.3)

whence,

B̄ =−
√
−cII

(
Φ
Ψ

+
Ψ
Φ

)
. (6.4)

The relation (6.3) shows that

ΨΦ̇− Ψ̇Φ =
cIΩ2 ˙̄B

2
√

−cII(B̄2 + cII)
≡ Z(Φ/Ψ) (6.5)

where it is noted that, by virtue of the relation (5.32), θ −ϕ is dependent only on B̄. Moreover,

Φ2 +Φ2 =

(
cI

cII

)
Ω2B̄ =

(
cI

cII

)
[−(cV +4cII) t2 + cVI t + cVII ]≡ T (t) , (6.6)

so that, on use of the identity

(Φ̇2 + Ψ̇2)(Φ2 +Ψ2)− (ΨΦ̇− Ψ̇Φ)2 ≡ (ΦΦ̇+ΨΨ̇)2 (6.7)

it is seen that

ΦΦ̈+ΨΨ̈ =
T̈
2
− 1

Φ2 +Ψ2 [Z
2(Φ/Ψ)+

Ṫ 2

4
] (6.8)

while (6.6) yields

ΨΦ̈− Ψ̈Φ =
1

Ψ2 Z′(Φ/Ψ)Z(Φ/Ψ) . (6.9)

The relations (6.8) and (6.9) together show that Φ, Ψ are governed by

Φ̈+[
Ṫ 2

4(Φ2 +Ψ2)2 −
T̈

2(Φ2 +Ψ2)
]Φ =

1
Φ2Ψ

[
Z(Φ/Ψ)Z′(Φ/Ψ)

[1+(Ψ/Φ)2 ]
−
(

Ψ
Φ

)
Z2(Φ/Ψ)

[1+(Ψ/Φ)2 ]2

]
,

Ψ̈+[
Ṫ 2

4(Φ2 +Ψ2)2 −
T̈

2(Φ2 +Ψ2)
]Ψ =

1
Ψ2Φ

[
−
(

Φ
Ψ

)
Z2(Φ/Ψ)

[1+(Φ/Ψ)2 ]2
− Z(Φ/Ψ)Z′(Φ/Ψ)

[1+(Ψ/Φ)2 ]

]
(6.10)

which, on use of (6.6), reduces to the Ermakov-Ray-Reid system

Φ̈ =
1

Φ2Ψ

[
Z(Φ/Ψ)Z′(Φ/Ψ)

[1+(Ψ/Φ)2 ]
− Ψ

Φ
(Z2(Φ/Ψ)+C)
[1+(Ψ/Φ)2 ]2

]
=

1
Φ2Ψ

F(Φ/Ψ) ,

Ψ̈ =
1

Ψ2Φ

[
−Φ

Ψ
(Z2(Φ/Ψ)+C)
[1+(Φ/Ψ)2 ]2

− Z(Φ/Ψ)Z′(Φ/Ψ)

[1+(Ψ/Φ)2 ]

]
=

1
Ψ2Φ

G(Ψ/Φ)

(6.11)

where

C=
1
4

(
cI

cII

)2

[c2
VI +4(cV +4cII)cVII ] . (6.12)
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Moreover, the relations (6.5), (6.6) and the identity (6.7) together show that

Φ̇2 + Ψ̇2 =
1

Φ2 +Ψ2 [Z
2(Φ/Ψ)+

Ṫ 2

4
] , (6.13)

whence it is seen that the Ermakov-Ray-Reid system (6.11) is Hamiltonian with

Φ̇2 + Ψ̇2 − 1
Φ2 +Ψ2 [Z

2(Φ/Ψ)+C ] = H , (6.14)

where

H =

(
cI

cII

)
(cV +4cII) . (6.15)

Ermakov-Ray-Reid systems with underlying Hamiltonian structure are readily integrated in the
manner described in [38]. It is remarked that such Ermakov-Ray-Reid systems are ubiquitous in
nonlinear optics ([7, 9–11, 13, 14, 49]).
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