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We study a model for the wind-induced current field of the Pacific ocean in order to demonstrate that currents
in the surface layer are carried down to the deepest regions above the abyssal sea floor, which indicates the
existence of the phenomenon of comparably strong currents in bottom regions as a result of wind-stress forces
at the surface, also known as benthic storms.
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1. Introduction

A longtime assumption in oceanography was that the water in the benthic boundary layer (BBL)
above the abyssal sea floor, which develops as a result of friction at the bed, would be rather still.
Former theory of the BBL with focus on mean-flow properties relied on models assuming hori-
zontally homogeneous stationary currents (see [3, 8]). The consideration of such models stemmed
from the insufficient availability of empirical data for the hydrodynamics (but also the chemical
and biological processes, etc. and their interactions) in the BBL, due to its inaccessibility in the
open ocean. The perception changed fundamentally as a consequence of observations that have
been made during long term projects such as the High Energy Benthic Boundary Layer Experiment
(HEBBLE Program), which was primarily initiated for practical reasons such as the extraction of
minerals from the see floor, anti submarine defense, navigation, the selection of waste burial sites,
etc. It turned out that the BBL is not static at all. There are dramatic velocity increases in the ben-
thic current, which occur periodically, the so-called benthic storms. Their importance springs from
the fact that they stir up bottom sediments, which are then captured and transported over large dis-
tances by weaker but stable currents. Unlike the stationary weak currents, benthic storms seem to
be controlled not only by forces resulting e.g. from thermohaline and tidal phenomena (also the
Coriolis force plays a role in equatorial regions), but results from wind-stress at the surface layer,
which is carried down to the BBL via mesoscale eddies having diameters up to 200km. This wind-
driven mechanism as origin of benthic storms particularly applies to equatorial regions in the Pacific
(see [9]); there are regions where wind plays no or merely a minor role in the generation of benthic
storms (see [11]).

The purpose of these notes is to prove - on the basis of a simple (static) model - that wind-stress
forces at the surface indeed propagate down to the sea floor and thus may generate benthic storms.
Let us point out, that such a basic model is not capable to describe the complex dynamics of the
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currents in the BBL. However it tells us that currents at the surface layer influence the flow in deep
regions directly above the bottom.

2. A note on currents in the equatorial region

Our considerations rely on a linear eddy viscosity model in [4] for the wind-induced current field
of the Pacific ocean in the equatorial region, where stratification is greater than anywhere else in
the ocean (see [6]): a sharp thermocline separates a shallow water layer of warm water from a deep
layer of colder water with higher density. The fluid domain, sketched in figure 1, consists of the
subsurface layer

U1 := {(x,z) ∈ R2 : −h < z < 0}

with constant water density ρ between the water surface {(x,z) ∈ R2 : z = 0} and the thermocline
{(x,z) ∈ R2 : z =−h} (with h > 0), and a deep layer

U2 := {(x,z) ∈ R2 : −d < z <−h}

beneath the thermocline and above the flat bottom {(x,z) ∈ R2 : z = −d} (with d > h) having a
slightly higher density ρ(1+ r) for some fixed r > 0.

U1

U2

Uε

z = −d

z = −h

z = 0

Fig. 1. The two layers are separated by the thermocline at a depth of roughly 120m. Most parts of the sea floor in the
Pacific ocean are indeed flat, located at depths exceeding 3500m; so-called abyssal plains.
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We consider the linearized equations for a steady state flow with a vanishing vertical-fluid-
velocity component in the f -plane approximation for both frictional layers. That is, presume

0 =− 1
ρ

Px +(νuz)z, (2.1)

−2Ωu =− 1
ρ

Pz −g, (2.2)

ux = 0 (2.3)

throughout U1, and accordingly we require

0 =− 1
ρ(1+ r)

Px +(νuz)z, (2.4)

−2Ωu =− 1
ρ(1+ r)

Pz −g, (2.5)

ux = 0 (2.6)

to hold within the deep layer U2. The two unknowns - the velocity field u and the pressure P - are
assumed to be smooth within U1 ∪U2. The depth dependent viscosity parameter ν = ν(z) is given.
It is smooth throughout

U :=U1 ∪U2 ∪{z =−h},

positive and away from zero; in [5] it is suggested to take a suitable exponential decay to some
small positive value as a good approximation for ν . The constants g and Ω denote the gravitational
constant and the rotational speed of the earth around the polar axis toward the east.

In addition to equations (2.1)-(2.6) we consider the following boundary conditions. We impose
a no-slip condition on the bottom, a vanishing vorticity of the velocity field on the thermocline and a
constant atmospheric pressure on the surface. Furthermore we assume the velocity and the pressure
to be continuous across the thermocline:

u = 0 on z=-d, (2.7)

uz = 0 on z=-h, (2.8)

P = Patm on z=0, (2.9)

u,P ∈ C (U). (2.10)

The proposition below tells us that an absence of currents in regions above the sea floor would
imply zero current up to the water surface. Let us denote such a bottom region by

Uε := {(x,z) ∈ R : −d ≤ z <−d + ε}; (2.11)

c.f. figure 1.

Proposition 2.1. Assume that there is some region Uε above the bottom where the velocity field u
vanishes. Then u is identically zero from the bottom to the surface.

Proof. We have that (νuz)zz = 0 in U1 ∪U2. In order to see this, we differentiate (2.2) with respect
to x first, and use (2.3) to infer that Pzx = 0 in U1. The claim follows by differentiating (2.1) with
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respect to z and exploiting the smoothness of P in U1:

0 = Pzx = Pxz = (νuz)zz in U1.

Analogously we get that (νuz)zz = 0 in U2. Therefore, νuz = A2z+B for A,B ∈ R, and by (2.8) we
find that

νuz = A2(z+h) in U2.

Since u ≡ 0 in Uε , we find that A2 = 0, hence uz = 0 in U2 and from (2.7) and (2.10) we infer that

u ≡ 0 in U2. (2.12)

We may now infer from (2.4) and (2.5) that Px ≡ 0 and Pz =−gρ(1+ r), thus

P(x,z) =−ρ(1+ r)gz+C2

in U2 for some constant of integration C2 ∈ R.
Similarly we find that

νuz = A1(z+h) in U1 (2.13)

for some A1 ∈ R. Therefore (2.9), (2.10) and (2.12) imply that

u(z) =
∫ z

−h

A1(ξ +h)
ν(ξ )

dξ

for −h ≤ z ≤ 0.
We obtain from (2.1) and (2.13) that Px = ρA1 in U1 and from (2.2) that Pz = ρ(2Ωu−g) in U1,

thus

P(x,z) =−ρgz+2ρΩ
∫ z

−h
u(ξ )dξ +ρA1x+C1

in U1 for some constant of integration C1 ∈R. Due to (2.10), the following relation has to be fulfilled
for all x ∈ R:

lim
z↗−h

P(x,z) =−ρ(1+ r)gz+C2 =−ρgz+ρA1x+C1 = lim
z↘−h

P(x,z).

This is only possible, if A1 = 0 is satisfied. We deduce from (2.9) that C2 =C1−ρrgh, and C1 =Patm.
Hence the pressure field equals the hydrostatic pressure:

P(x,z) =
{

Patm −ρgz in U1 ∪{z = 0}
Patm −ρ(1+ r)gz−ρrgh in U2 ∪{z =−h}∪{z =−d}.

Moreover, knowing that A1 = 0, we obtain from (2.13) that uz = 0 throughout U1, hence u is
constant within U2. Therefore by (2.12) and the continuity assumption (2.10) we conclude that u≡ 0
throughout U .

Remark 2.1. Let us point out, that the region Uε does not particularly represent the BBL mentioned
earlier in the introduction. It stands for some - theoretically arbitrary small - region directly above
the bottom.
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The continuity assumption (2.10) can not be meaningfully strengthened in the sense of requiring
u and P to be continuously differentiable or even smooth across the thermocline. We have seen in the
proof of Proposition 2.1 that the hydrostatic pressure is only piecewise smooth; its z-derivative has a
jump at the thermocline. Furthermore, requiring a smooth current u throughout U , would trivialize
the model. We would then already obtain that (νuz)z ≡ 0 in U without imposing the additional
condition of Proposition 2.1 (on some region Uε ). Hence we would get uz ≡ 0 in U by (2.8) and
therefore the bottom condition (2.7) tells us that the only smooth solution of (2.1)-(2.3) and (2.4)-
(2.6) with boundary conditions (2.7)-(2.9) is the trivial one.
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