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We study some properties of the SU(1,1) Perelomov number coherent states. The Schrödinger’s uncertainty
relationship is evaluated for a position and momentum-like operators (constructed from the Lie algebra gener-
ators) in these number coherent states. It is shown that this relationship is minimized for the standard coherent
states. We obtain the time evolution of the number coherent states by supposing that the Hamiltonian is propor-
tional to the third generator K0 of the su(1,1) Lie algebra. Analogous results for the SU(2) Perelomov number
coherent states are found. As examples, we compute the Perelomov coherent states for the pseudoharmonic
oscillator and the two-dimensional isotropic harmonic oscillator.
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1. Introduction

Erwin Schrödinger introduced coherent states in quantum mechanics while he was looking for a
system which possessed a classical behavior [28]. The coherent states were reintroduced in quantum
optics by the works of Glauber [12], Klauder [16,17] and Sudarshan [30]. These states are related to
the Heisenberg-Weyl group. Harmonic oscillator coherent states are the most classical states, since
they minimize the Heisenberg uncertainty relationship.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

607



D. Ojeda-Guillén et al. / SU(1,1) and SU(2) Perelomov number coherent states

The coherent states for the one-dimensional harmonic oscillator were generalized by introduc-
ing the displaced number states or number coherent states of the harmonic oscillator. Boiteux and
Levelut defined these states by applying the Weyl operator to any excited state |n〉 and they called
them semicoherent states [3]. Later, Roy and Singh [26], Satyanarayana [27], and Oliveira, Kim,
Night and Bužek [15] gave a detailed study of the properties of these states. A few years later,
Nieto [20] derived the most general form of these states.

However, the Heisenberg-Weyl is not the only group for which we can construct coherent states.
In the 70’s, the works of A. O. Barut and L. Girardello [2] and Perelomov [23] generalized the
concept of coherent states to general systems related to any algebra of a symmetry group. These
approaches remain as current research fields as it is shown in references [8,18]. In particular, related
to the su(2) and su(1,1) Lie algebra several works have been published, and some of them are in
references [4, 5, 37].

On the other hand, the Heisenberg uncertainty relationship was generalized by the work of
Schrödinger [29] and Robertson [25] for any two observables. Recently, these uncertainty rela-
tionships were generalized to several observables and several states [31]. With these results, the
harmonic oscillator coherent states have been generalized too, by constructing states that minimize
those uncertainty relations. These states which minimize uncertainty relationships have been widely
studied [32–34] and are called intelligent states [1].

The Perelomov’s coherent states were extended by Gerry, who studied the SU(1,1) number
coherent states [10]. Gerry defined these states as the action of the displacement operator onto
any SU(1,1) excited state and obtained a general form of these states in terms of the Bargmann V
functions. Moreover, he showed that these states are the eigenfunctions of the degenerate parametric
amplifier, by an appropriate choice of the coherent state parameters.

Recently, two important applications of the SU(1,1) and SU(2) Perelomov number coherent
states have been founded. It has been shown that the number coherent states of the two-dimensional
harmonic oscillator are the eigenfunctions of the non-degenerate parametric amplifier [21] and of
two coupled oscillators [22].

The aim of the present work is to study the dispersion and time evolution of the Perelomov
number coherent states for the su(1,1) and su(2) Lie algebras. We show that the only minimum
uncertainty states are the standard coherent states, even if we consider their time evolution. Finally,
we apply our results to construct the Perelomov number coherent states of the pseudoharmonic
oscillator (related to the su(1,1) Lie algebra) and the two-dimensional harmonic oscillator (related
to the su(2) Lie algebra).

This work is organized as follows. In Section 2, we introduce the Perelomov number coherent
states for the su(1,1) Lie algebra. We obtain the expected values of the Lie algebra generators in the
Perelomov number coherent states. We define two position and momentum-like operators for the
su(1,1) Lie algebra and we prove that standard Perelomov coherent states are of minimum uncer-
tainty, accordingly to the Schrödinger’s uncertainty relationship. By supposing that the Hamiltonian
is proportional to one of the generators of the su(1,1) Lie algebra, we obtain the time evolution of
the Perelomov number coherent states. All previous results are applied to compute the Perelomov
number coherent states of the pseudoharmonic oscillator. In Section 3, we obtain the analogous
results of the previous section for the su(2) Lie algebra Perelomov number coherent states. For this
group, we calculate the SU(2) coherent states of the two-dimensional harmonic oscillator. Finally,
we give some concluding remarks.
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2. SU(1,1) Perelomov number coherent states

The su(1,1) Lie algebra is spanned by the generators K+, K− and K0, which satisfy the commutation
relations [21, 35]

[K0,K±] =±K±, [K−,K+] = 2K0. (2.1)

The action of these operators on the Fock space states {|k,n〉,n = 0,1,2, ...} is

K+|k,n〉=
p
(n+1)(2k+n)|k,n+1〉, (2.2)

K−|k,n〉=
p

n(2k+n−1)|k,n−1〉, (2.3)

K0|k,n〉= (k+n)|k,n〉, (2.4)

where |k,0〉 is the lowest normalized state. The Casimir operator K2 = K2
0 −K2

1 −K2
2 for any irre-

ducible representation satisfies K2 = k(k− 1). Thus, a representation of su(1,1) algebra is deter-
mined by the number k. For the purpose of the present work we will restrict to the discrete series
only, for which k > 0.

The standard Perelomov coherent states |z 〉 are defined as [24]

|z 〉= D(x )|k,0〉, (2.5)

where D(x ) = exp(xK+− x ∗K−) is the displacement operator and x is a complex number. From
the properties K†

+ = K− and K†
− = K+ it can be shown that the displacement operator possesses the

property

D†(x ) = exp(x ∗K−−xK+) = D(−x ), (2.6)

and the so called normal form of the displacement operator is given by

D(x ) = exp(zK+)exp(hK0)exp(−z
∗K−), (2.7)

where x =−1
2te−ij , z =− tanh(1

2t)e−ij and h =−2lncosh |x |= ln(1−|z |2) [11]. By using this
normal form of the displacement operator and equations (2.2)-(2.4), the Perelomov coherent states
are found to be [24]

|z 〉= (1−|z |2)k
¥

å
s=0

s
G(n+2k)
s!G(2k)

z
s|k,s〉. (2.8)

The Perelomov number coherent states are defined as the action of the displacement operator
D(x ) on any state |k,n〉, instead to the lowest state |k,0〉 of the Fock space [10, 21]. This is the
obvious generalization of equation (2.5). Thus the states

|z ,k,n〉= D(x )|k,n〉= exp(zK+)exp(hK0)exp(−z
∗K−)|k,n〉 (2.9)

are the SU(1,1) Perelomov number coherent states. The last equality is due to the normal form
of the displacement operator of equation (2.7). The Perelomov number coherent states in the Fock
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space are [21]

|z ,k,n〉 =
¥

å
s=0

z s

s!

n

å
j=0

(−z ∗) j

j!
eh(k+n− j)

p
G(2k+n)G(2k+n− j+ s)

G(2k+n− j)

×
p

G(n+1)G(n− j+ s+1)
G(n− j+1)

|k,n− j+ s〉. (2.10)

These states generalize the Perelomov coherent states (2.8), which are obtained by setting n = 0
in last equation.

By using the Baker-Campbell-Hausdorff identity

e−ABeA = B+
1
1!
[B,A]+

1
2!
[[B,A],A]+

1
3!
[[[B,A],A],A]+ ..., (2.11)

and equations (2.1), we can find the similarity transformations D†(x )K+D(x ), D†(x )K−D(x ) and
D†(x )K0D(x ) of the su(1,1) Lie algebra generators. These results are given by

D†(x )K+D(x ) =
x ∗

|x |
aK0 +b

�
K++

x ∗

x
K−

�
+K+, (2.12)

D†(x )K−D(x ) =
x

|x |
aK0 +b

�
K−+

x

x ∗
K+

�
+K−, (2.13)

D†(x )K0D(x ) = (2b +1)K0 +
ax

2|x |
K++

ax ∗

2|x |
K−, (2.14)

where a = sinh(2|x |) and b = 1
2 [cosh(2|x |)−1].

Moreover, the expected values of the group generators K±,K0 in the Perelomov number coherent
states can be easily computed by using the similarity transformations of equations (2.12)-(2.14)
[21]. Thus,

〈z ,k,n|K+|z ,k,n〉=
x ∗

|x |
sinh(2|x |)(k+n), (2.15)

〈z ,k,n|K−|z ,k,n〉=
x

|x |
sinh(2|x |)(k+n), (2.16)

〈z ,k,n|K0|z ,k,n〉= cosh(2|x |)(k+n). (2.17)
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2.1. Schrödinger’s uncertainty relationship

From the SU(1,1) group ladder operators K+ and K−, we define the operators X and Y as [19]

X ≡ K++K−, Y ≡ i(K+−K−). (2.18)

With these equations we can compute the quadratic deviations of the operators X and Y for the
Perelomov number coherent states

(DX)2
n = 〈z ,k,n|X2|z ,k,n〉−〈z ,k,n|X |z ,k,n〉2, (2.19)

(DY )2
n = 〈z ,k,n|Y 2|z ,k,n〉−〈z ,k,n|Y |z ,k,n〉2. (2.20)

The definition of the Perelomov number coherent states (2.9) and the similarity transformations,
equations (2.12) and (2.13), lead us to obtain

〈z |X2|z 〉n = a
2(k+n)2

�
2+

x ∗

x
+

x

x ∗

�
+2(n2 +2kn+ k)

��
2+

x ∗

x
+

x

x ∗

�
(b 2 +b )+1

�
,

(2.21)

〈z |X |z 〉n =
a(k+n)
|x |

(x ∗+x ), (2.22)

and

〈z |Y 2|z 〉n = a
2(k+n)2

�
2− x ∗

x
− x

x ∗

�
+2(n2 +2kn+ k)

��
2− x ∗

x
− x

x ∗

�
(b 2 +b )+1

�
,

(2.23)

〈z |Y |z 〉n =
ia(k+n)
|x |

(x ∗−x ). (2.24)

By substituting these results into equations (2.19) and (2.20) we obtain the quadratic deviations of
the X and Y operators

(DX)2
n = 2(n2 +2kn+ k)

��
2+

x ∗

x
+

x

x ∗

�
(b 2 +b )+1

�
, (2.25)

and

(DY )2
n = 2(n2 +2kn+ k)

��
2− x ∗

x
− x

x ∗

�
(b 2 +b )+1

�
. (2.26)

Hence, the product of these quadratic deviations is

(DX)2
n(DY )2

n = 4(n2 +2kn+ k)2

(
(b 2 +b )2

"
4−
�

x ∗

x
+

x

x ∗

�2
#
+4(b 2 +b )+1

)
. (2.27)

The Schrödinger’s uncertainty relationship states that the product of the quadratic deviations of
any two operators X and Y satisfy [29]

(DX)2(DY )2 ≥ 〈F〉2 + 1
4
〈C〉2, (2.28)

where, 〈C〉 ≡−i〈[X ,Y ]〉, and 〈F〉 ≡ 〈1
2{X ,Y}+ 〈X〉〈Y 〉〉 is the quantum correlation of the operators

X and Y .
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If we use equation (2.9) and the similarity transformation method to calculate the expectation
values 〈F〉 and 〈C〉 in a Perelomov number coherent state, we obtain

〈z ,k,n|F |z ,k,n〉n = 2i(n2 +2kn+ k)(b 2 +b )

�
x ∗

x
− x

x ∗

�
, (2.29)

〈z ,k,n|C|z ,k,n〉n = 4(k+n)(2b +1). (2.30)

By substituting the results of equations (2.27), (2.29) and (2.30) into equation (2.28), we conclude
that the number coherent states are not of minimum uncertainty, accordingly to the Schrödinger’s
uncertainty relationship. However, for the Perelomov coherent states (n = 0) the equality in (2.28)
holds. Therefore, the only states which minimize the Schrödinger’s uncertainty relationship are
those obtained by applying the displacement operator D(x ) to the lowest normalized state. This
result is in full agreement to that previously reported in [24].

The study of the uncertainty relations is a cornerstone in the study of squeezing. In fact, the
change of shape of the radial probability distribution between the turning point of the harmonic
oscillator coherent states can be interpreted (at least in part) as squeezing [9].

2.2. Time evolution of the SU(1,1) Perelomov number coherent states

The time evolution operator U(t) for an arbitrary Hamiltonian H is defined as U(t) = e−iHt/h̄ [6].
Notice that in many problems the Hamiltonian is proportional to the group operator K0 [13]. Thus,
without loss of generality, we can write the time evolution operator as

U(t) = e−igK0t/h̄. (2.31)

With the previous definition, the Baker-Campbell-Hausdorff identity and equation (2.1), we can
compute the time evolution of the SU(1,1) group ladder operators K± with the similarity transfor-
mations

K+(t) =U†(t)K+U(t) = K+eigt/h̄, (2.32)

K−(t) =U†(t)K−U(t) = K−e−igt/h̄. (2.33)

Notice that we can obtain the same results by using the Heisenberg equations. Thus, from equation
(2.9), the time evolution of the Perelomov number coherent states |z (t),k,n〉 is given by

|z (t),k,n〉=U(t)|z ,k,n〉=U(t)D(x )U†(t)U(t)|k,n〉. (2.34)

From equation (2.4), the time evolution of the state |k,n〉 is given by

U(t)|k,n〉= e−ig(k+n)t/h̄|k,n〉. (2.35)

On the other hand, from equations (2.32) and (2.33) we find

U(t)D(x )U†(t) = exK+(−t)−x ∗K−(−t) = ex (−t)K+−x (−t)∗K− , (2.36)

where we have introduced the time dependent complex x (t) = xeigt/h̄. Thus, the time evolution of
the displacement operator D(x ) is due to the time evolution of the complex x . The time evolution
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of the displacement operator in its normal form is given by

D(x (t)) =U†(t)D(x )U(t) =U†(t)ezK+ehK0e−z ∗K−U(t). (2.37)

If we introduce the complex z (t) = zeigt/h̄, we obtain the time-dependent displacement operator
D(x )

D(x (t)) = ez (t)K+ehK0e−z (t)∗K− . (2.38)

With the previous results and the equations (2.35) and (2.38), we obtain that the time dependent
Perelomov number coherent states are

|z (t),k,n〉= e−ig(k+n)t/h̄ez (−t)K+ehK0e−z (−t)∗K− |k,n〉. (2.39)

Thus, the time evolution of the number coherent states for the SU(1,1) group is obtained by adding
the phase e−ig(k+n)t/h̄ and substituting z → z (−t) and z ∗ → z (−t)∗ into equation (2.10). The
expression of equation (2.39) generalizes the Perelomov coherent states, which are recovered by
setting t = 0 and n = 0. The results of this section can be extended to the cases in which the Hamil-
tonian depends on a linear combination of the algebra generators, instead of just K0.

2.3. SU(1,1) number coherent states for the Pseudoharmonic Oscillator

The pseudoharmonic oscillator is described by the one-dimensional potential

V (x) =
1
2

mw
2x2 +

h̄2

2m
a

x2 , (2.40)

where m, w and a represent the mass of the particle, the frequency and the strength of the external
field, respectively. The normalized wave functions for the pseudoharmonic oscillator are given by
[7]

F
s
n(r) = Nnr

se−
r

2 L2s− 1
2

n (r), Nn =

s
n!

G(n+2s+1/2)
, (2.41)

where r = x2. The su(1,1) Lie algebra generators of the pseudoharmonic oscillator can be con-
structed by using the recursion relations among the associated Laguerre functions [7]. These oper-
ators explicitly are

K− =−r
¶

¶r
+ s+ n̂− r

2
, K0 = n̂+ s+

1
4

K+ = r
¶

¶r
+ s+ n̂+

1
2
− r

2
. (2.42)

The action of ladder operators on the pseudoharmonic oscillator wave functions is

K+|s,n〉=
p

(n+1)(n+2s+1/2)|s,n+1〉, (2.43)

K−|s,n〉=
p

n(n+2s−1/2)|s,n−1〉, (2.44)

K0|s,n〉= (n+ s+1/4) |s,n〉. (2.45)

By comparing these results with equations (2.2)-(2.4), we obtain that the relationship between the
group numbers k,n and the quantum numbers s,n satisfies k→ s+1/4 and n→ n. The Perelomov
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number coherent states of the pseudoharmonic oscillator YPO are obtained by substituting the states
of equation (2.41) into equation (2.10). Thus, by interchanging the order of summations and using
the relationships between the group and quantum numbers we obtain

YPO =〈r|z ,k,n〉=
�
1−|z |2

�s+n+ 1
4 r

se−
r

2
p

G(2s+n+1/2)G(n+1)× (2.46)

×
n

å
j=0

�
−z ∗

(1−|z |2)

� j

G( j+1)G(2s+ 1
2 +n− j)

¥

å
p=0

z p

p!
G(n− j+ p+1)

G(n− j+1)
L2s− 1

2
n− j+p(r). (2.47)

The procedure to obtain the explicit form of these number states is explained in reference [21].
It consists in use the sums (48.7.6) and (48.7.8) of reference [14]. Thus, the explicit form of the
SU(1,1) Perelomov number coherent states of the pseudoharmonic oscillator is

YPO =

�
1−|z |2

(1−z )2

�s+ 1
4

r
se−

r

2 e
�

rz

r−1

�s
G(n+1)

G(2s+n+1/2)
(−z

∗)n (1−s)n× (2.48)

×L2s− 1
2

n

�
rs

(1−z )(s −1)

�
, (2.49)

where

s =

�
1−|z |2

z ∗(1−z )

�
. (2.50)

3. SU(2) Perelomov number coherent states

In what follows, the results for the su(2) Lie algebra are obtained in a similar way to those for the
su(1,1) Lie algebra. The su(2) Lie algebra is spanned by the generators J+, J− and J0, which satisfy
the commutation relations [22, 35]

[J0,J±] =±J±, [J+,J−] = 2J0. (3.1)

The action of these operators on the Fock space states {| j,m〉,− j ≤ m ≤ j} is

J+| j,m〉=
p
( j−m)( j+m +1)| j,m +1〉, (3.2)

J−| j,m〉=
p
( j+m)( j−m +1)| j,m−1〉, (3.3)

J0| j,m〉= m| j,m〉. (3.4)

The Casimir operator for this algebra is J2 = J2
0 +J2

1 +J2
2 and its action on any group state is j( j+1).

The displacement operator D(x ) is given by

D(x ) = exp(xJ+−x
∗J−). (3.5)

By means of Gaussian decomposition, the normal form of this operator is

D(x ) = exp(zJ+)exp(hJ0)exp(−z
∗J−), (3.6)

where z =− tan(1
2q)e−ij and h =−2lncos |x |= ln(1+ |z |2) [24].

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

614



D. Ojeda-Guillén et al. / SU(1,1) and SU(2) Perelomov number coherent states

The SU(2) Perelomov coherent states, |z 〉= D(x )| j,− j〉 are given by [24]

|z 〉=
j

å
m=− j

�
(2 j)!

( j+m)!( j−m)!

� 1
2

(1+ |z |2)− j
z

j+m | j,m〉. (3.7)

In a similar way to the definition (2.9), the Perelomov number coherent states for the su(2)
algebra are defined as the action of the displacement operator D(x ) on any state | j,m〉, instead to
the lower state | j,− j〉 of the Fock space [22]. Thus,

|z , j,m〉= D(x )| j,m〉= exp(zJ+)exp(hJ0)exp(−z
∗J−)| j,m〉 (3.8)

where we have used the normal form of the displacement operator, equation (3.6).
Therefore, the Perelomov number coherent states of the su(2) algebra in the Fock space are

given by [22]

|z , j,m〉 =
j−m+n

å
s=0

z s

s!

m+ j

å
n=0

(−z ∗)n

n!
eh(m−n)G( j−m +n+1)

G( j+m−n+1)

×
�

G( j+m +1)G( j+m−n+ s+1)
G( j−m +1)G( j−m +n− s+1)

�1/2

| j,m−n+ s〉. (3.9)

The SU(2) standard coherent states of equation (3.7) are recovered by setting m = − j in the last
equation.

The similarity transformation of the su(2) Lie algebra generators are computed by using of the
Baker-Campbell-Hausdorff identity and equations (3.1). They are

D†(x )J+D(x ) =− x ∗

|x |
dJ0 + e

�
J++

x ∗

x
J−

�
+ J+, (3.10)

D†(x )J−D(x ) =− x

|x |
dJ0 + e

�
J−+

x

x ∗
J+

�
+ J−, (3.11)

D†(x )J0D(x ) = (2e +1)J0 +
dx

2|x |
J++

dx ∗

2|x |
J−, (3.12)

where d = sin(2|x |) and e = 1
2 [cos(2|x |)−1].

From equations (3.10)-(3.12), the expected values of the group generators J±,J0 in the Perelo-
mov number coherent states are [22]

〈z , j,m|J+|z , j,m〉= x ∗

|x |
m sin(2|x |), (3.13)

〈z , j,m|J−|z , j,m〉= x

|x |
m sin(2|x |), (3.14)

〈z , j,m|J0|z , j,m〉= m cosh(2|x |). (3.15)
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3.1. Schrödinger’s uncertainty relationship

The X and Y operators for the su(2) algebra ladder operators are defined as [19]

X ≡ J++ J−, Y ≡ i(J+− J−). (3.16)

The quadratic deviations product for the X and Y operators in the SU(2) Perelomov number
coherent states is

(DX)2
n(DY )2

n = 4( j+ j2−m
2)2

(
(e2 + e)2

"
4−
�

x ∗

x
+

x

x ∗

�2
#
+4(e2 + e)+1

)
. (3.17)

If we use equation (3.8) and the similarity transformation method, the expectation values 〈F〉
and 〈C〉 in a SU(2) number coherent states are given by

〈z , j,m|F |z , j,m〉n = 2i( j+ j2−m
2)(e2 + e)

�
x ∗

x
− x

x ∗

�
, (3.18)

〈z , j,m|C|z , j,m〉n =−4m(2e +1). (3.19)

By substituting the results of equations (3.17), (3.18) and (3.19) into equation (2.28) we conclude,
again, that the SU(2) Perelomov number coherent states are not of minimum uncertainty, accord-
ingly to the Schrödinger’s uncertainty relationship. However, likewise the SU(1,1) standard coher-
ent states, the SU(2) standard coherent states satisfy the equality in equation (2.28). Therefore,
the only states which minimize the Schrödinger’s uncertainty relationship are those obtained by
applying the displacement operator D(x ) on the lowest normalized state.

3.2. Time evolution of the SU(2) Perelomov number coherent states

As for the case of the su(1,1) algebra, we will suppose that the Hamiltonian is proportional to the
group generator J0. Hence

U(t) = e−igJ0t/h̄. (3.20)

This implies that the time evolution of the su(2) algebra ladder operators J± are

J+ =U†(t)J+U(t) = J+eigt/h̄, (3.21)

J− =U†(t)J−U(t) = J−e−igt/h̄. (3.22)

Thus, by using equation (3.8), the time evolution of the SU(2) number coherent states |z (t), j,m〉
are given by

|z (t), j,m〉=U(t)|z 〉=U(t)D(x )U†(t)U(t)| j,m〉. (3.23)

From equation (3.4), (3.21) and (3.22), and the definitions x (t)≡ xeigt/h̄ and z (t) = zeigt/h̄, we can
show that the time dependent SU(2) Perelomov number coherent states are given by

|z (t), j,m〉= e−igmt/h̄ez (−t)J+ehJ0e−z (−t)∗J− | j,m〉. (3.24)

Therefore, the time evolution of these states is obtained by adding the phase e−igmt/h̄ and substituting
z → z (−t) and z ∗→ z (−t)∗ into equation (3.9). The expression of equation (2.39) generalizes the
SU(2) Perelomov coherent states, which are recovered by setting t = 0 and m =− j.
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3.3. SU(2) coherent states for the two-dimensional harmonic oscillator

The time-independent Hamiltonian of the two-dimensional harmonic oscillator is

H = a†a+b†b+1, (3.25)

where the operators (a,a†) and (b,b†) satisfy the bosonic algebra

[a,a†] = [b,b†] = 1, [a,b†] = [a,b] = 0. (3.26)

The Jordan-Schwinger realization of the su(2) algebra is

J0 =
1
2
�
a†a−b†b

�
, J+ = a†b, J− = b†a, (3.27)

For this realization the Casimir operator and the number operator N commute with all the generators
of the su(2) algebra. The number operator N is defined as

N = a†a+b†b. (3.28)

The eigenfunctions of this Hamiltonian H are

〈r,f |N,m〉= yN,m(r,f) =
1√
p

eimf (−1)
N−m

2

s
2
�N−m

2

�
!�N+m

2

�
!

r
mLm

1
2 (N−m)

(r2)e−
1
2 r2

. (3.29)

The action creation and annihilation operators on the basis |N,m〉 is given by [36]

a|N,m〉=
r

1
2
(N +m)|N−1,m−1〉, a†|N,m〉=

r
1
2
(N +m)+1|N +1,m+1〉, (3.30)

b|N,m〉=
r

1
2
(N−m)|N−1,m+1〉, b†|N,m〉=

r
1
2
(N−m)+1|N +1,m−1〉. (3.31)

From these equations and the definition of the su(2) generators of equation (3.27) we can obtain the
relationships between the group numbers j,m and the quantum numbers N,m. Thus, from equations
(3.4) and (3.2) we deduce m = m/2, j = N/2.

In order to obtain the SU(2) Perelomov coherent states of the two-dimensional harmonic oscil-
lator YHO we must substitute the eigenstates (3.29) into equation (3.7). By making the change of
variable s = j+m in equation (3.7) we obtain

YHO = 〈r|z 〉=
r

2(2 j)!
p

e−
1
2 r2

(1+ |z |2)− j

2 j

å
s=0

z s(−1)2 j−se2i(s− j)f r2(s− j)

s!
L2s−2 j

2 j−s (r2). (3.32)

This sum can be performed by using the equation (48.19.5) of reference [14]

n

å
k=0

n!(−1)k pk

(n− k)!
Ln−2k

k (x) = p
n
2 Hn

�
1
2
(1+ px)p−1/2

�
. (3.33)

Then, by identifying k = 2 j− s, n− 2k = 2s− 2 j we finally obtain the closed form of the SU(2)
coherent states for the two-dimensional harmonic oscillator

YHO =

r
2

N!p
e−

1
2 r2

z N/2

(1+ |z |2)N/2 HN

�√
t

2

�
1+

r2

t

��
, (3.34)
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where

t =
1

zr2e2if . (3.35)

It is important to note that we were not able to obtain explicitly the SU(2) Perelomov number
coherent states. The main problem is that for the SU(2) case we must perform two finite series,
instead of one finite and one infinite of the SU(1,1) case.

4. Concluding remarks

We have studied some properties of the Perelomov number coherent states for the su(1,1) and
su(2) Lie algebras. We introduced the position and momentum-like operators and showed that
the Schrödinger’s uncertainty relationship is minimized only for the standard Perelomov coherent
states.

We apply our results to calculate the explicit form of the SU(1,1) Perelomov number coherent
states of the pseudoharmonic oscillator. For the two-dimensional harmonic oscillator, we were able
to calculate the explicit form of the standard SU(2) Perelomov coherent states.

Besides the Perelomov number coherent states are not of minimum uncertainty, they have been
applied to solve some important quantum systems as the parametric amplifier [10, 21] and two
coupled oscillators [22].
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