;:Tg';\llolilNEAR ATLANTIS
MATHEMATICAL PRESS

PHYSICS

Journal of Nonlinear Mathematical
Physics

ISSN (Online): 1776-0852 ISSN (Print): 1402-9251
Journal Home Page: https://www.atlantis-press.com/journals/jnmp

The Elliptic Sinh-Gordon Equation in the Quarter Plane

Guenbo Hwang

To cite this article: Guenbo Hwang (2016) The Elliptic Sinh-Gordon Equation in the
Quarter Plane, Journal of Nonlinear Mathematical Physics 23:1, 127-140, DOI:
https://doi.org/10.1080/14029251.2016.1135646

To link to this article: https://doi.org/10.1080/14029251.2016.1135646

Published online: 04 January 2021



Journal of Nonlinear Mathematical Physics, Vol. 23, No. 1 (2016) 127-140

The Elliptic Sinh-Gordon Equation in the Quarter Plane

Guenbo Hwang

Department of Mathematics, Daegu University,
Gyeongsan Gyeongbuk, 712-714, Korea
ghwang@daegu.ac.kr

Received 10 August 2015

Accepted 20 November 2015

We study the elliptic sinh-Gordon equation formulated in the quarter plane by using the so-called Fokas method,
which is a significant extension of the inverse scattering transform for the boundary value problems. The method
is based on the simultaneous spectral analysis for both parts of the Lax pair and the global algebraic relation
that involves all boundary values. In this paper, we address the existence theorem for the elliptic sinh-Gordon
equation posed in the quarter plane under the assumption that the boundary values satisfy the global relation.
We also present the formal representation of the solution in terms of the unique solution of the matrix Riemann-
Hilbert problem defined by the spectral functions.
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1. Introduction

We study the boundary problem for the elliptic sinh-Gordon equation posed in the quarter plane
Gxxtqyy =sinhg,  (x,y) €Q, (1.1)

where Q = {(x,y) € R?:0 < x < o0, 0 <y < oo}. It is noted that this equation arises as models of
interacting charged particles in plasma physics [16]. On the other hand, of interest is the integrability
for the equation; the elliptic sinh-Gordon equation is a reduction of the special case of the Toda
lattice equations [1]. As a consequence, the usual inverse scattering transform can be used to solve
the elliptic sinh-Gordon equation in the entire plane {—e < x,y < oo} [3, 16]. Regarding more
complicated domains, the so-called Fokas method is remarkably elegant for solving boundary value
problems. The method is widely used to analyze a large class of partial differential equations and
hence, it can be considered as a significant generalization of the inverse scattering transform [2,4,5,
7] (see also the monograph [9] and recent applications [10, 15]). Recently, the elliptic sinh-Gordon
equation posed in the half plane {—c0 < x < oo, 0 <y < oo} was studied by applying the Fokas
method [14]. It has been shown that the solution of the equation in the half plane exists provided that
the boundary values satisfy the global algebraic relation that is the simple but substantial equation
involving all boundary values. In the implementation of the Fokas method, the global relation is
crucial in proving the existence of the unique solution and characterizing unknown boundary values
called the generalized Dirichlet to Neumann map [8].

In this paper, we implement the Fokas method to analyze the elliptic sinh-Gordon equation
posed in the quarter plane (1.1). Based on the spectral analysis in the Lax pair, we derive global
relation in terms of the spectral functions. We then formulate the matrix Riemann-Hilbert problem
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with the jump matrices defined uniquely by the spectral functions. These spectral functions denoted
by {ai(k),b1(k)} and {az(k),b>(k)} can be determined from the boundary values {g(x,0), gy(x,0)}
and {g(0,y), ¢«(0,y)}, respectively. Moreover, we show that the given boundary values with appro-
priate regularity condition, the solution for (1.1) uniquely exists if the boundary values satisfy the
global relation. In addition to the existence of the solution, we address the formal representation for
the solution in terms of the unique solution of the Riemann-Hilbert problem (see [14, 17, 18] for
analogous results).

The outline of the paper is following. In section 2, we introduce the Lax pair for the elliptic sinh-
Gordon equation and the regularity assumption for the boundary values as well as relevant notations
and formulas. In section 3, we derive the global relation and we then define spectral functions that
determine the jump matrices for the Riemann-Hilbert problem. Moreover, we apply the spectral
analysis for the Lax pair at x = 0 and y = 0 in order to characterize the boundary values. In section
4, the existence of the solution is discussed by analyzing the the matrix Riemann-Hilbert problem
as an inverse problem. We end with concluding remarks in section 5.

2. Preliminaries

It is well known that the elliptic sinh-Gordon equation (1.1) can be written as an overdetermined
linear system called a Lax pair [3,14,16]

Uy + 1 (k) [637H'] = Q(x,y,k)[,t, (2.1a)
Hy + (Lh(k) [637“] = iQ(X,y, k)‘LL, (21b)

where k € C is a spectral parameter, u is a 2 x 2 matrix-valued eigenfunction and

1 1 1 1

o= (k- 5) @w=—3 (k). 22)

i _ _ sinhg
Q(x,y,k)—i(z" <C°Sﬁiq 2 .(r+ * ) ) (2.3)

r—>51  —5(coshg—1)
with

Q('xvyak) = Q(xvya_k)7 (24)

10
r(x7y) = i%c(xa)’) +Q}’('x7y)a 63 - <0 _1> (25)

and the matrix commutator given by [03,A] = 03A — AC3.

Note that the elliptic sinh-Gordon equation (1.1) is the compatible condition for the Lax pair
(2.1); tyy = Wy in the Lax pair (2.1) implies that the function ¢(x,y) solves (1.1) provided that the
spectral parameter k is independent of x and y. From the definitions of @ (k) and @, (k), it follows
that

1 1 1 1

Thus, we find

Rew; (k) <0 for Imk > 0, Rew, (k) <0 for Rek > 0. (2.6)
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Fig. 1. The three distinct points for the definition of the eigenfunction u;, j =1,2,3

Due to the symmetry of Q and Q, the eigenfunction possesses the same symmetry, namely,

.ull(xd’,k) = u22(x7y7 _k)a H21 (x7y7k) = —[Jn(x,y, _k)7

where the subscripts denote the (i, j)-component of the matrix.

2.7

It is convenient to introduce the notation 6A = [03,A] for the matrix commutator. Using this

notation, we let the following notation

863€A — 663§A6763§ — ( all 62{:a12> .
e Bay an

We also denote boundary values by

q(x,()) :go(x), qY(x70) =81 (x)7
q(0,)=fo(v),  4x(0,y)=fi(y),

where we assume that g;, fj € H' (R™) for j =0, 1.
In order to analyze the Lax pair (2.1), we first define a differential 1-form W given by

W (x,y,k) = Q(x,y, k)t (x,y,k)dx+iQ(x,y, k) p(x,y, k)dy,

which implies that (2.1) is equivalent to the form
d [eml (Kp+ @203 1y k)] — (@RS () 1

Hence, we define eigenfunctions that satisfy both parts of the Lax pair (2.1) as

wiGenk) =1+ [ @ ®EE @0y & o )
(xj:7)

(2.8a)
(2.8b)

2.9)

(2.10)

where (x,y), (xj,yj) € Q= {0 <x < oo, 0 <y < co} and W; is the differential form defined by (2.9)
with ;. Since the differential 1-form W (x,y,k) is closed, the integration in (2.10) does not depend
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on paths [6]. In particular, we choose three distinct points (x;,y;) in Q, j =1,2,3 (see Fig. 1),

(xlayl) = (xam)7 (X2,y2> = (0,0), (X3,y3) = (°°7y)'

More specifically, the eigenfunctions associated with the points (x;,y;), j = 1,2,3, satisfy the fol-
lowing integral equations:

W (x,y, k) =1 —i /y "0 (G (x,1m,K)d, (2.11a)
ol ) =1+ [ @009 (Qpy) (€ k)

+i /0 e (@ ®xa-m)s; (Ou2) (0,m,k)dn, (2.11b)
1 (x,y,k) =I — / T e85 (ouy) (&, v, K)dE. (2.11c)

It should be remarked that the off-diagonal components of the matrix-valued eigenfunctions p;
involve the explicit exponential terms. Thus, according to equations (2.6), let the domains D; in the
complex k-plane, j = 1,--- ,4, be depicted in Fig. 2 and be defined by

Dy ={keC:Rew (k) <0}n{keC:Rem(k) <0},
Dy ={keC:Rew (k) <0}n{ke C:Rem(k) >0},
D3 ={ke C:Rew(k) >0}N{ke C:Remn(k) >0},
Dy={keC:Rew(k) >0}N{kecC:Remn(k) <O0}.

As a result, the domains of analyticity and boundedness for the eigenfunctions can be determined:

e U (x,y,k) is analytic and bounded for k € (D, UD3,D; UDy),
o [i>(x,y,k) is analytic and bounded for k € (Dy,D3),
e u3(x,y,k) is analytic and bounded for k € (D3 UD4, Dy UD>).

For convenience, we write each column of u;(x,y,k) as the following notations:

23) (14 ) (3 34) (12
w= (0 u) = (W), = (08,
where the superscripts indicate the analytic and bounded domains D;, j = 1,--- ,4, for the columns

of the matrix-valued eigenfunctions. Using integration by parts, note that in the appropriate domain
wi(x,y,k) =1+0(1/k) as k— co. (2.13)

Since the matrices Q and Q are traceless (i.e. trace(Q)=trace(Q)=0), equation (2.13) implies that
detpj =1, j=1,2,3.

3. Spectral analysis
3.1. Spectral functions

The matrix eigenfunctions U1, Up and u3 are both fundamental solutions of the Lax pair (2.1). Note
that 1,(0,0,k) = I. Hence, the eigenfunctions are related by the so-called spectral functions, also
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Fig. 2. The domain D; and the oriented contour L;, j=1,---,4

known as the scattering matrices, S; (k) and S»(k):

13 (x,y,k) = o (x,y,k)e~ (@ Rxr@@sg (1) ke (RF,R7), 0<xy<e, (3.1a)
1 (x,9,k) = pa(x,y,k)e” (@ 0x+@kmGs g )y - ke (IRTiIR7), 0<x,y<co. (3.1b)

Substituting (3.1b) into (3.1a), of course, equations (3.1) are determined in the form
13 (x,y,k) = py (x,y, k)e~ (@0t (§1(1) 5 (k)), k€ (9Dy,dD3). (3.2)
Letting x =0 and y = 0 in (3.1), the spectral functions are given by
Si(k) = p3(0,0,k),  Sa(k) = p1(0,0,k).

From the symmetry (2.7) of the eigenfunctions u; and u3, we write the spectral functions S; (k) and
S»(k) as

_ (ai(k) =bi(—k) _ (a2(k) —ba(—k)
Sitk) = <b1<k> a1 (—k) > S26) = (bz<k> ax(—k) >

Since det S (k) = detS»(k) = 1, we find the identites
ay(k)ai(—k)+ by (k)b (—k) =1, az(k)ax(—k) + by (k)ba(—k) = 1.
Furthermore, we define
D(x, k) = W3 (x,0,k),  W(y,k) = 1 (0,,k),

that is, the functions @ and W satisfy the following integral equations

O(x,k) =1— /w e~ R=8)8 (0D (E,k)dE, ke (DUDy,D3UDy), 0<x<oo, (3.3a)

x
W(y,k)=1— i/w e~ @008 (How)(n,k)dn, ke (DyUD3,DiUD,), 0<y<oo, (3.3b)
y
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where Qo(x,k) = Q(x,0,k) and Qy(y,k) = Q(0,y, —k). Note that
S (k) = q)(07k)7 Sl(k) = lP(Oak)a

which immediately imply that the spectral functions a; (k) and b; (k) have analytic continuations
for Imk < 0, while the spectral functions a,(k) and b, (k) have analytic continuations for Rek < 0.
Moreover, due to the symmetry (2.7), the functions ¢ and W also can be written as

_ P (x7k) % (xv—k) _ Y (yvk) -¥ (ya_k)
Blxk) = (cbioc,k) &1 (x, k) ) Fok = <\P§<x,k> (3, k) )

We now define the integral representations for the spectral functions below.

Definition 3.1. Given ¢(x,0) = go(x) and g,(x,0) = g;(x), the map

{g0(x), 1(x)} = {ai(k), bi(k)} (3.4)
is defined by

) =1 [ {5 oma®) - 1)

(@ +a@+ R g0 fer,  me<o, G5

n0 == [0 (i) + 1) - T e

—2ik(coshg0(§)— 1)c1>2(5,k)}d§, fmk <0, (3.5b)

where the functions ®; and &, are solutions of the x-part of the Lax pair (2.1a) with y = 0, that is,
@, and P, solve the following system of ordinary differential equations:

1] inh
D= [2lk (coshgo(x) — 1) Py — (ig'o(x) +e1(x) + mziﬁ) @2} ’ (3.62)
sinh go(x)

2k

@2, 201 (022 = § | (1e0(0)+ 10 ;

) D, — L (coshgp(x) —1) CIDZ] (3.6b)

with lim (®;,®,) = (1,0).

X—vo0

Definition 3.2. Given ¢(0,y) = fo(y) and ¢,(0,y) = fi(y), the map

{fo»), f1(x)} = {az(k), b2(k)} (3.7
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is defined by

_1_,/ { (cosh fo(n) —1)¥1(n,k)

—(if1<n>+fo<n>—Si‘“‘{;(’”)wz<n,k>}dn, Rek<0, (s
v R
3 ez { (inm + m+ ) .

2k(coshfo( )—l)wz(n,k)}dn, Rek <0, (3.8b)

where the functions W and W, are solutions of the y-part of the Lax pair (2.1b) with x = 0, that is,
¥, and ¥; solve the following system of ordinary differential equations:

i

w1, = [ o)~ %1~ (i) + i)~ S ) ). (3.9

2k
Wy () = [(zf()( Vi) + hzf;’(”) W14 (cosh fo(y) - 1>%} (3.90)

with lim (¥, %) = (1,0).
y—roo

In what follows we derive the global relation which is the key to applying the Fokas method for
boundary value problems. Since the differential 1-form W (x,y,k) is closed, we know that

/ OB O(E (1) — 0,
aIQ
The above integral can be evaluated explicitly and we find the following global relation

/ e % 0(x,0, k) (x,0, k)dx = i / ™% 0(0,y, —k)u(0,y, k)dy. (3.10)
0 0

Taking p = us and using (3.2), equation (3.10) yields
1-81(k) = (I—S2(k))S,"'S1(k),

which implies that S5 (k)S; (k) = I for k € (D3,D;). Therefore, we obtain the global relation in
terms of the spectral functions

a (k) = az(k), by (k) = bz(k), k € Ds3. 3.11)

Furthermore, substituting S, ' (k)S; (k) = I into equation (3.2), we know that 3 (x,y,k) = p (x,y, k)
for k € (D3,D;) and hence, we find

w® (k) = 1 (x,3,k), ke Ds, (3.12a)
ul™ ey k) = 1" (x,3,k), keD. (3.12b)
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3.2. Spectral analysis at boundary values

In this section we discuss the spectral analysis for the Lax pair at x = 0 and y = 0, respectively, so
that the boundary values can be characterized from the spectral functions.

Proposition 3.1. The inverse map

{al(k)vbl(k)} — {Q(xao)aQy(xvo)} (313)

to the map defined in Definition 3.1 is given by

_ s ) _ g1 )2
coshq(x,0) = 1 -8 lim kM{}, — 8 lim (k)" (3.14a)
iq:(x,0) +q(x,0) = —4i lim kMY (3.14b)

where MY is the solution of the matrix Riemann-Hilbert problem:
MY (k) = MY (0, 0)I0 (x,k),  keR, (3.15)

with the jump matrix J given by

1 bi(=k) ,—20 (k)x
IO (x,k) = ) ai(k) ., keR. (3.16)

£20 (k)x 1
at-o¢ a®ar(H)

Proof. The proof is based on the spectral analysis to equation (3.1a) with y = 0:
143(x,0,k) = pa (x,0,k)e @ ® 05, (k), ke (RY,R7), 0<x<oo. (3.17)

Note that the eigenfunction ,uél) (x,0,k) is analytic and bounded for k € D; U D, and the function
,u2(3) (x,0,k) is analytic and bounded for k € D3 UDy. Thus, we formulate the matrix Riemann-Hilbert
problem (3.15) with the jump matrix J& (x,k) given by (3.16), where the sectionally meromorphic

functions Mj(f ) are defined by

(1)
x My (x,0,k
Mi)(x,k) = <2al((k))7 u3(12) (X,O,k)) s Imk > O,

(3)
k
M(_x)(x,k) = ‘u3534)(x7()7k)’ M . Imk<O0.
a1 (k)

Note that detME,fc) =1 and Mg) = I+ 0O(1/k) as k — oo. Thus, we expand the solution M™) of the
Riemann-Hilbert problem as
MV (x) M (x)

MY (x,k) =1+ ot

O(1/k*),  k— oo, (3.19)

Substituting this expansion into the x-part of the Lax pair (2.1a) with y = 0, from the (2,1)-
component at O(1), we find

iq(x,0) +gy(x,0) = —4iM§i)(x) (3.20)
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and the (1, 1)-component at O(1/k) yields

ML) =~ (cosha(x,0) — 1) — 7 (ig(x,0) + 4,(x,0)) M3} (x).

Simplifying the above equation with (3.20), we obtain
coshq(x,0) = 1 — 8im! L) (x) — 8 (Mg)(x))z.
and hence equations (3.14) are proved.
Proposition 3.2. The inverse map
{aa(k),b2(k)} = {4(0,),4x(0,y)}
to the map defined in Definition 3.2 is given by

11y koo 21 ’

ig:x(0,5) +,(0,) = —4i lim kM),

coshgq(0,y) = 1+ 8 lim kM
k—>oo

where M) is the solution of the matrix Riemann-Hilbert problem:
MY (y.k) = MY (3, )T (v,k),  keiR,

with the jump matrix J©) given by

1 ba(=k) ,—2an(k)y
») a(k) € .
JY (v, k) = ba(k) 2w (k)y 1 , k € iR.

ar(—k) az (k)ax (—k)

3.21)

(3.22)

(3.23)

(3.24a)

(3.24b)

(3.25)

(3.26)

Proof. The proof is similar to that of Proposition 3.1. From the spectral relation (3.1b) with x = 0,

we find the jump matrix J©) (y,k) given in (3.26) and the sectionally meromorphic functions M

given by

1)
0,7,k
MY (y,k) = (“2@((_%)) ,li1(14)(0,y,k)> . Rek>0,

(23) HES)(Ov)@k)

Mg))(y7k) — <.u'1 (O7y7k)7 az(k) ) 5 Rek < 0

with detMi_y ) =1 and M(iy) =1+ O(1/k) as k — oo. Note that the eigenfunction

(3)

)

(0,y,k) is

analytic and bounded for k € Dy U Dy and the function u,™ (0,y,k) is analytic and bounded for k €
D, U Ds. In the similar way presented in the proof of Proposition 3.1, equations (3.24) follow. [
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4. Riemann-Hilbert problem

Using equations (3.1), the global relation (3.11) and (3.12), we formulate the following matrix
Riemann-Hilbert problem:

M_(x,y,k) = My (x,y,k)J (x,y,k), k€2, 4.1)
where the oriented contours . = Ly UL, U L3 ULy are given by (cf. Fig. 2)

Li =D1NDay, L, =DyNDs, (4.2a)
L3y = D3N Dy, Ly=DsNDy, (4.2b)

and the jump matrices are defined by

1 0
Jl(xvYak) = ( bz((k))eZO(x,y,k) 1) , kel (4.3a)
ay(—k
__bi(=k) e—29(x,y,k) 1
By k=1 W o) kelz (4.3b)
(k) e—29(x,y,k) 1
J3(x, k) = a(k) | o) k € L, (4.3¢)
1 0
Li(x,y k) = I3 s = ( ) 2ot 1) , kel (4.3d)
aj —k

with 0(x,y,k) = @ (k)x + @, (k)y. The matrix-valued functions M. are sectionally meromorphic

and defined below
Nél) (14)
keD
a(Ry ) EET

My (x,y,k) = ) (4.4a)
23) M
, , k € D3,
(:u] a (k) > 3

(N1(23)7 Ng(m), ke D,

M (x,y,k) = (4.4b)
(6, ™), keDy

Note that detMy = 1 and My =1+ O(1/k) as k — c. The Riemann-Hilbert problem (4.1) can be
solved by a Cauchy-type integral equation. Indeed, letting / = I — J, equation (4.1) becomes

M—‘r(xayvk) _M—(vavk) = M—‘r(xayvk)f(xvy?k)' (45)

Applying the Plemelj formula [9], the solution M of the Riemann-Hilbert problem (4.1) can be
expressed as

/

1 - dk
M =I+— | M ! ! .
(x)yvk) +2i7f /f +(x7yak)‘](xayak)k/_k

Note that
1 -
M(xy,k) =1——— / M (2,3, K )T (x,y. K )dK + O(1/K2), &k — oo,
2ikw J
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Then the solution of the elliptic sinh-Gordon equation in the quarter plane can be obtained in
terms of the unique solution of the Riemann-Hilbert problem. In this respect, we expand the solution
M of the Riemann-Hilbert problem (4.1) as

(1 )

- i +0(1/k*),  k— oo. (4.6)

Substituting this expansion into the x-part of the Lax pair (2.1a), the (2,1)-component at O(1)
implies

. (1

ig(x,3) + g (x,) = ~4iMy (x.) “.7)

and the (1, 1)-component at O(1/k) yields

1 L,
Mip(x.y) = = g (coshq(x.y) = 1) =  (igs(x,3) + gy (5,3)) My ().

Simplifying the above equation with (4.7), we obtain the reconstruction formula for the solution of
(1.1) given by

X

2
coshq(x,y) = 1 - 8iM{},(x,y) — 8 (M3})) . 4.8)

Similarly, if we substitute the expansion (4.6) into the y-part of the Lax pair, the solution is equiva-
lently given by

2
coshq(x,y) = 1+8M}) (x,y) +8 (M4})) . 4.9)

We now state the existence theorem for the elliptic sinh-Gordon equation in the quarter plane.

Theorem 4.1. Assume that the functions g;(x), f;(y) € H'(R"), j =0, 1, with the sufficiently small
H' norms. Let the functions ay (k), by (k), ax(k) and by (k) be given by (3.5) and (3.8) in Definitions
3.1 and 3.2, respectively. Suppose that given go(x) and g (x), there exist functions fo(y) and fi(y)
such that the global relation is satisfied

aj(k) =ap(k) and by(k)=Dby(k) k€ Ds. (4.10)
Let M(x,y,k) be the solution of the following matrix Riemann-Hilbert (RH) problem
M_(x,y,k) = M, (x,y,k)J (x,y,k), ke Z, 4.11)

where det(My) = 1, My =1+ O(1/k) as k — oo, the oriented contours £ are defined in (4.2) and
the jump matrices J are given in (4.3).
Then the Reimann-Hilbert problem is uniquely solvable and the function q(x,y) defined by

igy +qy = —4i lim kM>,, coshg(x,y) = 1 —8ilim kM;, — 8 lim (kM21)2 4.12)
k—roo k—soo k—soo
solves the elliptic sinh-Gordon equation (1.1) satisfying the boundary conditions

Q(xvo) :go(x), Qy(x’o) :gl(x)v (4.13a)
q(0,y) = fo(y),  x(0,y) = fi(y). (4.13b)
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Proof. By applying the vanishing lemma and the dressing method discussued in [9, 14], it can be
proved that the Riemann-Hilbert problem (4.11) is uniquely solved and that g(x,y) defined in (4.12)
solves the elliptic sinh-Gordon equation (1.1) (see also before Theorem).

We will prove that ¢(x,y) given in (4.12) satisfies the boundary values. In this respect, it requires
to show that the Riemann-Hilbert problem (4.11) with y = 0 and x = 0 are equivalent to the
Riemann-Hilbert problems (3.15) and (3.25) given in Propositions 3.1 and 3.2, respectively.

Regarding equation (4.13a), define

M(X,O,k), keDl,
—1
()C) — M('x707k) 1 (x707k)7 k G DZ’
MK =9 M 0,005 (v, 0,K)F (v.K), k€ D, (4.14)
M(x,0,k)F (x,k), k& Dy,
where
bi(—k) ,—20 (k)x
F(xk) = <(1) a (k) el ) : (4.15)

We denote M (x,0,k) and M) (x,k) for k € Dj, j=1,--- ,4, by M;(x,0,k) and MJ(.X) (x,k), respec-
tively. Then, we can write (4.11) and (4.14) as

Ms(x,0,k) = MyJy (x,0,k),  Ms(x,0,k) = MsJa(x,0,k), (4.162)
M4(x,(),k) = M3J3(x,0,k), M4(x,0,k) = M1J4(X,0,k), (4.16b)
and
MY (k) =My (x,0,k), M (x,k) = My (x,0,k), (4.17a)
MY (x,k) = MaJs(x,0,K)F (x,k), M (x,k) = My(x,0,k)F (x, k). (4.17b)

Combining (4.17) with (4.16), we find the following jump conditions

MY (k) =MD k), MY (x,k) = MSY (x, k) Ja(x,0,k)F (x,k), (4.182)
MY (k) =MD (e k), MY (k) = MY (x, k) T4 (x,0,k)F (x, k). (4.18b)

Note that J4(x,0,k)F (x,k) = J®) (x, k), where J® (x, k) is given in (3.16), and no jumps occur along
the contours L; and L3 . Defining

MY (x,k) = MY (x,k) k€D UD,,
MY (x,k) = M (x,k) ke D3UD;,

we know that equations (4.16) are equivalent to the Riemann-Hilbert problem (3.15) with the jump
matrix J®) (x, k). Thus, the proof that the function g(x, y) satisfies the boundary values (4.13a) imme-
diately follows from evaluating (4.12) at y = 0.

In a similar way, equation (4.13b) can be proved. O

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors
138



G. Hwang / The Elliptic Sinh-Gordon Equation in the Quarter Plane

5. Concluding remarks

In conclusion, we have studied the boundary value problem for the elliptic sinh-Gordon equa-
tion formulated in the quarter plane by using the Fokas method. Based on the Lax pair formula-
tion we have derived the global relation that involves all boundary values {g(x,0), g,(x,0)} and
{¢(0,y), ¢x(0,y)}. Furthermore, if the boundary values satisfy the global relation, we have pre-
sented the existence of the unique solution for the elliptic sin-Gordon equation in the quarter plane.
It also has been shown that the solution can be expressed in terms of the unique solution of the
Riemann-Hilbert problem with the jump matrices defined by the spectral functions {a;(k),b;(k)}
and {ay(k),by(k)}.

It should be remarked that using the global relation, we have determined the spectral func-
tions {ay(k),bi(k)} and {ax(k),b>(k)} in terms of the boundary values {g(x,0), g,(x,0)} and
{q(0,y), ¢+(0,y)}. However, it is not necessary to prescribe all boundary values for well-posed
boundary value problems. Thus, it should be required to characterize unknown boundary values,
called the Dirichlet to Neumann map [8, 11]. This characterization can be done by analyzing the
global relation as was done in [12, 13] and we will discuss this issue in the near future.
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