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We study the elliptic sinh-Gordon equation formulated in the quarter plane by using the so-called Fokas method,

which is a significant extension of the inverse scattering transform for the boundary value problems. The method

is based on the simultaneous spectral analysis for both parts of the Lax pair and the global algebraic relation

that involves all boundary values. In this paper, we address the existence theorem for the elliptic sinh-Gordon

equation posed in the quarter plane under the assumption that the boundary values satisfy the global relation.

We also present the formal representation of the solution in terms of the unique solution of the matrix Riemann-

Hilbert problem defined by the spectral functions.
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1. Introduction

We study the boundary problem for the elliptic sinh-Gordon equation posed in the quarter plane

qxx +qyy = sinhq, (x,y) ∈ Ω, (1.1)

where Ω = {(x,y) ∈ R
2 : 0 < x < ∞, 0 < y < ∞}. It is noted that this equation arises as models of

interacting charged particles in plasma physics [16]. On the other hand, of interest is the integrability

for the equation; the elliptic sinh-Gordon equation is a reduction of the special case of the Toda

lattice equations [1]. As a consequence, the usual inverse scattering transform can be used to solve

the elliptic sinh-Gordon equation in the entire plane {−∞ < x,y < ∞} [3, 16]. Regarding more

complicated domains, the so-called Fokas method is remarkably elegant for solving boundary value

problems. The method is widely used to analyze a large class of partial differential equations and

hence, it can be considered as a significant generalization of the inverse scattering transform [2,4,5,

7] (see also the monograph [9] and recent applications [10, 15]). Recently, the elliptic sinh-Gordon

equation posed in the half plane {−∞ < x < ∞, 0 < y < ∞} was studied by applying the Fokas

method [14]. It has been shown that the solution of the equation in the half plane exists provided that

the boundary values satisfy the global algebraic relation that is the simple but substantial equation

involving all boundary values. In the implementation of the Fokas method, the global relation is

crucial in proving the existence of the unique solution and characterizing unknown boundary values

called the generalized Dirichlet to Neumann map [8].

In this paper, we implement the Fokas method to analyze the elliptic sinh-Gordon equation

posed in the quarter plane (1.1). Based on the spectral analysis in the Lax pair, we derive global

relation in terms of the spectral functions. We then formulate the matrix Riemann-Hilbert problem
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with the jump matrices defined uniquely by the spectral functions. These spectral functions denoted

by {a1(k),b1(k)} and {a2(k),b2(k)} can be determined from the boundary values {q(x,0), qy(x,0)}
and {q(0,y), qx(0,y)}, respectively. Moreover, we show that the given boundary values with appro-

priate regularity condition, the solution for (1.1) uniquely exists if the boundary values satisfy the

global relation. In addition to the existence of the solution, we address the formal representation for

the solution in terms of the unique solution of the Riemann-Hilbert problem (see [14, 17, 18] for

analogous results).

The outline of the paper is following. In section 2, we introduce the Lax pair for the elliptic sinh-

Gordon equation and the regularity assumption for the boundary values as well as relevant notations

and formulas. In section 3, we derive the global relation and we then define spectral functions that

determine the jump matrices for the Riemann-Hilbert problem. Moreover, we apply the spectral

analysis for the Lax pair at x = 0 and y = 0 in order to characterize the boundary values. In section

4, the existence of the solution is discussed by analyzing the the matrix Riemann-Hilbert problem

as an inverse problem. We end with concluding remarks in section 5.

2. Preliminaries

It is well known that the elliptic sinh-Gordon equation (1.1) can be written as an overdetermined

linear system called a Lax pair [3, 14, 16]

μx +ω1(k) [σ3,μ] = Q(x,y,k)μ, (2.1a)

μy +ω2(k) [σ3,μ] = iQ̃(x,y,k)μ, (2.1b)

where k ∈ C is a spectral parameter, μ is a 2×2 matrix-valued eigenfunction and

ω1(k) =− 1

2i

(
k− 1

4k

)
, ω2(k) =−1

2

(
k+

1

4k

)
, (2.2)

Q(x,y,k) =
1

4

(
i

2k (coshq−1) −
(

r+ sinhq
2k

)
r− sinhq

2k − i
2k (coshq−1)

)
(2.3)

with

Q̃(x,y,k) = Q(x,y,−k), (2.4)

r(x,y) = iqx(x,y)+qy(x,y), σ3 =

(
1 0

0 −1

)
(2.5)

and the matrix commutator given by [σ3,A] = σ3A−Aσ3.

Note that the elliptic sinh-Gordon equation (1.1) is the compatible condition for the Lax pair

(2.1); μxy = μyx in the Lax pair (2.1) implies that the function q(x,y) solves (1.1) provided that the

spectral parameter k is independent of x and y. From the definitions of ω1(k) and ω2(k), it follows

that

Reω1(k) =−1

8

(
4+

1

|k|2
)

Imk, Reω2(k) =−1

8

(
4+

1

|k|2
)

Rek.

Thus, we find

Reω1(k)< 0 for Imk > 0, Reω2(k)< 0 for Rek > 0. (2.6)
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Fig. 1. The three distinct points for the definition of the eigenfunction μ j, j = 1,2,3

Due to the symmetry of Q and Q̃, the eigenfunction possesses the same symmetry, namely,

μ11(x,y,k) = μ22(x,y,−k), μ21(x,y,k) =−μ12(x,y,−k), (2.7)

where the subscripts denote the (i, j)-component of the matrix.

It is convenient to introduce the notation σ̂A = [σ3,A] for the matrix commutator. Using this

notation, we let the following notation

eσ̂3ξ A = eσ3ξ Ae−σ3ξ =

(
a11 e2ξ a12

e−2ξ a21 a22

)
.

We also denote boundary values by

q(x,0) = g0(x), qy(x,0) = g1(x), (2.8a)

q(0,y) = f0(y), qx(0,y) = f1(y), (2.8b)

where we assume that g j, f j ∈ H1 (R+) for j = 0,1.

In order to analyze the Lax pair (2.1), we first define a differential 1-form W given by

W (x,y,k) = Q(x,y,k)μ(x,y,k)dx+ iQ̃(x,y,k)μ(x,y,k)dy, (2.9)

which implies that (2.1) is equivalent to the form

d
[
e(ω1(k)x+ω2(k)y)σ̂3 μ(x,y,k)

]
= e(ω1(k)x+ω2(k)y)σ̂3W (x,y,k).

Hence, we define eigenfunctions that satisfy both parts of the Lax pair (2.1) as

μ j(x,y,k) = I +
∫ (x,y)

(x j,y j)
e−(ω1(k)(x−ξ )+ω2(k)(y−η))σ̂3Wj(ξ ,η ,k), (2.10)

where (x,y),(x j,y j) ∈ Ω = {0 < x < ∞, 0 < y < ∞} and Wj is the differential form defined by (2.9)

with μ j. Since the differential 1-form W (x,y,k) is closed, the integration in (2.10) does not depend
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on paths [6]. In particular, we choose three distinct points (x j,y j) in Ω, j = 1,2,3 (see Fig. 1),

(x1,y1) = (x,∞), (x2,y2) = (0,0), (x3,y3) = (∞,y).

More specifically, the eigenfunctions associated with the points (x j,y j), j = 1,2,3, satisfy the fol-

lowing integral equations:

μ1(x,y,k) =I − i
∫ ∞

y
e−ω2(k)(y−η)σ̂3

(
Q̃μ1

)
(x,η ,k)dη , (2.11a)

μ2(x,y,k) =I +
∫ x

0
e−ω1(k)(x−ξ )σ̂3 (Qμ2)(ξ ,y,k)dξ

+ i
∫ y

0
e−(ω1(k)x+ω2(k)(y−η))σ̂3

(
Q̃μ2

)
(0,η ,k)dη , (2.11b)

μ3(x,y,k) =I −
∫ ∞

x
e−ω1(k)(x−ξ )σ̂3 (Qμ3)(ξ ,y,k)dξ . (2.11c)

It should be remarked that the off-diagonal components of the matrix-valued eigenfunctions μ j

involve the explicit exponential terms. Thus, according to equations (2.6), let the domains D j in the

complex k-plane, j = 1, · · · ,4, be depicted in Fig. 2 and be defined by

D1 = {k ∈ C : Reω1(k)< 0}∩{k ∈ C : Reω2(k)< 0} ,
D2 = {k ∈ C : Reω1(k)< 0}∩{k ∈ C : Reω2(k)> 0} ,
D3 = {k ∈ C : Reω1(k)> 0}∩{k ∈ C : Reω2(k)> 0} ,
D4 = {k ∈ C : Reω1(k)> 0}∩{k ∈ C : Reω2(k)< 0} .

As a result, the domains of analyticity and boundedness for the eigenfunctions can be determined:

• μ1(x,y,k) is analytic and bounded for k ∈ (D2 ∪D3,D1 ∪D4),

• μ2(x,y,k) is analytic and bounded for k ∈ (D1,D3),

• μ3(x,y,k) is analytic and bounded for k ∈ (D3 ∪D4,D1 ∪D2).

For convenience, we write each column of μ j(x,y,k) as the following notations:

μ1 =
(

μ(23)
1 ,μ(14)

1

)
, μ2 =

(
μ(1)

2 ,μ(3)
2

)
, μ3 =

(
μ(34)

3 ,μ(12)
3

)
,

where the superscripts indicate the analytic and bounded domains D j, j = 1, · · · ,4, for the columns

of the matrix-valued eigenfunctions. Using integration by parts, note that in the appropriate domain

μ j(x,y,k) = I +O(1/k) as k → ∞. (2.13)

Since the matrices Q and Q̃ are traceless (i.e. trace(Q)=trace(Q̃)=0), equation (2.13) implies that

det μ j = 1, j = 1,2,3.

3. Spectral analysis

3.1. Spectral functions

The matrix eigenfunctions μ1, μ2 and μ3 are both fundamental solutions of the Lax pair (2.1). Note

that μ2(0,0,k) = I. Hence, the eigenfunctions are related by the so-called spectral functions, also
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Re k
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J4

J1

J2

J3
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L2

L3

D1D2

D3 D4

Fig. 2. The domain D j and the oriented contour L j, j = 1, · · · ,4

known as the scattering matrices, S1(k) and S2(k):

μ3(x,y,k) = μ2(x,y,k)e−(ω1(k)x+ω2(k)y)σ̂3S1(k), k ∈ (R+,R−) , 0 ≤ x,y < ∞, (3.1a)

μ1(x,y,k) = μ2(x,y,k)e−(ω1(k)x+ω2(k)y)σ̂3S2(k), k ∈ (iR+, iR−) , 0 ≤ x,y < ∞. (3.1b)

Substituting (3.1b) into (3.1a), of course, equations (3.1) are determined in the form

μ3(x,y,k) = μ1(x,y,k)e−(ω1(k)x+ω2(k)y)σ̂3
(
S−1

2 (k)S1(k)
)
, k ∈ (∂D1,∂D3) . (3.2)

Letting x = 0 and y = 0 in (3.1), the spectral functions are given by

S1(k) = μ3(0,0,k), S2(k) = μ1(0,0,k).

From the symmetry (2.7) of the eigenfunctions μ1 and μ3, we write the spectral functions S1(k) and

S2(k) as

S1(k) =
(

a1(k) −b1(−k)
b1(k) a1(−k)

)
, S2(k) =

(
a2(k) −b2(−k)
b2(k) a2(−k)

)
.

Since detS1(k) = detS2(k) = 1, we find the identites

a1(k)a1(−k)+b1(k)b1(−k) = 1, a2(k)a2(−k)+b2(k)b2(−k) = 1.

Furthermore, we define

Φ(x,k) = μ3(x,0,k), Ψ(y,k) = μ1(0,y,k),

that is, the functions Φ and Ψ satisfy the following integral equations

Φ(x,k) = I −
∫ ∞

x
e−ω1(k)(x−ξ )σ̂3(Q0Φ)(ξ ,k)dξ , k ∈ (D1 ∪D2,D3 ∪D4) , 0 ≤ x < ∞, (3.3a)

Ψ(y,k) = I − i
∫ ∞

y
e−ω2(k)(y−η)σ̂3(Q̃0Ψ)(η ,k)dη , k ∈ (D2 ∪D3,D1 ∪D4) , 0 ≤ y < ∞, (3.3b)
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where Q0(x,k) = Q(x,0,k) and Q̃0(y,k) = Q(0,y,−k). Note that

S1(k) = Φ(0,k), S2(k) = Ψ(0,k),

which immediately imply that the spectral functions a1(k) and b1(k) have analytic continuations

for Imk < 0, while the spectral functions a2(k) and b2(k) have analytic continuations for Rek < 0.

Moreover, due to the symmetry (2.7), the functions Φ and Ψ also can be written as

Φ(x,k) =
(

Φ1(x,k) −Φ2(x,−k)
Φ2(x,k) Φ1(x,−k)

)
, Ψ(y,k) =

(
Ψ1(y,k) −Ψ2(y,−k)
Ψ2(x,k) Ψ1(y,−k)

)
.

We now define the integral representations for the spectral functions below.

Definition 3.1. Given q(x,0) = g0(x) and qy(x,0) = g1(x), the map

{g0(x), g1(x)}→ {a1(k), b1(k)} (3.4)

is defined by

a1(k) =1− 1

4

∫ ∞

0

{
i

2k
(coshg0(ξ )−1)Φ1(ξ ,k)

−
(

iġ0(ξ )+g1(ξ )+
sinhg0(ξ )

2k

)
Φ2(ξ ,k)

}
dξ , Imk < 0, (3.5a)

b1(k) =− 1

4

∫ ∞

0
e−2ω1(k)ξ

{(
iġ0(ξ )+g1(ξ )− sinhg0(ξ )

2k

)
Φ1(ξ ,k)

− i
2k

(coshg0(ξ )−1)Φ2(ξ ,k)
}

dξ , Imk < 0, (3.5b)

where the functions Φ1 and Φ2 are solutions of the x-part of the Lax pair (2.1a) with y = 0, that is,

Φ1 and Φ2 solve the following system of ordinary differential equations:

Φ1x =
1

4

[
i

2k
(coshg0(x)−1)Φ1 −

(
iġ0(x)+g1(x)+

sinhg0(x)
2k

)
Φ2

]
, (3.6a)

Φ2x −2ω1(k)Φ2 =
1

4

[(
iġ0(x)+g1(x)− sinhg0(x)

2k

)
Φ1 − i

2k
(coshg0(x)−1)Φ2

]
(3.6b)

with lim
x→∞

(Φ1,Φ2) = (1,0).

Definition 3.2. Given q(0,y) = f0(y) and qx(0,y) = f1(y), the map

{ f0(y), f1(x)}→ {a2(k), b2(k)} (3.7)
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is defined by

a2(k) =1− i
4

∫ ∞

0

{
− i

2k
(cosh f0(η)−1)Ψ1(η ,k)

−
(

i f1(η)+ ḟ0(η)− sinh f0(η)

2k

)
Ψ2(η ,k)

}
dη , Rek < 0, (3.8a)

b2(k) =− i
4

∫ ∞

0
e−2ω2(k)η

{(
i f1(η)+ ḟ0(η)+

sinh f0(ξ )
2k

)
Ψ1(η ,k)

+
i

2k
(cosh f0(η)−1)Ψ2(η ,k)

}
dη , Rek < 0, (3.8b)

where the functions Ψ1 and Ψ2 are solutions of the y-part of the Lax pair (2.1b) with x = 0, that is,

Ψ1 and Ψ2 solve the following system of ordinary differential equations:

Ψ1y =
i
4

[
− i

2k
(cosh f0(y)−1)Ψ1 −

(
i f0(y)+ ḟ1(y)− sinh f0(y)

2k

)
Ψ2

]
, (3.9a)

Ψ2y −2ω2(k)Ψ2 =
i
4

[(
i f0(y)+ ḟ1(y)+

sinh f0(y)
2k

)
Ψ1 +

i
2k

(cosh f0(y)−1)Ψ2

]
(3.9b)

with lim
y→∞

(Ψ1,Ψ2) = (1,0).

In what follows we derive the global relation which is the key to applying the Fokas method for

boundary value problems. Since the differential 1-form W (x,y,k) is closed, we know that

∫
∂Ω

e(ω1(k)x+ω2(k)y)σ̂3W (x,y,k) = 0.

The above integral can be evaluated explicitly and we find the following global relation

∫ ∞

0
eω1(k)xσ̂3Q(x,0,k)μ(x,0,k)dx = i

∫ ∞

0
eω2(k)yσ̂3Q(0,y,−k)μ(0,y,k)dy. (3.10)

Taking μ = μ3 and using (3.2), equation (3.10) yields

I −S1(k) = (I −S2(k))S−1
2 S1(k),

which implies that S−1
2 (k)S1(k) = I for k ∈ (D3,D1). Therefore, we obtain the global relation in

terms of the spectral functions

a1(k) = a2(k), b1(k) = b2(k), k ∈ D3. (3.11)

Furthermore, substituting S−1
2 (k)S1(k) = I into equation (3.2), we know that μ3(x,y,k) = μ1(x,y,k)

for k ∈ (D3,D1) and hence, we find

μ(23)
1 (x,y,k) = μ(34)

3 (x,y,k), k ∈ D3, (3.12a)

μ(14)
1 (x,y,k) = μ(12)

3 (x,y,k), k ∈ D1. (3.12b)
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3.2. Spectral analysis at boundary values

In this section we discuss the spectral analysis for the Lax pair at x = 0 and y = 0, respectively, so

that the boundary values can be characterized from the spectral functions.

Proposition 3.1. The inverse map

{a1(k),b1(k)}→ {q(x,0),qy(x,0)} (3.13)

to the map defined in Definition 3.1 is given by

coshq(x,0) = 1−8i lim
k→∞

kM(x)
11x −8 lim

k→∞

(
kM(x)

21

)2

, (3.14a)

iqx(x,0)+qy(x,0) =−4i lim
k→∞

kM(x)
21 , (3.14b)

where M(x) is the solution of the matrix Riemann-Hilbert problem:

M(x)
− (x,k) = M(x)

+ (x,k)J(x)(x,k), k ∈ R, (3.15)

with the jump matrix J(x) given by

J(x)(x,k) =

(
1

b1(−k)
a1(k)

e−2ω1(k)x

b1(k)
a1(−k)e

2ω1(k)x 1
a1(k)a1(−k)

)
, k ∈ R. (3.16)

Proof. The proof is based on the spectral analysis to equation (3.1a) with y = 0:

μ3(x,0,k) = μ2(x,0,k)e−ω1(k)xσ̂3S1(k), k ∈ (R+,R−) , 0 ≤ x < ∞. (3.17)

Note that the eigenfunction μ(1)
2 (x,0,k) is analytic and bounded for k ∈ D1 ∪D2 and the function

μ(3)
2 (x,0,k) is analytic and bounded for k∈D3∪D4. Thus, we formulate the matrix Riemann-Hilbert

problem (3.15) with the jump matrix J(x)(x,k) given by (3.16), where the sectionally meromorphic

functions M(x)
± are defined by

M(x)
+ (x,k) =

(
μ(1)

2 (x,0,k)
a1(−k)

, μ(12)
3 (x,0,k)

)
, Imk > 0,

M(x)
− (x,k) =

(
μ(34)

3 (x,0,k),
μ(3)

2 (x,0,k)
a1(k)

)
, Imk < 0.

Note that detM(x)
± = 1 and M(x)

± = I +O(1/k) as k → ∞. Thus, we expand the solution M(x) of the

Riemann-Hilbert problem as

M(x)(x,k) = I +
M(1)(x)

k
+

M(2)(x)
k2

+O(1/k2), k → ∞. (3.19)

Substituting this expansion into the x-part of the Lax pair (2.1a) with y = 0, from the (2,1)-

component at O(1), we find

iqx(x,0)+qy(x,0) =−4iM(1)
21 (x) (3.20)
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and the (1,1)-component at O(1/k) yields

M(1)
11x(x) =− 1

8i
(coshq(x,0)−1)− 1

4
(iqx(x,0)+qy(x,0))M(1)

21 (x). (3.21)

Simplifying the above equation with (3.20), we obtain

coshq(x,0) = 1−8iM(1)
11x(x)−8

(
M(1)

21 (x)
)2

. (3.22)

and hence equations (3.14) are proved.

Proposition 3.2. The inverse map

{a2(k),b2(k)}→ {q(0,y),qx(0,y)} (3.23)

to the map defined in Definition 3.2 is given by

coshq(0,y) = 1+8 lim
k→∞

kM(y)
11y +8 lim

k→∞

(
kM(y)

21

)2

, (3.24a)

iqx(0,y)+qy(0,y) =−4i lim
k→∞

kM(y)
21 , (3.24b)

where M(y) is the solution of the matrix Riemann-Hilbert problem:

M(y)
− (y,k) = M(y)

+ (y,k)J(y)(y,k), k ∈ iR, (3.25)

with the jump matrix J(y) given by

J(y)(y,k) =

(
1

b2(−k)
a2(k)

e−2ω2(k)y

b2(k)
a2(−k)e

2ω2(k)y 1
a2(k)a2(−k)

)
, k ∈ iR. (3.26)

Proof. The proof is similar to that of Proposition 3.1. From the spectral relation (3.1b) with x = 0,

we find the jump matrix J(y)(y,k) given in (3.26) and the sectionally meromorphic functions M(y)
±

given by

M(y)
+ (y,k) =

(
μ(1)

2 (0,y,k)
a2(−k)

, μ(14)
1 (0,y,k)

)
, Rek > 0,

M(y)
− (y,k) =

(
μ(23)

1 (0,y,k),
μ(3)

2 (0,y,k)
a2(k)

)
, Rek < 0

with detM(y)
± = 1 and M(y)

± = I + O(1/k) as k → ∞. Note that the eigenfunction μ(1)
2 (0,y,k) is

analytic and bounded for k ∈ D1 ∪D4 and the function μ(3)
2 (0,y,k) is analytic and bounded for k ∈

D2 ∪D3. In the similar way presented in the proof of Proposition 3.1, equations (3.24) follow.
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4. Riemann-Hilbert problem

Using equations (3.1), the global relation (3.11) and (3.12), we formulate the following matrix

Riemann-Hilbert problem:

M−(x,y,k) = M+(x,y,k)J(x,y,k), k ∈ L , (4.1)

where the oriented contours L = L1 ∪L2 ∪L3 ∪L4 are given by (cf. Fig. 2)

L1 = D1 ∩D2, L2 = D2 ∩D3, (4.2a)

L3 = D3 ∩D4, L4 = D4 ∩D1, (4.2b)

and the jump matrices are defined by

J1(x,y,k) =

(
1 0

b2(k)
a1(−k)e

2θ(x,y,k) 1

)
, k ∈ L1, (4.3a)

J2(x,y,k) =

(
− b1(−k)

a1(k)
e−2θ(x,y,k) 1

1 0

)
, k ∈ L2, (4.3b)

J3(x,y,k) =

(
− b2(−k)

a1(k)
e−2θ(x,y,k) 1

1 0

)
, k ∈ L3, (4.3c)

J4(x,y,k) = J1J−1
2 J3 =

(
1 0

b1(k)
a1(−k)e

2θ(x,y,k) 1

)
, k ∈ L4 (4.3d)

with θ(x,y,k) = ω1(k)x+ω2(k)y. The matrix-valued functions M± are sectionally meromorphic

and defined below

M+(x,y,k) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
μ(1)

2

a1(−k)
, μ(14)

1

)
, k ∈ D1,

(
μ(23)

1 ,
μ(3)

2

a1(k)

)
, k ∈ D3,

(4.4a)

M−(x,y,k) =

⎧⎪⎨
⎪⎩
(

μ(23)
1 , μ(12)

3

)
, k ∈ D2,(

μ(34)
3 , μ(14)

1

)
, k ∈ D4.

(4.4b)

Note that detM± = 1 and M± = I +O(1/k) as k → ∞. The Riemann-Hilbert problem (4.1) can be

solved by a Cauchy-type integral equation. Indeed, letting J̃ = I − J, equation (4.1) becomes

M+(x,y,k)−M−(x,y,k) = M+(x,y,k)J̃(x,y,k). (4.5)

Applying the Plemelj formula [9], the solution M of the Riemann-Hilbert problem (4.1) can be

expressed as

M(x,y,k) = I +
1

2iπ

∫
L

M+(x,y,k′)J̃(x,y,k′)
dk′

k′ − k
.

Note that

M(x,y,k) = I − 1

2ikπ

∫
L

M+(x,y,k′)J̃(x,y,k′)dk′+O(1/k2), k → ∞.
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Then the solution of the elliptic sinh-Gordon equation in the quarter plane can be obtained in

terms of the unique solution of the Riemann-Hilbert problem. In this respect, we expand the solution

M of the Riemann-Hilbert problem (4.1) as

M(x,y,k) = I +
M(1)(x,y)

k
+

M(2)(x,y)
k2

+O(1/k2), k → ∞. (4.6)

Substituting this expansion into the x-part of the Lax pair (2.1a), the (2,1)-component at O(1)

implies

iqx(x,y)+qy(x,y) =−4iM(1)
21 (x,y) (4.7)

and the (1,1)-component at O(1/k) yields

M(1)
11x(x,y) =− 1

8i
(coshq(x,y)−1)− 1

4
(iqx(x,y)+qy(x,y))M(1)

21 (x,y).

Simplifying the above equation with (4.7), we obtain the reconstruction formula for the solution of

(1.1) given by

coshq(x,y) = 1−8iM(1)
11x(x,y)−8

(
M(1)

21

)2

. (4.8)

Similarly, if we substitute the expansion (4.6) into the y-part of the Lax pair, the solution is equiva-

lently given by

coshq(x,y) = 1+8M(1)
11y(x,y)+8

(
M(1)

21

)2

. (4.9)

We now state the existence theorem for the elliptic sinh-Gordon equation in the quarter plane.

Theorem 4.1. Assume that the functions g j(x), f j(y)∈ H1(R+), j = 0,1, with the sufficiently small
H1 norms. Let the functions a1(k), b1(k), a2(k) and b2(k) be given by (3.5) and (3.8) in Definitions
3.1 and 3.2, respectively. Suppose that given g0(x) and g1(x), there exist functions f0(y) and f1(y)
such that the global relation is satisfied

a1(k) = a2(k) and b1(k) = b2(k) k ∈ D3. (4.10)

Let M(x,y,k) be the solution of the following matrix Riemann-Hilbert (RH) problem

M−(x,y,k) = M+(x,y,k)J(x,y,k), k ∈ L , (4.11)

where det(M±) = 1, M± = I +O(1/k) as k → ∞, the oriented contours L are defined in (4.2) and
the jump matrices J are given in (4.3).

Then the Reimann-Hilbert problem is uniquely solvable and the function q(x,y) defined by

iqx +qy =−4i lim
k→∞

kM21, coshq(x,y) = 1−8i lim
k→∞

kM11x −8 lim
k→∞

(kM21)
2 (4.12)

solves the elliptic sinh-Gordon equation (1.1) satisfying the boundary conditions

q(x,0) = g0(x), qy(x,0) = g1(x), (4.13a)

q(0,y) = f0(y), qx(0,y) = f1(y). (4.13b)
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Proof. By applying the vanishing lemma and the dressing method discussued in [9, 14], it can be

proved that the Riemann-Hilbert problem (4.11) is uniquely solved and that q(x,y) defined in (4.12)

solves the elliptic sinh-Gordon equation (1.1) (see also before Theorem).

We will prove that q(x,y) given in (4.12) satisfies the boundary values. In this respect, it requires

to show that the Riemann-Hilbert problem (4.11) with y = 0 and x = 0 are equivalent to the

Riemann-Hilbert problems (3.15) and (3.25) given in Propositions 3.1 and 3.2, respectively.

Regarding equation (4.13a), define

M(x)(x,k) =

⎧⎪⎪⎨
⎪⎪⎩

M(x,0,k), k ∈ D1,

M(x,0,k)J−1
1 (x,0,k), k ∈ D2,

M(x,0,k)J3(x,0,k)F(x,k), k ∈ D3,

M(x,0,k)F(x,k), k ∈ D4,

(4.14)

where

F(x,k) =

(
1

b1(−k)
a1(k)

e−2ω1(k)x

0 1

)
. (4.15)

We denote M(x,0,k) and M(x)(x,k) for k ∈ D j, j = 1, · · · ,4, by Mj(x,0,k) and M(x)
j (x,k), respec-

tively. Then, we can write (4.11) and (4.14) as

M2(x,0,k) = M1J1(x,0,k), M2(x,0,k) = M3J2(x,0,k), (4.16a)

M4(x,0,k) = M3J3(x,0,k), M4(x,0,k) = M1J4(x,0,k), (4.16b)

and

M(x)
1 (x,k) = M1(x,0,k), M(x)

2 (x,k) = M1J−1
1 (x,0,k), (4.17a)

M(x)
3 (x,k) = M3J3(x,0,k)F(x,k), M(x)

4 (x,k) = M4(x,0,k)F(x,k). (4.17b)

Combining (4.17) with (4.16), we find the following jump conditions

M(x)
2 (x,k) = M(x)

1 (x,k), M(x)
3 (x,k) = M(x)

2 (x,k)J4(x,0,k)F(x,k), (4.18a)

M(x)
4 (x,k) = M(x)

3 (x,k), M(x)
4 (x,k) = M(x)

1 (x,k)J4(x,0,k)F(x,k). (4.18b)

Note that J4(x,0,k)F(x,k) = J(x)(x,k), where J(x)(x,k) is given in (3.16), and no jumps occur along

the contours L1 and L3 . Defining

M(x)(x,k) = M(x)
+ (x,k) k ∈ D1 ∪D2,

M(x)(x,k) = M(x)
− (x,k) k ∈ D3 ∪D4,

we know that equations (4.16) are equivalent to the Riemann-Hilbert problem (3.15) with the jump

matrix J(x)(x,k). Thus, the proof that the function q(x,y) satisfies the boundary values (4.13a) imme-

diately follows from evaluating (4.12) at y = 0.

In a similar way, equation (4.13b) can be proved.
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5. Concluding remarks

In conclusion, we have studied the boundary value problem for the elliptic sinh-Gordon equa-

tion formulated in the quarter plane by using the Fokas method. Based on the Lax pair formula-

tion we have derived the global relation that involves all boundary values {q(x,0), qy(x,0)} and

{q(0,y), qx(0,y)}. Furthermore, if the boundary values satisfy the global relation, we have pre-

sented the existence of the unique solution for the elliptic sin-Gordon equation in the quarter plane.

It also has been shown that the solution can be expressed in terms of the unique solution of the

Riemann-Hilbert problem with the jump matrices defined by the spectral functions {a1(k),b1(k)}
and {a2(k),b2(k)}.

It should be remarked that using the global relation, we have determined the spectral func-

tions {a1(k),b1(k)} and {a2(k),b2(k)} in terms of the boundary values {q(x,0), qy(x,0)} and

{q(0,y), qx(0,y)}. However, it is not necessary to prescribe all boundary values for well-posed

boundary value problems. Thus, it should be required to characterize unknown boundary values,

called the Dirichlet to Neumann map [8, 11]. This characterization can be done by analyzing the

global relation as was done in [12, 13] and we will discuss this issue in the near future.
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