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1. Introduction

Hamilton-Jacobi theory arises with William Hamilton in the 1820’s of the XIX century, who carries
his unification purpose of particle and wave concepts of light, in the geometric optics, to crystallize
(towards 1835) in the method of canonical transformations to determine the trajectories of systems.
Later on Carl Gustav Jacobi interprets the dynamics of mechanical systems in terms of the complete
solutions of the associated Partial Differential Equation.

Beyond classical mechanics, the Hamilton-Jacobi theory lets feel its influence in Quantum
mechanics, not only under the principle that a classical system should be obtained as an appropriate
limit of the quantum one, (v.g.r. [1] or [2], where it is considered how the equations of the charac-
teristics, in the short-wave limit of evolutionary wave equation on the configuration space, produce
the Hamilton equation on the cotangent bundle), but the consideration of Hamilton-Jacobi theory
as a tool itself in Quantum Systems. Thus, a complete solution of the Hamilton-Jacobi equation for
the Hamiltonian H(t,qi, pi), is a function S(t,qi,xi) satisfying the Hamilton-Jacobi equation

∂S
∂ t

(t,qi,xi)+H
(

t,qi,
∂S
∂qi

(t,qi,xi)

)
= 0. (1.1)

Under the non-degeneracy condition det
(
∂ 2S/∂qi∂x j

)
6= 0, we can define the canonical transfor-

mation by

∂S
∂qi

= pi,
∂S
∂xi

= yi

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

650
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in such a way that in the new coordinates (t,xi,yi), the dynamical system governed by the Hamil-
tonian H turns into a trivial dynamical system. Nevertheless, canonical transformations do not pre-
serve neither the quantum Hilbert space nor the phase space path integral of Feynman’s formulations
of quantum mechanics. This fact has aroused a great interest establishing the frame which can be
called the quantum Hamilton-Jacobi equation (v.g.r. see [3] for a discrete version of classical trans-
formations in the path integral formulation, [4] for the determination of the quantum mechanical
amplitude by means of a single momentum integration form a complete solution of the classical
Hamilton-Jacobi equation, or [5] for a modification of the Hamilton-Jacobi equation that has suit-
able covariance properties in such a way that the function S is related to solutions of the Schrödinger
equations).

Thus, Hamilton-Jacobi theory is not only a stepping stone in our comprehension of the quantum
theory from classical terms but also it aims to provide a powerful quantum tool.

In the present paper, that goes back to the classical theory, we consider systems of Hamilton-
Jacobi equations submitted to a compatibility condition – the involutive character – and consider the
classical geometric problem of finding foliations transverse to the fibers of T ∗Q and invariant under
every dynamical evolution, this way extending the standard theory (see [6], [7], [8]). An argument
that leads us to the consideration of Darboux coordinates, will allow us to raise this problem locally.

The importance of the Marsden-Weinstein reduction procedure along with the technique of
generating functions motivated the consideration of the reduction of the Hamilton-Jacobi theory
(see [9], [8] and [10] for a complete reference for Hamilton reduction). It is therefore, section 4 is
devoted to extending the reduction and reconstruction procedures for the involutive systems frame.

2. Preliminaries

Important aspects of the modern geometric formulation of the Hamilton-Jacobi theory were estab-
lished in [11] with the Poisson geometry of T ∗Q and more recently in [6] by considering Lagrangian
foliations transverse to the fibers of T ∗Q that are invariant under the dynamical evolution associated
to the symplectic structure.

Let us settle the fundaments of the theory in the most self-contained, brief and clear possible
way.

Let (M,w2) be a 2n-dimensional symplectic manifold. A vector field X ∈ X(M) is called an
infinitesimal symmetry of the symplectic structure if LX w2 = 0. This condition is equivalent to the
fact that iX w2 is a closed 1-form. Even more, if iX w2 is exact, that is, of the form d f for certain
smooth function f defined on M, then X (usually written as X f ) is called the Hamiltonian vector
field associated to f . The Poisson bracket of two smooth functions f and g on M is defined by

[ f ,g] = w2(X f ,Xg)

and endows C ∞(M) with a Lie algebra structure.
Let X be a submanifold of M. For every p ∈ X , we write (TpX )⊥ for the w2-orthogonal

complement of TpX in TpM. We say that X is a coisotropic submanifold of M dimension m, if for
every p ∈X , (TpX )⊥ ⊆ TpX . It is clear that then 2n−m ≤ m and hence n ≤ m. If dimX = n,
then X is called a Lagrangian submanifold of M. It is immediate that, in this case, the condition
(TpX )⊥ = TpX for every p ∈X means w2

∣∣
X

= 0.

Proposition 2.1. Let X be a submanifold of M of dimension m = 2n− r.
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(i) Let I be the sheaf of ideals of X . Let f1, . . . , fr be local generators of I on the open set
U ⊂M. Then the Hamiltonian vector fields X fi (1≤ i≤ r) constitute a basis for (TpX )⊥ for
every p ∈U ∩X .

(ii) X is coisotropic if and only if I is stable by Poisson bracket.

Proof. (i) It suffices to take into account that if X ∈ TpX then

0 = X fi = d fi,p(X) = w2,p(X fi ,X), 1≤ i≤ r.

(ii) By (i), X is coisotropic if and only if X fi ∈ X(X ∩U), for 1≤ i≤ r. This means that

X fi( fk) = [ fk, fi] = 0, 1≤ i, k ≤ r.

�

We say that the symplectic structure (M,w2) is homogeneous (or, also, exact) if there exists a
1-form w1 on M such that w2 = dw1. The vector field X ∈X(M) is Hamiltonian with respect to this
homogeneous structure if and only if LX w1 is exact. This fact trivially follows from the relation

LX w1 = d (iX w1)+ iX dw1

= dw1(X)+ iX w2.

Let G be a connected Lie group and G the corresponding Lie algebra. Let us suppose that there
is a free and proper left action on (M,w2). We say that this action is symplectic if for each element
g ∈ G, we have

g∗w2 = w2 (2.1)

(where g∗ denotes the action of g by pull-back on differential forms on M). If for each element
A ∈ G we denote by A∗ its fundamental vector field on M (that is, the infinitesimal generator of the
1-parameter group of transformations of M : γ(t) = exp(tA)), then (2.1) implies

LA∗w2 = 0 (⇔ iA∗w2 is a closed 1-form).

Moreover, if for each A ∈ G , we have

iA∗w2 = d fA∗ , for some smooth function fA∗ on Q

we say that the action of G on M is Hamiltonian. In that case, we define the momentum mapping

J : Q→ G ∗ : J(x)(A) = fA∗(x), A ∈ G (x ∈ Q).

Let us now denote with Q any smooth manifold, set M = T ∗Q for its cotangent bundle, and
let π : M→ Q be the natural projection. There is an intrinsic way of define a 1-form w1 on M as
follows: let q ∈ Q, p ∈ T ∗q Q and X ∈ TpM, then

w1 : X 7→
〈

p,π ′X
〉

where π ′ is the tangent linear map π ′ : TpM → TqQ. It is easily seen that w2 = −dw1 is a non-
degenerate 2-form, thus defining the so called canonical symplectic structure on T ∗Q. The 1-form
w1 is canonically defined and hence invariant under the induced action of any diffeomorphism of
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Q. Consequently, if there is an action of a Lie group G on Q then under the induced action, we have
g∗w1 = w1 for every g ∈ G. In this way, for every A ∈ G we have

LA∗w1 = 0. (2.2)

Hence, the action of G on T ∗G is Hamiltonian, and in fact, it follows from (2.2)

iA∗w2 = d (w1(A∗)) .

There is an explicit and intrinsic way of expressing the function w1(A∗). Given X ∈X(Q) we define
PX : T ∗Q→ R: αq 7→ αq(X). Now

w1(A∗)(αq) =
〈
αq,π

′A∗
〉
= αq (A∗) = PA∗(αq)

(we use the same notation A∗ for the fundamental vector field associated to the action of G on
Q and on T ∗Q and that the latter projects onto the former). In this way, the momentum mapping
J : T ∗Q→ G ∗ is given by

J(αq)(A) = PA∗(αq).

It is not difficult to see the G-equivariance of J, that is, J(g∗αq) = ad∗g−1J(αq) and that for any
µ ∈ G ∗, J−1(µ) is a submanifold of T ∗Q. So, if µ ∈ G ∗ is a fixed point for the coadjoint action of
G, the canonical symplectic form w2 defines a 2-form w2 on the quotient manifold J−1(µ)/G by

w2(Xp,Yp) = w2(X p,Y p),

where X p, Y p are the respective classes of Xp and Yp in TpJ−1(µ)/Tp(G · p). The definition of w2

makes sense, since TpJ−1(µ) and Tp(G · p) are orthogonal complements in Tp(T ∗Q), as it is not
difficult to see.

The geometric frame of the Hamilton-Jacobi theory on the n-dimensional configuration space
Q is the phase space of momenta T ∗Q and its canonical exact symplectic structure w2. Thus, given
a Hamiltonian function H ∈ C ∞(T ∗Q), there exists a vector field XH provided by the dynamical
equation

iXH w2 = dH (2.3)

whose integral curves are the trajectories of the system (v.g.r. see [6], [12] or [9]). In the classics
formulation, the Hamilton-Jacobi problem consists in finding a function S(t,q) that satisfies the
partial differential equation

∂S
∂ t

+H
(

q,
∂S
∂q

)
= 0.

If we write S(t,q) =W − tE for a constant E, then the function W satisfies

H
(

t,q,
∂W
∂q

)
= 0.

In geometric terms, this equation means (dW )∗H = E, where dW is understood as a section of
T ∗Q. In a more adequate context, as a closed form is locally exact, we seek for closed 1-forms
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α : Q→ T ∗Q such that

H
∣∣
Ima = E.

Since the closed character of α implies that Imα to be a Lagrangian submanifold of T ∗Q, our aim
is to find Lagrangian submanifolds L⊂ T ∗Q and vector fields ZH ∈ X(T ∗Q) whose integral curves
contained in L be the trajectories of the system.

The essence of the geometrical character is gathered in the following central result.

Theorem 2.1 (Hamilton-Jacobi). Let us consider the dynamical equation

iZH w2 = dH. (2.4)

The following assertions are equivalent for a Lagrangian submanifold L⊂ T ∗Q

(i) The vector field ZH is tangent to L.
(ii) H|L is constant.

In any of these cases, we say that L is a solution of (2.4).

Proof. If ZH ∈ X(L) then the equation (2.4) can be restricted to L, and then (ii) trivially follows as
w2
∣∣
L = 0. Conversely, if H

∣∣
L is constant, then (2.4) says that ZH ∈ (X(L))⊥. But for a Lagrangian

manifold (X(L))⊥ = X(L), which completes the proof of the theorem. �

Some other proofs of this key fact can be consulted in [8], [6] or even in [9] for an interesting
proof based on R-actions on T ∗Q.

Now let (qi) the coordinates in M and (qi, pi) the induced coordinates on T ∗M. If α =∑
n
i=1 αidqi

is a closed 1-form, since the functions

fi = αi− pi, 1≤ i≤ n

generate the Lagrangian submanifold Imα in T ∗Q, the Hamiltonian vector fields

X fi , 1≤ i≤ n

span, by Proposition 2.1, the orthogonal complement (Tx(Imα))⊥ (x ∈ Imα). Hence a necessary
and sufficient condition for Imα (or α) to be a solution of the Hamilton-Jacobi equation is that

wx(X fi ,XH) = 0, ∀x ∈ L, 1≤ i≤ n,

fact that we state as follows.

Proposition 2.2. The closed 1-form α = ∑
n
i=1 αidqi on Q is a solution of the Hamilton-Jacobi

equation (2.4) if and only if

XH,x(αi− pi) = 0, ∀x ∈ L, 1≤ i≤ n.
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3. Involutive systems

Let us consider the system of Hamilton-Jacobi equations
iXH1

w2 = dH1

. . .

iXHk
w2 = dHk

(3.1)

where the functions Hi are pairwise in involution, that is, we have

[Hi,H j] = 0, 1≤ i, j ≤ k

and whose differentials are linearly independent in every point of T ∗Q. In this case, we say the
system (3.1) is involutive.

In the framework of Hamilton-Jacobi theory, the question which this definition implies is to find
Lagrangian submanifolds L of T ∗Q invariant under the flows of the vector fields XHi , 1≤ i≤ k.

Here we will give a local solution using an easy argument based on a classical result of Jacobi-
Lie in relation to the extension of a set of functions, pairwise in involution and functionally inde-
pendent to a complete set of canonical symplectic coordinates.

In precise terms, we have:

Theorem 3.1. Let us consider the involutive system (3.1). The submanifold M of T ∗Q defined by
the equations

Hi = 0, i = 1, . . . ,k.

is coisotropic and k ≤ n. Let us denote with w′2 and X ′Hi
the respective restrictions of the symplectic

form w2 and the fields XHi to M. For each point p ∈M there exists a neighborhood U in M in such
a way that a family

{
Nk j

}
of Lagrangian submanifolds contained in U is obtained by equaling to

constants n− k first integrals common to X ′Hi
, 1≤ i≤ k, and such that XHi ∈ X(Nk j), 1≤ i≤ k.

Proof. The first claim trivially follows form Proposition 2.1. In this way, the condition dimM ≥ n
for a coisotropic submanifold says that 2n−k≥ n and hence k≤ n. From the Carathéodory-Jacobi-
Lie theorem (v.g.r., see [13]), in a neighborhood V of each point p ∈ T ∗Q there are another 2n− k
functions

Hk+1, . . . , Hn

J1, . . . , Jn
(3.2)

in such a way that [Hi,H j] = 0, [Ji,J j] = 0, [Hi,J j] = δi j.
In fact, these functions constitute a set of Darboux coordinates in which the symplectic form w2

on V is expressed as

w2 =
n

∑
j=1

dH j ∧dJ j.

Consequently for the restriction w′2 of w2 to U =V ∩M, we have w′2 = ∑
n−k
j=1 dH ′k+ j ∧dJ′k+ j.

Now by Proposition 2.1, at each point p ∈ M, the tangent vectors XHi,p, (1 ≤ i ≤ k) generate
the orthogonal complement (TpM)⊥ of TpM in Tp(T ∗Q). As M is a coisotropic manifold (TpM)⊥ ⊆
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TpM, with what the tangent vectors XHi,p form a basis for the space of tangent vectors Xp ∈ TpM
such that iXpw′2 = 0.

In this way, the condition iX ′Hi
w′2 = 0, means that Hk+ j, Jk+ j (1≤ j ≤ k−n) are first integrals of

the fields X ′Hi
.

Thus, the submanifold of M

Nk j =
{

H ′k+ j = k j, k j ∈ R, 1≤ j ≤ n− k
}

is a Lagrangian submanifold in U .
The argument above combined with the Hamilton-Jacobi theory provides XHi ∈ X(Nk j) for 1≤

i≤ k, which completes the proof of the theorem. �

4. Reduction and Reconstruction

In this section we address the reduction and reconstruction procedures for an involutive system of
Hamilton-Jacobi equations with symmetries. Maybe one of the seeds in the consideration of the
subjection of the Hamilton-Jacobi dynamics to the symplectic reduction might be [8, Th. 4.3.5].
Years later, this topic is approached together with the inverse problem of reconstruction in [9]. We
tackle here this deep subject in a simpler way, without using the structural results of [9] neither the
consideration of magnetic terms added to the canonical symplectic form of T ∗G.

Let G be a connected Lie group acting freely and properly on a manifold Q and let us consider
its natural lifted action on T ∗G, which is also Hamiltonian with respect to the canonical symplectic
structure w2 with momentum mapping J : T ∗G→ G ∗. Let dimQ = n and dimG = m.

Proposition 4.1. Let Hi : T ∗Q→ R (1≤ i≤ k) smooth functions invariant under the G-action. Let
µ ∈ G ∗ be a fixed point for the coadjoint action of G, and let us consider the symplectic structure
w2 defined in the quotient by the projection

π : J−1(µ)→ J−1(µ)/G.

Let us assume that the projections H i of the functions Hi (1 ≤ i ≤ k) to the quotient manifold
J−1(µ)/G are functionally independent. The Hamilton-Jacobi system

iXH1
w2 = dH1

. . .

iXHk
w2 = dHk

(4.1)

with k ≤ n − m, determines a Hamilton-Jacobi system on the reduced symplectic manifold
J−1(µ)/G, 

iXH1
w2 = dH1

. . .

iXHk
w2 = dHk

(4.2)

in such a way that if L ⊂ J−1(µ) is a Lagrangian submanifold of T ∗Q solution of the system (4.1)
then π(L) is a solution of the system (4.2).

Conversely if L is a Lagrangian submanifold of J−1(µ)/G solution of the system (4.2), then
L = π−1(L)⊂ J−1(µ) is a Lagrangian submanifold of T ∗Q solution of the system (4.1).
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Proof. First of all, we must show that every vector field XHi is tangent to J−1(µ). It suffices to see
that if p ∈ J−1(µ) then J∗,p (XH) = 0. But

〈J∗,p (XH) ,A〉= w2,p(XH ,A∗) = A∗pH = 0, ∀A ∈ G , (4.3)

by the G-invariance of H. Now, the G-invariance of both w2 and Hi defines XHi as a G-invariant
vector field on J−1(µ) hence inducing a vector field XH ∈ X(J−1(µ)/G). In this manner, each of
the equations of the system (4.1) provides an equation of the reduced dynamics

iXHi
w2 = dHi, 1≤ i≤ k, in J−1(µ)/G. (4.4)

Let L⊂ J−1(µ) a Lagrangian submanifold of T ∗Q. A consideration similar to (4.3) proves that L is
G-invariant. In fact, it suffices to see that for every fundamental vector field A∗ we have A∗ ∈ X(L).
Let p ∈ L and X ∈ Tp(L), then

w2,p(X ,A∗) = J∗,p(X)(A) = 0.

Thus, L = π(L) is a Lagrangian submanifold of J−1(µ)/G: in fact as dimJ−1(µ) = 2n−m (and
hence dimJ−1(µ)/G = 2(n−m)), as dimL = n−m it suffices to see that w2

∣∣
L = 0, which is guar-

anteed by the fact

w2
∣∣
L = w2

∣∣
L (4.5)

in a self-explanatory notation. Finally L is a solution of the system (4.2), since by the G-invariance

Hi
∣∣
L = Hi

∣∣
L = ci for 1≤ i≤ k. (4.6)

Conversely, if the Lagrangian submanifold L of J−1(µ)/G is a solution of the system (4.2), then
the above argument on dimensions and (4.5) say that L = π−1(L) is a Lagrangian submanifold of
J−1(µ) which, again by (4.6), is a solution of the system (4.1). �
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