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For a scalar evolution equation ut = K(t,x,u,ux, . . . ,u2m+1) with m ≥ 1, the cohomology space H1,2(R∞) is
shown to be isomorphic to the space of variational operators and an explicit isomorphism is given. The space
of symplectic operators for ut = K for which the equation is Hamiltonian is also shown to be isomorphic to
the space H1,2(R∞) and subsequently can be naturally identified with the space of variational operators. Third
order scalar evolution equations admitting a first order symplectic (or variational) operator are characterized.
The variational operator (or symplectic) nature of the potential form of a bi-Hamiltonian evolution equation is
also presented in order to generate examples of interest.
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1. Introduction

Given a scalar differential equation ∆ = 0, the multiplier problem in the calculus of variations con-
sists in determining whether there exists a smooth function m (the multiplier) and a smooth function
L (the Lagrangian) such that

m ·∆ = E(L) (1.1)

where E is the Euler-Lagrange operator and E(L) is the Euler-Lagrange expression for L. The
problem of determining whether m and L exists has a long history and is known as the inverse
problem in the calculus of variations [4, 7, 9, 11, 12, 14, 19].

The variational bicomplex [2, 3, 20] can be used to provide a solution to the inverse problem
in the calculus of variations by utilizing the Helmholtz conditions. The result is that the existence
of a solution to the inverse problem in equation (1.1) can be expressed in terms of the existence of
special elements in the cohomology space Hn−1,2 where n is the number of independent variables.
In some cases this in turn allows the solution to be expressed directly in terms of the invariants of
the equation, see [7, 12].

The main goal of this article is to give a description of the entire cohomology space H1,2(R∞)

for scalar evolution equations ut = K(t,x,u,ux, . . .) which extends the interpretation of the special
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elements which control the solution to the inverse problem. The result is a natural generalization of
the inverse problem in equation (1.1), we call the variational operator problem, which we now state.
Given a differential equation ∆ = 0, does there exist a differential operator E and Lagrangian L such
that

E(∆) = E(L) . (1.2)

A simple example is given by the potential cylindrical KdV equation, ut = uxxx +
1
2 u2

x − u
2t which

admits E= tDx as a first order variational operator,

tDx

(
ut −uxxx−

1
2

u2
x +

u
2t

)
= E

(
−1

2
tuxut +

1
2

tuxuxxx +
1
6

tu3
x

)
. (1.3)

The variational operator problem in equation (1.2) can be studied for either the case of scalar or
systems of ordinary or partial differential equations. Here we restrict our attention to problem (1.2)
in the case where ∆ is a scalar evolution equation in order to relate this problem to the theory of
symplectic and Hamiltonian operators for integrable systems.

In Section 2 we summarize the relevant facts about the variational bicomplex for the case of two
independent and one dependent variable. Sections 3 and 4 provide normal forms for the cohomology
spaces Hr,s(R∞) in the variational bicomplex associated with the equation ∆ = 0. These normal
forms are then used in Section 5 to show there exists a one to one correspondence between the
solution to (1.2) and the cohomology space H1,2(R∞). Even order evolution equations don’t admit
non-zero variational operators (see Corollary 5.3) but we have the following theorem for odd order
equations (the summation convention is assumed).

Theorem 1.1. Let E = ri(t,x,u,ux, . . .)Di
x, i = 0, . . . ,k be a kth order differential operator and let

the zero set of ∆ = ut −K(t,x,u,ux, . . . ,u2m+1), m≥ 1 define an odd order evolution equation.

1. The operator E is a variational operator for ∆ if and only if E is skew-adjoint and

ω = dx∧θ
0∧ ε−dt ∧

2m+1

∑
j=1

(
j

∑
a=1

(−X)a−1
(

∂K
∂u j

ε

)
∧θ

j−a

)
(1.4)

is dH closed on R∞, where ε =−1
2 riθ

i and θ i are given in equation (2.11).
2. Let Vop(∆) be the vector space of variational operators for ∆. The function Φ : Vop(∆) →

H1,2(R∞) defined from equation (1.4) by

Φ(E) = [ω ], (1.5)

is an isomorphism.

It follows immediately from Theorem 1.1 that a scalar evolution equation admits a (non-zero)
variational operator if and only if H1,2(R∞) 6= 0. Consequently the techniques developed for solving
the multiplier inverse problem in terms of cohomology [4, 7, 12] can be used to solve the operator
problem. The operator E and the function L in (1.2) are easily determined from the cohomology
class [ω] ∈ H1,2(R∞) (see Theorem 5.3).

The variational operator problem in equation (1.2) is related to the problem of whether a scalar
evolution equation can be written in the form of a symplectic Hamiltonian evolution equation [10].
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In the time independent case, a scalar evolution ut = K(x,u,ux, . . . ,un) equation is said to be Hamil-
tonian with respect to a time independent symplectic operator S= si(x,u,ux, . . .)Di

x if there exists a
function H such that,

S(K) = E(H). (1.6)

For a time dependent equation and operator, the symplectic Hamiltonian condition is given in Def-
inition 6.3 (see also Corollary 6.3). Symplectic Hamiltonian evolution equations are reviewed in
Section 6 in terms of the variational bicomplex.

Symplectic operators exists on a different space than variational operators but there is a natural
identification (see Remark 2.1) between symplectic operators and operators which can be variational
operators. With this identification, the variational operator problems and the symplectic operator
problem are shown to be the same in Section 7. This leads to the following theorem.

Theorem 1.2. Let S = si(t,x,u,ux, . . .)Di
x be a differential operator and let ∆ = ut − K(t,x,u,

ux, . . . ,u2m+1). The operator S is a symplectic operator and ∆ = 0 is a symplectic Hamiltonian
evolution equation for S if and only if S is a variational operator for ∆.

Theorem 1.2 shows that symplectic operators and variational operators for ut = K are the essen-
tially the same so that Theorem 1.1 implies the following.

Theorem 1.3. The function Φ in equation (1.5) defines an isomorphism between the vector space
of symplectic operators S = E = ri(t,x,u,ux, . . .)Di

x for which ∆ = ut −K is Hamiltonian, and the
cohomology space H1,2(R∞).

With Theorem 1.3 in hand, the determination of a symplectic Hamiltonian formulation of ut =K
is resolvable in terms of the cohomology H1,2(R∞) of the differential equation ut = K and subse-
quently the invariants of ∆. This characterization of symplectic Hamiltonian evolution equations in
terms of H1,2(R∞) allows the techniques in [4, 7, 12] to be used in their study.

A key idea that directly explains the interplay between the symplectic Hamiltonian formulation
for an evolution equation and the cohomology H1,2(R∞) is the fact that the equation manifold R∞ is
canonically diffeomorphic to R× J∞(R,R). The cohomology of the equation is expressed in terms
of the geometric structure that arises from the embedding of the equation into J∞(R2,R) while the
symplectic Hamiltonian formulation of an equation is expressed in terms of the contact structure on
R× J∞(R,R). Theorem 7.1 shows how these are related and this leads to Theorem 1.3. This idea
also plays a role in the approach to geometric structures in the article [13].

In Section 8 the case of first order operators for third order equations is examined in detail and
the following characterization is found.

Theorem 1.4. A third order scalar evolution equation ut =K(t,x,u,ux,uxx,uxxx) admits a first order
symplectic operator (or variational operator) E = 2RDx +DxR if and only if κ is a trivial conser-
vation law, where

κ = K̂2 dx+
(
−2K0 +K1K̂2−

1
2
(
X(K3)K̂2

2 +K3K̂3
2
)
+X

(
K3X(K̂2)

))
dt (1.7)

and Ki = ∂uiK, K̂2 =
2

3K3
(K2−X(K3)), and X is the total x derivative on R∞.

Furthermore, when κ = dH(logR) then ut = K admits the first order symplectic (or variational)
operator E= 2RDx +DxR.
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M.E. Fels and E. Yaşar / Variational Operators, Symplectic Operators, and the Cohomology of Scalar Evolution Equations

In Section 8 we examine the relationship between the Hamiltonian form of an evolution equation
and their potential form. In [15] it is shown that the (first order) potential form of a time independent
Hamiltonian equation admits a variational operator. We examine this in more detail, as well as the
role of bi-Hamiltonian systems as in [18]. In Example 9.1 the Krichever-Novikov equation (or
Schwartzian KdV) is shown to be the potential form of the Harry-Dym equation. This demonstrates
that the symplectic operators (or variational operators) for the Krichever-Novikov equation ( [10])
arise as the lift of the Hamiltonian operators of the Harry-Dym equation as described in Section 8.1.

Theorem 1.4 should be contrasted to the problem of determining a Hamiltonian formulation
of a scalar evolution equation in terms of a Hamiltonian operator. An evolution equation ut = K
is Hamiltonian with respect to a Hamiltonian operator D if there exists a Hamiltonian function H
(see [1, 10, 17]) such that

ut = D ◦E(H) . (1.8)

Conditions for the existence of D and H in equation (1.8) in terms of the invariants of ut = K is
unknown. We illustrate the difference in these problems with the cylindrical KdV and its potential
form. The potential form of the cylindrical KdV is easily shown to admit at least two time dependent
variational (or symplectic) operators. Section 8.1 then suggests that the cylindrical KdV is a time
dependent bi-Hamiltonian system. See Example 9.3 where a bi-Hamiltonian formulation of the
cylindrical KdV is proposed ( [21] states that no Hamiltonian exists for the cylindrical KdV).

Lastly, in Appendix A we identify the elements of H1,1(R∞), which don’t arise as the vertical
differential of a conservation law, with a family of variational operators. This is demonstrated in
Example 9.2.

The second author, E. Yaşar acknowledges the Scientific and Technological Research Council
of Turkey (Tübitak) for financial support from the postdoctoral research program BIDEB 2219, and
Utah State University for its hospitality.

2. Preliminaries

In this section we review some basic facts on the variational bicomplex associated with scalar evo-
lution equations, see [6] for more details.

2.1. The Variational Bicomplex on J∞(R2,R)

The t and x total derivative vector fields on J∞(R2,R) with coordinates (t,x,u,ut ,ux,utt ,utx,uxx, . . .)

are given by

Dt = ∂t +ut∂u +utt∂ut +utx∂ux + · · ·
Dx = ∂x +ux∂u +utx∂ut +uxx∂ux + · · · .

The contact forms on J∞(R2,R) are

ϑ
0 = du−utdt−uxdx

ϑ
i = Di

x (du−utdt−uxdx) = dui−ut,idt−ui+1dx, i≥ 1

ζ
a,i = Di

xDa
t (du−utdt−uxdx) = dua,i−ua+1,idt−ua,i+1dx, a≥ 1, i≥ 0

(2.1)

where ui = Di
x(u) and ua,i = Di

xDa
t (u) = utttt...,xxx....
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The variational bicomplex on J∞(R2,R) is denoted by Ωr,s(J∞(R2,R)) where ω ∈
Ωr,s(J∞(R2,R)) is a differential form of degree r+ s which is horizontal of degree r = 0,1,2 and
vertical of degree s = 0, 1, 2, . . . (see Section 2 in [6]). The forms dx and dt are horizontal, while
the contact forms are vertical. For example if ω ∈Ω1,2(J∞(R2,R)), then ω can be written

ω = dx∧ (Ai jϑ
i∧ϑ

j +Bia jϑ
i∧ζ

a, j +Caib jζ
a,i∧ζ

b, j)

+dt ∧ (Fi jϑ
i∧ϑ

j +Gia jϑ
i∧ζ

a, j +Haib jζ
a,i∧ζ

b, j),

where Ai j, Bia j,Caib j, Fi j, Gia j, Haib j ∈C∞(J∞(R2,R)). The horizontal and vertical differentials

dH : Ω
r,s(J∞(R2,R))→Ω

r+1,s(J∞(R2,R)), dV : Ω
r,s(J∞(R2,R))→Ω

r,s+1(J∞(R2,R))

are anti-derivations which satisfy

dHω = dx∧Dx(ω)+dt ∧Dt(ω) , dV f =
∂ f
∂ui

ϑ
i +

∂ f
∂ut,i

ζ
1,i + · · · ,

dHϑ
i = dx∧ϑ

i+1 +dt ∧ζ
1,i , dV ϑ

i = 0,

where f ∈ C∞(J∞(R2,R)), ω ∈ Ωr,s(J∞(R2,R)) and Dx(ω),Dt(ω) are the Lie derivatives. Since
d = dH +dV this implies,

d2
H = 0, d2

V = 0, and dHdV +dV dH = 0.

The integration by parts operator I : Ω2,s(J∞(R2,R))→Ω2,s(J∞(R2,R)) is defined by

I(ω) =
1
s

ϑ
0∧

∞

∑
a=0,i=0

(−1)i+aDi
xDa

t (∂ua,i ω), (2.2)

and it has the following properties [2], [3],

I2 = I, ω = I(ω)+dHη , for some η ∈Ω
1,s(J∞(R2,R)). (2.3)

If we let J : Ω2,s(J∞(R2,R)→Ω1,s(J∞(R2,R)) be

J(κ) =
∞

∑
a,i=0

(−1)i+aDi
xDa

t (∂ua,i κ) (2.4)

then I(κ) = 1
s ϑ 0∧ J(κ). Both J and I satisfy,

KerJ = Ker I = ImdH . (2.5)

The operator J is the interior Euler operator, see page 292 in [6] or page 43 in [3].
Let E = riaDi

xDa
t be a total differential operator. The formal adjoint E∗ is the total differential

operator characterized as follows. For any ρ ∈ Ω0,s(J∞(R2,R)) and ω ∈ Ω0,s′(J∞(R2,R)) there
exists ζ ∈Ω1,s+s′(J∞(R2,R)) depending on ρ and ω such that

(ρ ∧E(ω)−E∗(ρ)∧ω)∧dt ∧dx = dHζ . (2.6)

This leads to

E∗(α) = (−1)i+aDi
xDa

t (riaα) , α ∈Ω
r,s(J∞(R2,R)).

It follows from (2.6) that the formal adjoint satisfies (E∗)∗ = E.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

608
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Let ∆ be a smooth function on J∞(R2,R). The Fréchet derivative of ∆ [17] is the total differential
operator F∆ satisfying dV ∆ = F∆(ϑ

0). If

∆ = ut −K(t,x,u,ux, . . . ,un),

then

dV ∆ = ϑt −Kiϑ
i where Ki =

∂

∂ui
K(t,x,u,ux, . . . ,un), i = 0, . . . ,n. (2.7)

The Fréchet derivative of ∆ is determined from equation (2.7) to be the total differential operator

F∆ = Dt −
n

∑
i=0

KiDi
x . (2.8)

The adjoint of the operator in (2.8) is,

F∗∆(ρ) =−Dt(ρ)−
n

∑
i=0

(−Dx)
i(Kiρ), ρ ∈Ω

∗(J∞(R2,R).

2.2. The Variational Bicomplex on R∞ and Hr,s(R∞)

An nth order scalar evolution equation is given by ut = K(t,x,u,ux, . . . ,un) with K ∈C∞(J∞(R2,R))
and Kn = ∂unK nowhere vanishing. Let ∆ = ut −K(t,x,u,ux, . . . ,un) and let R∞ be the infinite
dimensional manifold which is the zero set of the prolongation of ∆ = 0 in J∞(R2,R). With coordi-
nates (t,x,u,ux,uxx, . . .) on R∞ the embedding ι : R∞→ J∞(R2,R) is given by

ι = [t = t,x = x,u = u,ut = K,ux = ux,utt = T (K),utx = X(K),uxx = uxx, . . .], (2.9)

where the vector fields T and X are the restriction of Dt and Dx to R∞ given by,

X = ∂x +ux∂u +uxx∂ux + · · ·
T = ∂t +K∂u +X(K)∂ux + · · ·

(2.10)

and these satisfy [X ,T ] = 0. The Pfaffian system I = {θ i}i≥0 on R∞ is generated by the pullback
of the 1-forms ϑ i in equation (2.1)

θ
i = ι

∗
ϑ

i = dui−X i(K)dt−ui+1dx. (2.11)

The forms

{dt, dx,θ i = dui−X i(K)dt−ui+1dx} i = 0, 1, . . . (2.12)

form a coframe on R∞, and give rise to a vertical and horizontal splitting in the complex of dif-
ferential forms leading to the bicomplex Ωr,s(R∞), r = 0, 1, 2 and s = 0, 1, . . .. For example if
ω ∈Ω1,2(R∞) then

ω = dx∧ (ai jθ
i∧θ

j)+dt ∧ (bi jθ
i∧θ

j)

where ai j, bi j ∈C∞(R∞). The bicomplex Ωr,s(R∞) is the pullback of the unconstrained bicomplex
Ωr,s(J∞(R2,R)) by the embedding ι : R∞→ J∞(R2,R).

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

609
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The horizontal exterior derivative dH : Ωr,s(R∞)→Ωr+1,s(R∞) and vertical exterior derivative
dV : Ωr,s(R∞)→Ωr,s+1(R∞) are anti-derivations computed from the equations,

dH(ω) = dx∧X(ω)+dt ∧T (ω), dV = d−dH . (2.13)

The horizontal and vertical differentials satisfy

d2
H = 0 d2

V = 0, dHdV =−dV dH . (2.14)

The structure equations of I are computed using (2.11) to be

dHθ
i = dx∧θ

i+1 +dt ∧X i(dV K) and dV θ
i = 0. (2.15)

Since d2
H = 0, the complex dH : Ωr,s(R∞)→Ωr+1,s(R∞) is a differential complex and Hr,s(R∞)

is defined to be its cohomology,

Hr,s(R∞) =
Ker{dH : Ωr,s(R∞)→Ωr+1,s(R∞)}
Im{dH : Ωr−1,s(R∞)→Ωr,s(R∞)}

.

The conservation laws of ∆ are the dH closed forms in Ω1,0(R∞) while H1,0(R∞) is the space
of equivalence classes of conservation laws modulo the horizontal derivative of a function dH f ,
f ∈C∞(R∞).

The vertical complex dV : Ωr,s(R∞)→Ωr,s+1(R∞) is a differential complex whose cohomology
is trivial [3], [6]. Specifically, dV is the ordinary exterior derivative in the variables ui, and the
DeRham homotopy formula (in ui variables with parameter) applies. The property dHdV =−dV dH

make dV : Hr,s(R∞)→ Hr,s+1(R∞) a co-chain map up to sign, see Appendix A.

Remark 2.1. Every function of the form Q(t,x,u,ux,uxx, . . . ,uk) on J∞(R2,R) factors through
π : J∞(R2,R)→R∞, π(t,x,u,ut ,ux,utt ,utx,uxx, . . .) = (t,x,u,ux,uxx, . . .), where π is a left inverse
of ι in equation (2.9). Therefore by an abuse of notation, we view a function of the form
Q(t,x,u,ux,uxx, . . . ,uk) either on J∞(R2,R) or R∞ where the context will determine which. For
example,

FQ = QiDi
x

is a differential operator on J∞(R2,R) while

LQ = QiX i

is a differential operator on R∞ which satisfies π∗(FQ) = LQ . Given a differential operator Ē =

ri(t,x,u,ux, . . .)X i on R∞ the differential operator E = riDi
x satisfies π∗E = Ē and we’ll call E the

(canonical) lift. The formal adjoint of Ē acting on a form ω is (−Xi)
i(riω). The operator Ē is skew-

adjoint if and only if E is skew-adjoint.
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3. Normal Forms for H1,s(R∞) and Characteristic Forms

The universal linearization (see [6]) of ∆ = ut −K(t,x,u,ux, . . . ,un) on R∞ is the differential oper-
ator (on R∞),

L∆ = T −
n

∑
i=0

KiX i (3.1)

where Ki = ∂uiK, and the vector fields T and X are defined in equation (2.10). The operator L∆ is
the restriction of the Fréchet derivative of ∆ to R∞. The adjoint of L∆ is the differential operator
defined by

L∗∆(ρ) =−T (ρ)−
n

∑
i=0

(−X)i(Kiρ), ρ ∈Ω
∗(R∞).

This next theorem provides a normal form for a representative of the cohomology classes in
H1,s(R∞) and is analogous to Theorem 5.1 in [6].

Theorem 3.1. Let ∆ = ut −K(t,x,u,ux, . . . ,un) define an nth order evolution equation ∆ = 0 and
let Hr,s(R∞) be its cohomology with s≥ 1. For any [ω] ∈ H1,s(R∞) there exists a representative,

ω = dx∧θ
0∧ρ−dt ∧β , (3.2)

where ρ ∈Ω0,s−1(R∞), β ∈Ω0,s(R∞) and L∗
∆
(ρ) = 0.

Proof. The proof follows Theorem 5.1 of [6]. Choose ω̃0 ∈Ω1,s(J∞(R2,R)) such that

ι
∗(ω̃0) ∈ [ω]. (3.3)

where ι : R∞ → J∞(R2,R) is given in equation (2.9). Since ι∗(dHω̃0) = 0, it there exists ζ̃ab ∈
Ω0,s(J∞(R2,R)), µ̃ab ∈Ω0,s−1(J∞(R2,R)) such that (see Lemma 5.2 in [6])

dHω̃0 = dt ∧dx∧ (Da
t Db

x(∆)ζ̃ab +Da
t Db

x(dV ∆)∧ µ̃ab), (3.4)

Applying the identical integration by parts argument on page 292 [6] to (3.4), implies there exists
ζ̃ ∈Ω0,s(J∞(R2,R)), ρ̃ ∈Ω0,s−1(J∞(R2,R)) and ω̃ ∈Ω1,s(J∞(R2,R)) such that ω̃ = ω̃0+ d̃H η̃ and
ι∗η̃ = 0 (hence ι∗ω̃ = ω) and where

dHω̃ = dt ∧dx∧ (∆ζ̃ +dV ∆∧ ρ̃). (3.5)

We now apply ι∗ ◦ J to equation (3.5), where J is defined in equation (2.4). For the first term in
right hand side of equation (3.5) we find

ι
∗ ◦ J(∆ζ̃ ) = ι

∗
(

∆∂u (ζ̃ )−Dt(∆∂ut ζ̃ )−Dx(∆∂ux ζ̃ )+ · · ·
)
= 0 (3.6)

since each term contains a total derivative of ∆, and these vanish under pullback to R∞.
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We now apply ι∗ ◦ J to the second term in the right hand side of (3.5),

ι
∗J(dV ∆∧ ρ̃) = ι

∗

(
∞

∑
a=0,i=0

(−1)i+aDi
xDa

t ((∂ua,i dV ∆)ρ̃− (∂ua,i ρ̃)dV ∆)

)

= ι
∗

(
∞

∑
a=0,i=0

(−1)i+aDi
xDa

t ((∂ua,i dV ∆)ρ̃)

) (3.7)

because ι∗(Da
t Di

xdV ∆) = 0. Now

∂u1,0 dV ∆ = 1, ∂u0,i dV ∆ =−Ki

with all other ∂ua,i dV ∆ = 0, so that equation (3.7) becomes,

ι
∗J(dV ∆∧ ρ̃) = ι

∗(−Dt(ρ̃)+
n

∑
i=0

(−1)iDi
x(−Kiρ̃)) = L∗∆(ι

∗
ρ̃). (3.8)

By equation (2.5) J(dHω̃) = 0, so that applying ι∗ ◦ J to equation (3.5) implies ι∗J(dV ∆∧ ρ̃) = 0,
and so equation (3.8) gives L∗

∆
(ι∗ρ̃) = 0.

We now turn to showing that equation (3.2) holds using the horizontal homotopy operator (equa-
tions (5.15), (5.16) and below (5.16) in [6]), see also proposition 4.12 page 117 of [3] or equation
(5.133) in [17]. Using the notation hr,s

H from [3], this operator satisfies

ω̃ = h2,s
H (dHω̃)+dH(h

1,s
H ω̃), ω̃ ∈Ω

1,s(J∞(R2,R)).

Applying the pull back by ι to this formula gives the representative for [ω],

ω = ι
∗h2,s

H (dHω̃) (3.9)

with dHω̃ in (3.5).
To utilize the formula in [3] for h2,s

H let (x1 = t, x2 = x) and so for example ϑ 1122 = DxDxDtDtϑ
0

and let k be the max of |I| (number of derivatives) of ϑ I terms in (ϑt−Kiϑ
i)∧ρ . Then by definition

4.13 on page 117 in [3] (or 5.134 in [17])

h2,s
H (dHω̃) =

1
s

k−1

∑
|I|=0

DI
(
ϑ

0∧ JI j((dHω̃) j)
)

=
k−1

∑
|I|=0

DI

(
ϑ

0∧ (−1) jdx̂ j ∧ JI j(∆ζ̃ +dV ∆∧ ρ̃)
) (3.10)

where (dHω̃) j = Dx j dHω̃ = (−1) j+1dx̂ j∧(∆ζ̃ +dV ∆∧ ρ̃), (x̂1 = x, x̂2 = t), I = (i1, . . . , il), |I|= l,
and

JI j(∆ζ̃ +dV ∆∧ ρ̃) =
k−|I|−1

∑
|L|=0

(
|I|+ |L|+1
|L|

)
(−D)L

(
∂u( jIL) (∆ζ̃ +dV ∆∧ ρ̃)

)
. (3.11)

Applying ι∗ to equation (3.10) we have the ι∗h2,s
H

(
dt ∧dx∧ (∆ζ̃ )

)
= 0 because all terms

in (3.11) on ∆ζ̃ involve total derivatives of ∆. Therefore using equation (3.10), equation (3.9)
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becomes,

ω =
1
s

ι
∗
(

dx∧
k−1

∑
|I|=0

DI

[
ϑ

0∧
k−|I|−1

∑
|L|=0

(
|I|+ |L|+1
|L|

)
(−D)L((∂u(1IL) dV ∆)ρ̃)

]

−dt ∧
k−1

∑
|I|=0

DI

[
ϑ

0∧
k−|I|−1

∑
|L|=0

(
|I|+ |L|+1
|L|

)
(−D)L((∂u(2IL) dV ∆)ρ̃)

] ) (3.12)

Consider the first term in equation (3.12). The only non-zero interior product is (with u(1) = ut ,
u(2) = ux etc.)

∂u(1) dV ∆ = 1,

since ∆ does not depend on derivatives such as utx. Therefore the only non-zero terms have |I|= 0,
|L|= 0 in the first term of (3.12) giving,

dx∧
k−1

∑
|I|=0

DI

[
ϑ

0∧
k−|I|−1

∑
|L|=0

(
|I|+ |L|+1
|L|

)
(−D)L((∂u(1IL) dV ∆)ρ̃)

]
= dx∧ϑ

0∧ ρ̃ (3.13)

Combining equation (3.13) with (3.12) we have

ω =
1
s

ι
∗
(

dx∧ϑ
0∧ ρ̃−dt ∧

k−1

∑
|I|=0

DI

[
ϑ

0∧
k−|I|−1

∑
|L|=0

(
|I|+ |L|+1
|L|

)
(−D)L((∂u(2IL) dV ∆)ρ̃

])
(3.14)

which produces equation (3.2) with ρ = 1
s ι∗ρ̃ . Equations (3.14) and (3.8) shows that ρ = 1

s ι∗ρ̃

satisfies L∗
∆
(ρ) = 0. �

If s = 1 in Theorem 3.1, then ρ ∈ C∞(R∞) is the characteristic function for the cohomology
class [ω] ∈ H1,1(R∞), see Theorem 3.3 and Theorem A.1. In general ρ in equation (3.2) is called a
characteristic form for [ω] see [6]. The form β in (3.2) is given in terms of ρ by formula (3.14) which
is simplified in Corollary 3.2 for H1,1(R∞) and H1,2(R∞). The term dx∧θ 0∧ρ in equation (3.2)
generalizes the conserved density of a conservation law, and plays a critical role in Section 7.

Theorem 3.2. Let ut = K(t,x,u,ux, . . . ,un) be an nth order evolution equation where n ≥ 2. The
cohomology satisfies H1,s(R∞) = 0 for all s≥ 3.

This is essentially Theorem 1 in [13] and we give a different proof.

Proof. Suppose ω is a representative for an element of H1,s+1(R∞), (s ≥ 2), in the form (3.2),
where ρ ∈Ω0,s(R∞) is given by

ρ = Ai1...isθ
i1 ∧·· ·∧θ

is . (3.15)

and satisfies L∗
∆
(ρ) = 0.

Suppose for ρ in (3.15) that the highest form order is (no sum) Am1...msθ
m1 ∧ θ m2 ∧ ·· · ∧ θ ms

where we use lexicographic order so that max of (m1 > m2 > · · · > ms) determines the highest
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order. We first claim that in L∗
∆
(ρ) the coefficient of θ m1+n∧θ m2 ∧·· ·∧θ ms is

[L∗∆(ρ)]m1+n,m2,...,ms = (−1− (−1)n)KnAm1...ms , (3.16)

and that the coefficient of θ m1+n−1∧θ m1 ∧·· ·∧θ ms when m1 > m2 +1 is

[L∗∆(ρ)]m1+n−1,m2+1,...,ms = (−1)nnKnAm1...ms (3.17)

and when m1 = m2 +1 and n is odd, the coefficient of θ m1+n−1∧θ m1 ∧·· ·∧θ ms

[L∗∆(ρ)]m1+n−1,m1,...,ms =−(−1)nnKnAm1...ms . (3.18)

Therefore L∗
∆
(ρ) = 0 implies Am1...ms = 0, ρ = 0 and ω = dt ∧ β . The condition dHω = 0 gives

X(β ) = 0. This implies β = 0 since β ∈Ω0,s+1(R∞) and so ω = 0.
We compute L∗

∆
(ρ) =−T (ρ)− (−X)i(Kiρ) to find equations (3.16), (3.17), (3.18),

L∗∆(ρ) =−T (Ai1...is)θ
i
1 · · ·∧θ

is−Ai1...isT (θ
i1) · · ·∧θ

is−Ai1...isθ
i1 ∧T (θ i2) · · ·∧θ

is + · · ·
− (−1)nXn(KnAi1...isθ

i1 ∧·· ·∧θ
is)− (−1)n−1Xn−1(Kn−1Ai1...isθ

i1 ∧·· ·∧θ
is) . . .

(3.19)

where from equation (2.15) we have T (θ i) = Knθ i+n+ lower order. Consider also the highest order
terms in expanding Xn(KnAi1...isθ

i1 ∧·· ·∧θ is) (no sum),

Xn(KnAm1...msθ
m1 ∧θ

m2 · · ·∧θ
ms)

= Xn(KnAm1...ms)θ
m1 ∧θ

m2 · · ·∧θ
ms

+KnAm1...msθ
m1+n∧θ

m2 · · ·∧θ
ms +nKnAm1...msθ

m1+n−1∧θ
m2+1 · · ·∧θ

ms + · · ·
+KnAm1...msθ

m1 ∧θ
m2+n · · ·∧θ

ms + · · ·
= KnAm1...msθ

m1+n∧θ
m2 · · ·∧θ

ms +nKnAm1...msθ
m1+n−1∧θ

m2+1 · · ·∧θ
ms

−KnAm1...msθ
m2+n∧θ

m1 · · ·∧θ
ms + lower order . . .

(3.20)

The coefficient of θ m1+n ∧ θ m2 ∧ ·· · ∧ θ ms (which is the highest order) occurring in equa-
tion (3.19) comes from the second term on the right hand side in (3.19) and the first term on the last
right hand side in equation (3.20) to give (3.16).

We consider the next highest order term in (3.19). From equation (3.19), the only possible term
that can contain θ m1+n−1 ∧θ m2+1 ∧θ m3 · · ·θ ms when m1 > m2 + 1 is from second term on the last
right hand side of equation (3.20). Therefore 3.20 produces (3.17).

In the case when m1 = m2 + 1 we have from the second term in right side of (3.19) at highest
order giving (no sum)

−Am1...msθ
m1 ∧T (θ m2) · · ·∧θ

ms =−Am1...msθ
m1 ∧ (Knθ

m2+n) · · ·∧θ
ms + lower order,

= KnAm1...msθ
m1−1+n∧θ

m1 · · ·∧θ
ms + lower order.

(3.21)

The second and third term on the last right hand side in equation (3.20) are (no sum)

nKnAm1...msθ
m1+n−1∧θ

m2+1 · · ·∧ · · ·θ ms−KnAm1...msθ
m1+n−1∧θ

m2+1 · · ·∧θ
ms . (3.22)

Using m1 = m2 + 1, equations (3.21), (3.22) and that n is odd in equation (3.19), gives equa-
tion (3.18). �

We also have as a corollary of Theorem 3.1.
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Corollary 3.1. If ut = K(t,x,u, . . . ,u2m), m ≥ 1 is an even order evolution equation, then
H1,2(R∞) = 0.

Proof. We show that the only ρ ∈ Ω0,1(R∞) satisfying L∗
∆
(ρ) = 0 is ρ = 0. Suppose ρ = riθ

i,
i = 0, . . . ,k then by direct computation and the fact 2m > 0

L∗∆(ρ) =−T (ρ)− (−X)i(Kiρ)≡−2rkK2mθ
2m+k mod θ

0, . . . ,θ 2m+k−1

which is non-zero unless rk = 0. Therefore ρ = 0. �

This next theorem is a partial converse to Theorem 3.1 which will be used in Corollary 3.2
below to provide a formula for β in equation (3.2).

Theorem 3.3. Let ∆ = ut −K(t,x,u,ux, . . . ,un) define an nth order evolution equation ∆ = 0. Let
ρ ∈Ω0,s−1(R∞) (s = 1, 2) satisfies θ 0∧L∗

∆
(ρ) = 0, then

ω = dx∧θ
0∧ρ−dt ∧βββ (ρ), βββ (ρ) =

n

∑
i=1

(
i

∑
a=1

(−X)a−1(Kiρ)∧θ
i−a

)
, (3.23)

satisfies dHω = 0.

Proof. First suppose ρ ∈Ω0,s−1(R∞) and satisfies θ 0∧L∗
∆
(ρ) = 0, and let ω ∈Ω1,s(R∞) be as in

equation (3.23). We compute dHω ,

dHω = dt ∧dx∧ [T (θ 0∧ρ)+X(βββ (ρ))]. (3.24)

To compute X(βββ (ρ)) we need the telescoping identity,

X

(
i

∑
a=1

(−X)a−1(Kiρ)∧θ
i−a

)
=−(−X)i(Kiρ)∧θ

0 +Kiρ ∧θ
i ( no sum on i). (3.25)

Using equation (3.25) in the formula for βββ (ρ) in equation (3.23) gives

X(βββ (ρ)) =
n

∑
i=1

X

[(
i

∑
a=1

(−X)a−1(Kiρ)∧θ
i−a

)]
,

=
n

∑
i=1
−(−X)i(Kiρ)∧θ

0 +Kiρ ∧θ
i.

(3.26)

We then use T (θ 0 ∧ ρ) = T (θ 0) ∧ ρ + θ 0 ∧ T (ρ) so that together with equation (3.26), equa-
tion (3.24) becomes (adding and subtracting K0θ 0∧ρ)

dHω = dt ∧dx∧ (T (θ 0)−
n

∑
i=0

Kiθ
i)∧ρ +dt ∧dx∧θ

0∧

(
T (ρ)+

n

∑
i=0

(−X)i(Kiρ)

)
(3.27)

Now by equation (2.7), ι∗dV (−∆) =−T (θ 0)+∑
n
i=0 Kiθ

i = 0, and so equation (3.27) becomes,

dHω = dt ∧dx∧θ
0∧

(
T (ρ)+

n

∑
i=0

(−X)i(Kiρ)

)
=−dt ∧dx∧θ

0∧L∗∆(ρ) = 0.

�
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Corollary 3.2. For any [ω] ∈ H1,s(R∞), s = 1,2 the representative, ω ∈ Ω1,s(R∞), s = 1,2 in
equation (3.2) is given by

ω = dx∧θ
0∧ρ−dt ∧βββ (ρ), βββ (ρ) =

n

∑
i=1

(
i

∑
a=1

(−X)a−1(Kiρ)∧θ
i−a

)
, (3.28)

where ρ ∈Ω1,s−1(R∞). If s = 1, then the representative (3.28) is unique.

Proof. Starting with the representative in equation (3.2) of Theorem 3.1 we have ω = dx∧ θ 0 ∧
ρ−dt∧β where L∗(ρ) = 0. Let ω̂ be the form in (3.28) using this ρ which satisfies L∗

∆
(ρ) = 0 and

so by Theorem 3.3, dHω̂ = 0 . The form ω ′ = ω− ω̂ is then dH closed, leading to

0 = dHω
′ = dH(dt ∧ (β −βββ (ρ)) = dx∧dt ∧X(β −βββ (ρ)). (3.29)

This implies X(β −βββ (ρ)) = 0, where β −βββ (ρ) ∈ Ω0,s(R∞),s = 1,2. However, the only contact
form satisfying this condition is the zero form. So β = βββ (ρ). This proves equation (3.28).

For the final statement in the theorem, suppose ωa = dx∧θ 0 ·Qa−dt∧βa, a = 1,2 where Qa ∈
C∞(R∞) and βa ∈ Ω0,1(R∞) satisfy [ω1] = [ω2] ∈ H1,1(R∞). This implies there exists ξ = g jθ

j

such that ω1−ω2 = dHξ so that

dx∧θ
0(Q1−Q2) = dx∧X(g jθ

j). (3.30)

Since X(θ i) = θ i+1, equation (3.30) can only be satisfied when Q1 = Q2 and g j = 0. Therefore
ω1 = ω2 and the form ω in equation (3.28) when s = 1 is unique. �

The form ω in equation (3.28) can be derived by a rather lengthy calculation from the second
term in equation (3.14).

A form ρ ∈ Ω0,1(R∞) can be written ρ = riX i(θ 0). We define the adjoint of ρ by ρ∗ =

(−X)i(riθ
0) while (ρ∗)∗ = ρ because the operator riX i has this property, see Remark 2.1.

Theorem 3.4. Suppose [ω] ∈ H1,2(R∞) admits a representative

ω = dx∧θ
0∧ ε−dt ∧β , ε ∈Ω

0,1(R∞), β ∈Ω
0,2(R∞)

where ε∗ =−ε . Then L∗
∆
(ε) = 0 and

β = βββ (ε) =
n

∑
i=1

(
i

∑
a=1

(−X)a−1(Kiε)∧θ
i−a

)
.

Proof. Write β = Babθ a ∧ θ b, and choose in equation (3.3), ω̃0 = dx∧ϑ 0 ∧ ε̃0− dt ∧ β̃ , where
ε̃0 = riϑ

i, β̃ = Babϑ a∧ϑ b (see Remark 2.1). Then there exists sab ∈C∞(J∞(R2,R)) such that,

dH(ω̃0) = dt ∧dx∧ (ϑt ∧ ε̃0 +ϑ0∧Dt(ε̃0)+Dx(β̃ ))

= dt ∧dx∧ ((dV ∆+Kmϑ
m)∧ ε̃0 +ϑ0∧Dt(ε̃0)+Dx(β̃ ))

= dt ∧dx∧ ((dV ∆+Kmϑ
m)∧ ε̃0 +ϑ0∧ (ri,tϑ

i + riϑ
i
t )+Dx(β̃ ))

= dt ∧dx∧ (dV ∆∧ ε̃0 +ϑ
0∧ (riDi

x(dV ∆))+ sabϑ
a∧ϑ

b)

(3.31)
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since Dt(ϑ
0) = dV ∆+Kmϑ m. Now using equations (3.25) and (3.26) with X = Dx, ρ = ϑ 0, Ki = ri,

and θ 0 = dV α while adding and subtracting r0ϑ 0∧dV ∆ we have

dt ∧dx∧ϑ
0∧ (riDi

x(dV ∆)) = dt ∧dx∧ (−Dx)
i(riϑ

0)∧dV ∆−dH η̃ (3.32)

where

η̃0 = dt ∧
k

∑
i=1

i

∑
j=1

(−Dx)
j−1(riϑ

0)∧Di− j
x (dV ∆) (3.33)

and η̃0 satisfies ι∗η̃0 = 0. Since ε∗=−ε , we have ε̃∗0 =−ε̃0, and combining this with equation (3.31)
and (3.32) we have

dH(ω̃0) = dt ∧dx∧ (dV ∆∧2ε̃0 + sabϑ
a∧ϑ

b)−dH η̃0 (3.34)

Therefore comparing equations (3.34) with equation (3.5) we have ρ̃ = 2ε̃0. By equations (3.14) in
the proof of Theorem 3.1, ρ = 1

2 ι∗ρ̃ = ε satisfies L∗
∆
(ε) = 0. Finally Theorem 3.3 implies β = βββ (ε).

�

Corollary 3.3. Let ε ∈Ω0,1(R∞) satisfy ε∗ =−ε . Then θ 0∧L∗
∆
(ε) = 0 if and only if L∗

∆
(ε) = 0.

Proof. Let ε be as stated and satisfy θ 0∧L∗(ε) = 0. The form ω with ρ = ε in equation (3.23) of
Theorem 3.3 satisfies dHω = 0. By Theorem 3.4 L∗

∆
(ε) = 0. The if part of the statement is trivial.

�

4. A Canonical Form for H1,2(R∞) and the Snake Lemma

We now refine Theorem 3.1 to produce a canonical form for elements of H1,2(R∞) by determining
a unique representative for any [ω] ∈ H1,2(R∞).

Theorem 4.1. Let [ω] ∈ H1,2(R∞). There exists a unique representative for [ω] of the form

ω = dx∧θ
0∧ ε−dt ∧βββ (ε) , βββ (ε) =

n

∑
i=1

(
i

∑
a=1

(−X)a−1(Kiε)∧θ
i−a

)
, (4.1)

where ε ∈Ω0,1(R∞), ε∗ =−ε , and L∗
∆
(ε) = 0.

Proof. We begin by utilizing equation (3.26) and make the substitution ρ = θ 0, Ki = ri giving the
identity,

X

(
k

∑
i=1

(
i

∑
a=1

(−X)a−1(riθ
0)∧θ

i−a

))
=

k

∑
i=1

(
−(−X)i(riθ

0)∧θ
0 + riθ

0∧θ
i) . (4.2)

If we now write ρ = ∑
k
i=1 riθ

i and let

η =
k

∑
i=1

(
i

∑
a=1

(−X)a−1(riθ
0)∧θ

i−a

)
, (4.3)
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the identity (4.2) gives

X(η) = θ
0∧ (ρ∗+ρ) (4.4)

Suppose now [ω] ∈ H1,2(R∞) with representative ω = dx∧ θ 0 ∧ρ − dt ∧βββ (ρ) with ρ = riθ
i

from Theorem 3.2. Let ω̂ = ω− 1
2 dH(η) where η is given in equation (4.3), so that [ω̂] = [ω]. We

then use equation (4.4) to replace X(η) in the following,

ω̂ = dx∧θ
0∧ρ−dt ∧βββ (ρ)− 1

2
dx∧X(η)− 1

2
dt ∧T (η)

= dx∧ (θ 0∧ρ− 1
2

X(η))−dt ∧ (βββ (ρ)+ 1
2

T (η))

= dx∧
(

θ
0∧ρ− 1

2
(θ 0∧ρ +θ

0∧ρ
∗)

)
−dt ∧ (βββ (ρ)+ 1

2
T (η))

= dx∧θ
0∧ 1

2
(ρ−ρ

∗)−dt ∧ (βββ (ρ)+ 1
2

T (η)).

(4.5)

The representative ω̂ in (4.5) satisfies the skew-adjoint condition in the theorem with

ε =
1
2
(ρ−ρ

∗),

while Theorem 3.4 shows L∗
∆
(ε) = 0 and βββ (ρ)+ 1

2 T (η) = βββ (ε).
We now show the representative (4.1) unique. Suppose that

ωα = dx∧θ
0∧ εα −dt ∧ β̌ββ (εa), α = 1,2 (4.6)

where ε∗α =−εα and [ω1] = [ω2]. This implies there exists ξ = ξabθ a∧θ b ∈Ω0,2(R∞) such that

dx∧θ
0∧ (ε1− ε2) = dx∧X(ξabθ

a∧θ
b). (4.7)

Now let ε̃α = ri,αϑ i ∈ Ω0,1(J∞(R2,R)) and ξ̃ = ξabϑ a∧ϑ b ∈ Ω0,2(J∞(R2,R)) so that ι∗ε̃α =

εα , ι∗ξ̃ = ξ . Equation (4.7) implies

dt ∧dx∧ϑ
0∧ (ε̃1− ε̃2) = dt ∧ [Dx(ξ̃ )] =−dH(dt ∧ ξ̃ ). (4.8)

Applying the integration by parts operator I (using (2.5)) to equation (4.8) and that ε̃∗α =−ε̃α gives

dt ∧dx∧θ
0∧ (ε̃1− ε̃2) = 0.

Since ε̃1− ε̃2 is skew-adjoint, this implies ε̃1 = ε̃2 and hence ε1 = ε2. Therefore βββ (ε1) = βββ (ε2) and
ω1 = ω2. �

Corollary 4.1. If [ω] ∈H1,2(R∞) with representative ω = dx∧θ 0∧ρ−dt∧βββ (ρ) then the unique
representative in Theorem 4.1 has

ε =
1
2
(ρ−ρ

∗) . (4.9)

The second part of Corollary 3.3 provides an isomorphism between H1,1(R∞) and the solution
space L∗

∆
(Q) = 0, Q ∈C∞(R∞). We now extend this to H1,2(R∞).
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Corollary 4.2. Let S = {ε ∈ Ω0,1(R∞) | ε∗ =−ε , and θ 0∧L∗(ε) = 0}. The linear map χ : S→
H1,2(R∞) given by χ(ε) = [dx∧ θ 0 ∧ ε − dt ∧βββ (ε)] where βββ (ε) is given in equation (4.1), is an
isomorphism.

Proof. Given ε satisfying the conditions of the corollary, Theorem 3.3 shows χ(ε) ∈ H1,2(R∞).
Theorem 4.1 shows directly that χ is onto, while the uniqueness of the representative in Theorem 4.1
shows that χ is one-to-one. �

See Section 8.1 for an application of Corollary 4.2.
We now refine Theorem 3.1 and provide a third (non-unique) normal form.

Theorem 4.2. Given [ω] ∈ H1,2(R∞), there exists a representative ω such that

ω = dx∧θ
0∧dV Q −dt ∧dV γ = dV

(
dx∧θ

0 ·Q −dt ∧ γ
)

(4.10)

where Q is a smooth function on R∞ and γ ∈Ω0,1(R∞).

Proof. We start with equation (3.2) in Theorem 3.1 where a representative for [ω] can be written

ω = dx∧θ ∧ρ−dt ∧β ,

where w.l.o.g. ρ = raθ a, a = 1, . . . ,m. Now dV ω ∈ H1,3(R∞), and so by Theorem 3.2 there exists
ξ ∈Ω0,3(R∞) such that

dV ω = dHξ .

Writing ξ = Ai jkθ i∧θ j ∧θ k, this gives

dx∧X(Ai jkθ
i∧θ

j ∧θ
k) = dx∧θ

0∧ (dV ρ). (4.11)

We now show ξ has the form

ξ = Aiθ
i∧θ

1∧θ
0, i = 0, . . . ,m−1 (4.12)

Suppose there is a term in ξ with θ M1 ∧θ M2 ∧θ M3 , 1 ≤M1 < M2 < M3, and assume we have the
one with the highest M3. On the left side of (4.11) there will be

dx∧X(θ M1 ∧θ
M2 ∧θ

M3)

which contains dx∧ θ M1 ∧ θ M2 ∧ θ M3+1, which can’t occur on the right side since there is no θ 0.
Suppose now that there are terms in ξ of the form θ 0∧θ M2 ∧θ M3 with 1 < M2 < M3. Consider the
maximal M3, and again

dx∧X(θ 0∧θ
M2 ∧θ

M3),

will contain a term dx∧θ 0∧θ M2∧θ M3+1 which can’t occur on the right hand side of equation (4.11).
This shows equation (4.12).
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Now

dHdV ξ = 0

but since ξ ∈ Ω0,3(R∞), this implies dV ξ = 0. We apply vertical exactness and let ζ ∈ Ω0,2(R∞)

be such that dV ζ = ξ . By the vertical homotopy on ξ we may assume ζ = Aθ 0∧θ 1. Finally, we let

ω̃ = ω +dHζ = dx∧θ
0∧ ρ̃−dt ∧ β̃ , (4.13)

where ρ̃ = ρ +X(Aθ 1∧θ 0) and β̃ = β −T (ζ ). Therefore,

dV ω̃ = dV ω +dV dHζ = dV ω̃−dHdV ζ = dV ω̃−dHξ = 0.

This proves there is a representative ω̃ for [ω] with dV ω̃ = 0.
Again we use dV exactness to find η ∈Ω1,1(R∞) such that,

ω̃ = dV η (4.14)

where

η = dx∧α−dt ∧ γ, α,γ ∈Ω
0,1(R∞). (4.15)

Writing α = a jθ
j, j = 0, . . . ,m, equation (4.14) and (4.15) give

θ
0∧ ρ̃ =−dV (a jθ

j).

We now modify η in equation (4.15) and the representative ω̃ for [ω] in equation (4.13) by

η̂ = η−dH(amθ
m−1), ω̂ = ω̃ +dHdV (amθ

m−1), no summation

so that ω̂ = dV η̂ . In particular we note

η̂ = dx∧ (â jθ
j)−dt ∧ γ̂ j = 0, . . .m−1.

Continuing by induction, there exists a representative ω̄ for [ω] and an η̄ ∈ Ω1,1(R∞), where ω̄ =

dV η̄ and

η̄ = dx∧θ
0 ·Q −dt ∧ γ̄ (4.16)

where Q is a smooth function on R∞. Therefore

ω̄ = dx∧θ
0∧dV Q−dt ∧dV γ̄.

�

Combining Theorem 4.2 and Corollary 4.1 gives the following.

Corollary 4.3. If [ω]∈H1,2(R∞) with representative ω = dV (dx∧θ 0 ·Q−dt∧γ) from Theorem 4.2
then the unique representative in Theorem 4.1 is determined by

ε =
1
2
(
LQ−L∗Q

)
θ

0 (4.17)

where LQ = QiX i.
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The snake lemma from the variational bicomplex is the following.

Lemma 4.1. Let ω ∈Ω1,2(R∞) satisfy dHω = 0, dV ω = 0. Let η ∈Ω1,1(R∞) such that dV η = ω .
Then there exists λ = Ldt ∧dx ∈Ω2,0(R∞) such that dHη = dV λ .

Proof. We have

dV dHη =−dHdV η =−dHω = 0,

and the vertical exactness of the variational bicomplex implies the lemma. �

The relationship between ω , λ and η in Lemma 4.1 is represented by the diagram,

0

ω

η dHη

.......

.......

.......

.......

.......

.......

.......

.......

.......

...............

............

dV

.......

.......

.......

.......

.......

.......

.......

.......

...................

............

dV

.................................................................... ............

dH

λ

.......

.......

.......

.......

.......

.......

.......

...............

............

dV

Corollary 4.4. Let [ω] ∈ H1,2(R∞) and let ω be a dV closed representative as in equation (4.10),
and let λ ∈ Ω2,0(R∞) be as in Lemma 4.1, so that dHη = dV λ . The linear map Λ : H1,2(R∞)→
H2,0(R∞) given by

Λ([ω]) = [λ ] (4.18)

is well defined.

Proof. Suppose ωa ∈ Ω1,2(R∞), a = 1, 2 where [ω1] = [ω2] and that ωa = dV ηa, a = 1, 2 are dV

closed representatives. Let λa ∈ Ω2,0(R∞) satisfy dHηa = dV λa, a = 1, 2. To demonstrate [λ1] =

[λ2] ∈ H2,0R∞ we show there exists κ ∈Ω1,0(R∞) such that λ1−λ2 = dHκ .
Since [ω1] = [ω2], there exists ξ ∈Ω0,2(R∞) such that,

dV (η1−η2) = dHξ . (4.19)

Taking dV of equation (4.19) gives dV dHξ = −dHdV ξ = 0, which implies dV ξ = 0 since
H0,2(R∞) = 0 (or dH µ = 0, µ ∈ Ω0,s(R∞) implies µ = 0). Therefore there exists φ ∈ Ω0,1(R∞)

such that ξ = dV φ . Substituting ξ = dV φ in equation (4.19) gives

dV (η1−η2 +dHφ) = 0. (4.20)

The vertical exactness of the variational bicomplex applied to equation (4.20) implies that there
exists κ ∈Ω1,1(R∞) such that

η1−η2 +dHφ = dV κ . (4.21)

Taking dH of equation (4.21) and using dHηa = dV λa gives

dV λ1−dV λ2 = dHdV κ
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so that

dV (λ1−λ2 +dHκ) = 0. (4.22)

Again by vertical exactness of the augmented variational bicomplex applied to equation (4.22), there
exists µ ∈Ω2,0(R) such that

λ1−λ2 =−dHκ +µ (4.23)

where µ ∈ Ω2(R2). The deRham cohomology of R2 is trivial so µ = dα = dHα,α ∈ Ω1(R2).
Therefore equation (4.23) becomes

λ1−λ2 = dH(−κ +α)

and [λ1] = [λ2] ∈ H2,0(R∞). �

The relevance of the kernel of Λ is given in Theorem A.2.

5. Variational Operators and H1,2(R∞)

A scalar evolution equation defined by the zero set of ∆ = ut −K(t,x,u,ux, . . . ,un) is said to admit
a variational operator of order k if there exists a differential operator

E=
k

∑
i=0

ri(t,x,u,ux,uxx, . . .)Di
x

with rk nowhere vanishing, and a function L ∈C∞(R2,R) such that,

E(∆) = E(L(t,x,u,ut ,ux,utt ,utx,uxx, . . .)) (5.1)

where E(L) is the Euler-Lagrange expression of L ∈C∞(J∞(R2,R)). Theorem 2.6 in [7] relates the
existence of a multiplier (or zero order operator) to the cohomology of ∆. In this section we will
prove a generalization of this result and ultimately prove Theorem 1.1. We start with the following.

Theorem 5.1. Let E = riDi
x be a variational operator for ∆ = ut − K(t,x,u,ux, . . . ,un) with

Lagrangian L satisfying (5.1). Then there exists η ∈Ω1,1(J∞(R2,R)) such that

dV (Ldt ∧dx) = dt ∧dx∧ϑ
0 ·E(∆)+dHη . (5.2)

With ι : R∞→ J∞(R2,R) in equation (2.9) let,

ω = dV ( ι
∗
η ) ∈Ω

1,2(R∞).

Then dHω = 0.

Proof. Suppose E and L are given satisfying (5.1), then using the standard formula in the calculus
of variations (for example equation (3.2) in [2]), we have on account of (5.1)

dV (Ldt ∧dx) = dt ∧dx∧ϑ
0 ·E(L)+dHη

= dt ∧dx∧ϑ
0 ·E(∆)+dHη

(5.3)

which shows (5.2).
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By applying ι∗ to equation (5.2) we have

dV ι
∗
λ = dHι

∗
η . (5.4)

Letting ω = dV ι∗η , we compute dHω using equation (5.4) and get

dHω = dHdV ι
∗
η =−dV dHι

∗
η =−dV (ι

∗dV λ )) =−d2
V (ι
∗
λ ) = 0.

Therefore dHω = 0. �

A formula for ω in terms of E in Theorem 5.1 is given in Theorem 5.2 below. Before giving
Theorem 5.2 we note the following property of variational operators for evolutions equations.

Lemma 5.1. If ∆ = ut − K(t,x,u,ux, . . . ,un) admits the kth order variational operator E =

ri(t,x,u,ux, . . .)Di
x, then E is skew-adjoint.

Proof. Suppose E(ut −K) = E(L) then applying I ◦dV to equation (5.2) using d2
V = 0 along with

the property (2.5) for I, we have

I ◦dV
(

dt ∧dx∧ϑ
0 ·E(∆)

)
= 0. (5.5)

With ∆ = ut −K let

κ = dV (E(∆)) = riDi
xDt(ϑ

0)+ut,idV ri−dV (riDi
x(K)). (5.6)

so that condition (5.5) gives

2I(dt ∧dx∧ϑ
0∧κ) = dt ∧dx∧ϑ

0∧

(
κ−

∞

∑
(a, j)6=(0,0)

(−1) j+aD j
xDa

t (ϑ
0 ·∂ua, j κ)

)
(5.7)

In the term ∂ua, j κ where κ is given in equation (5.6) we note that ∂ua, j(r j) = 0, ∂ua, j(K) = 0,
a ≥ 1, j ≥ 0. Therefore the only possible non-zero terms in the summation term in equation (5.7)
with ∂ua, j with a≥ 1, j ≥ 0 satisfy

−Dt(∂ut κ) =−Dt(r0ϑ
0) ≡ − r0ϑt mod {ϑ

j } j≥0

DxDt(∂ut,1 κ) = DxDt(r1ϑ
0) ≡ Dx(r1θt) mod {ϑ

j } j≥0

−(−1)kDk
xDt(∂ut,1 κ) =−(−1)kDk

xDt(rkϑ
0) ≡ (−1)kDk

x(rkθt) mod {ϑ
j } j≥0.

(5.8)

Writing the condition I(dt ∧dx∧ϑ 0∧κ) mod {ϑ j} j≥0 using equation (5.7) and (5.8) gives

2I(dt ∧dx∧ϑ
0∧κ)≡ dt ∧dx∧ϑ

0∧

(
riDi

xϑt +
k

∑
i=0

(−Dx)
i(riϑt)

)
mod {ϑ j} j≥0

≡ dt ∧dx∧ϑ
0∧ ( E(ϑt)+E∗(ϑt) ) mod {ϑ i}i≥0.

(5.9)

In order for the right side of equation (5.9) to be zero we must have E∗ =−E. �
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M.E. Fels and E. Yaşar / Variational Operators, Symplectic Operators, and the Cohomology of Scalar Evolution Equations

Theorem 5.2. Let E = ri(t,x,u,ux, . . .)Di
x, i = 0, . . . ,k be a kth order variational operator for

∆ = ut−K(t,x,u,ux, . . . ,un) and let [dV ι∗η ] ∈H1,2(R∞) from Theorem 5.1. Then the unique repre-
sentative for [dV ι∗η ] in Theorem 4.1 is

ω = dx∧θ ∧ ε−dt ∧βββ (ε), ε =−1
2

ι
∗E(ϑ 0) =−1

2
riθ

i. (5.10)

Proof. Let ω̃0 = dV η̃0 where η̃0 satisfies equation (5.3). We have from equations (5.3) and (3.32)

dHω̃0 =−dV dH(η̃0) = dt ∧dx∧dV (ϑ
0 ·E(∆))

= dt ∧dx∧
(
Di

x(∆)dV ri∧ϑ
0 + riDi

x(dV ∆)∧ϑ
0)

= dt ∧dx∧
(
Di

x(∆)dV ri∧ϑ
0 +dV ∆∧ (−Dx)

i(riϑ
0)
)
+dH η̃

(5.11)

where η̃ is given in equation (3.33) and satisfies ι∗η̃ = 0. As remarked in the proof of Theorem 3.1,
the term Di

x(∆)dV ri∧ϑ 0 in (5.11) does not contribute to the form ρ̃ in equation (3.5). Therefore we
have from equation (5.11) that ρ̃ in equation (3.5) is,

ρ̃ = (−Dx)
i(riϑ) = E∗(ϑ 0).

Since ρ = 1
2 ι∗ρ̃ and E is skew-adjoint we get equation (5.10). �

We now come to the last main theorem in this section which proves the converse to Theorem 5.1.
The proof is again a generalization of the argument given in Theorem 2.6 of [7] for the multiplier
problem.

Theorem 5.3. Let [ω] ∈ H1,2(R∞) with representative ω as in equation (4.10) of Theorem 4.2,

ω = dV η , where η = dx∧θ ·Q −dt ∧ γ. (5.12)

Let λ = Ldt∧dx satisfying dHη = dV λ from Lemma 4.1. Then E=F∗Q−FQ is a variational operator
and,

E(∆) = (F∗Q−FQ)(∆) = E(Q∆+L) . (5.13)

The proof requires considerable care whether we are working on R∞ or J∞(R2,R), see
Remark 2.1.

Proof. We start by writing γ = g jθ
j in equation (5.12) and define the form η̃ ∈ Ω1,1(J∞(R2,R))

given by

η̃ = dx∧ϑ
0 ·Q−dt ∧ [g jϑ

j] (5.14)

which satisfies ι∗η̃ = η in equation (5.12), and where the forms ϑ j are defined in (2.1). Now define
the vector fields on J∞(R2,R),

T̃ = ∂t +K∂u +Dx(K)∂ux +D2
x(K)∂uxx + . . . , V = ∆∂u +Dx(∆)∂ux + . . . ,

X̃ = ∂x +ux∂u +uxx∂ux +Dx(K)∂ut + . . . , W = Dx(∆)∂ut +D2
x(∆)∂utx + . . .

(5.15)

so that Dt = T̃ +V,Dx = X̃ +W . Then with η̃ in equation (5.14) we have,

dH η̃ = dt ∧dx∧ [Dt(ϑ
0 ·Q)+Dx(g jϑ

j)]

= dt ∧dx∧ [T̃ (ϑ 0 ·Q)+ X̃(g jϑ
j)]+dt ∧dx∧ [V (ϑ 0 ·Q)+W (g jϑ

j)] .
(5.16)
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Since g j = g j(t,x,u,ux, . . .) then W (g j) = 0, while dt∧dx∧Dx(ϑ
j) = dt∧dx∧ X̃(ϑ j) and V (ϑ 0) =

dV ∆. Equation (5.16) then can be written,

dH η̃ = dt ∧dx∧ [T̃ (Qϑ
0)+ X̃(g jϑ

j)]+dt ∧dx∧ [ϑ 0 ·V (Q)+dV ∆ ·Q]. (5.17)

The condition dHη = dV λ (on R∞) is

dt ∧dx∧ [T (θ ·Q)−X(g jθ
j)] = dt ∧dx∧θ

a ·La . (5.18)

Now π∗dt ∧dx∧θ j = dt ∧dx∧ϑ j (see Remark 2.1), and using the vector fields in (5.15) we have

π
∗(dV λ ) = dV (π

∗
λ ) = dV (Ldt ∧dx),

π
∗(dt ∧dx∧ [T (Qθ

0)] = dt ∧dx∧ [T̃ (Qϑ
0)]

π
∗(dt ∧dx∧ [X(g jθ

j)] = dt ∧dx∧ [X̃(g jϑ
j)]

(5.19)

Therefore applying π∗ to (5.18) and using (5.19) we have

dt ∧dx∧ [T̃ (Qϑ
0)+ X̃(g jϑ

j)] = dV (Ldt ∧dx), (5.20)

The first variational formula for dV (Ldt ∧ dx) on J∞(R2,R) applied to the right side of (5.20)
gives

dt ∧dx∧ [T̃ (Qϑ
0)+ X̃(g jϑ

j)] = dt ∧dx∧ϑ
0 ·E(L)+dH ζ̃1 (5.21)

where ζ̃ ∈Ω1,1(J∞(R2,R)). Inserting equation (5.21) into (5.17) we have,

dH η̃ = dt ∧dx∧ϑ
0 ·E(L)+dt ∧dx∧ [ϑ 0 ·V (Q)+dV ∆ ·Q]+dH ζ̃1 (5.22)

The terms dV ∆ ·Q in equation (5.22) can be written as

dt ∧dx∧ [QdV ∆] = dt ∧dx∧ [dV (Q∆)−∆dV Q] (5.23)

We now apply the integration by parts operator (see equation 2.8 in [2]) and use the first variational
formula for dV (Q∆dt ∧dx), in equation (5.23) and get

dt ∧dx∧ [QdV ∆] = dt ∧dx∧ϑ
0[E(Q∆)− (−Dx)

i(Q,i∆)]+dH ζ̃2

= dt ∧dx∧ϑ
0[E(Q∆)−F∗Q(∆)]+dH ζ̃2

(5.24)

Next we expand the term V (Q) in equation (5.22) using V in (5.15) and

V (Q) = Di
x(∆)Q,i = FQ(∆) (5.25)

Inserting (5.24), and (5.25) into (5.22) and letting ζ̃ = ζ̃1 + ζ̃2 gives,

dH η̃ = dt ∧dx∧ϑ
0 [̇E(L)+FQ(∆)−F∗Q(∆)+E(Q∆)]+dH ζ̃ .

This implies dH(η̃− ζ̃ ) is a source-form. This is only possible if dH(η̃− ζ̃ ) = 0, and so

(F∗Q−FQ)(∆) = E(Q∆+L),

which is equation (5.13) as required. �
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Remark 5.1. In general three applications of the vertical homotopy operator are required to deter-
mine λ ∈ Ω2,0(R∞) from [ω] ∈ H1,2(R∞). The first is to find a representative ω ∈ H1,2(R∞) with
dV ω = 0 (Theorem 4.2). The second is to find η such that dV η = ω , and the third is to find λ such
that dV λ = dHη .

We now have the following corollaries.

Corollary 5.1. Let [ω]∈H1,2(R∞) with unique representative ω = dx∧θ 0∧ε−dt∧βββ (ε), ε = riθ
i

as in Theorem 4.1. Then ∆ admits E=−2riDi
x as a variational operator.

Proof. Starting with equation (5.12), Corollary 4.3 implies

ε =
1
2
(LQ−L∗Q)θ

0 = riθ
i. (5.26)

Equation (5.26) together with the fact FQ = QiDi
x gives ε = ι∗ 1

2(FQ−F∗Q)(ϑ
0) = riθ i, we have

E= F∗Q−FQ =−2riDi
x is a variational operator by Theorem 5.3. �

Corollary 5.2. Let [ω] ∈H1,2(R∞) with ω = dx∧θ 0∧ (riθ
i)−dt∧βββ (ρ) as in Theorem 3.1. Then

∆ admits

E= (riDi
x)
∗− riDi

x (5.27)

as a variational operator.

Proof. By Corollary 4.1 the unique representative ω̂ = dx∧θ 0∧ε−dt∧βββ (ε) has ε = 1
2 (ρ−ρ∗) =

1
2(riθ

i− (−X i)(riθ
0)). Therefore by Corollary 5.1, E in equation (5.27) is a variational operator.

�

Corollary 5.3. If an even order evolution equation ut = K(t,x,u, . . . ,u2m) m ≥ 1 admits a varia-
tional operator E, then E= 0.

Proof. Let ω ∈ Ω2,1(R∞) be the dH closed form from Theorem 5.2. On the other hand using the
representative for [ω] from Theorem 3.1 combined with Corollaries 3.1 and 5.2 implies ω = 0.
Hence E= 0. �

Finally we may also restate Theorem 5.3 without reference to the equation manifold R∞ as
follows.

Corollary 5.4. The operator E= ri(t,x,u,ux, . . .)Di
x, i= 0, . . . ,k is a variational operator for ut =K

if and only if there exists Q(t,x,u,ux,uxx, . . .) and L(t,x,u,ux,uxx, . . .) such that

E= F∗Q−FQ and E(ut −K) = E(Q(ut −K)+L) . (5.28)

Lastly we combine the results of Theorems 5.1 and 5.3 to prove Theorem 1.1.

Proof. (Theorem 1.1) We define a linear transformation Φ̂ : H1,2(R∞)→ Vop(∆) by using the
unique representative in Theorem 4.1 to be

Φ̂([ω]) = Φ̂
(
[dx∧θ

0∧ ε−dt ∧βββ (ε)]
)
=−2riDi

x (5.29)

where ε = riθ
i and is skew-adjoint. Then Corollary 5.1 shows Φ([ω]) ∈ Vop(∆).
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We check Φ̂ = Φ−1. With E=−2riDi
x a variational operator, let ε = riθ

i. We have from equa-
tion (1.5) (or Theorem 5.2) and equation (5.29),

Φ̂◦Φ(E) = Φ̂
(
[dx∧θ

0∧ ε−dt ∧βββ (ε)]
)
= E

and

Φ◦ Φ̂
(
[dx∧θ

0∧ ε−dt ∧βββ (ε)]
)
= Φ(−2riDi

x) = [dx∧θ
0∧ ε−dt ∧βββ (ε)].

Therefore Φ in equation (1.5) is invertible with Φ̂ in equation (5.29) as the inverse. �

6. Functional 2-Forms, Symplectic Forms and Hamiltonian Vector Fields

In this section we review the space of functional forms on J∞(R,R) as in [3], [2] and relate these to
symplectic forms, symplectic operators and Hamiltonian vector fields.

6.1. Functional Forms

On the space J∞(R,R) with coordinates (x,u,ux, . . . ,ui, . . .) the contact forms are θ i = dui−ui+1dx
and Dx = ∂x+ux∂u+ . . .ui+1∂ui + . . . is the total x derivative operator. Again Ωr,s(J∞(R,R)) denotes
the r = 0,1 horizontal, s ≥ 0 vertical forms on J∞(R,R). The horizontal and vertical differen-
tials dH : Ωr,s(J∞(R,R))→ Ωr+1,s(J∞(R,R)), dV : Ωr,s(J∞(R,R))→ Ωr,s+1(J∞(R,R)), are anti-
derivations which satisfy

dHω = dx∧Dx(ω)dx, dV f =
∂ f
∂ui

θ
i = fiθ

i, dHθ
i = dx∧θ

i+1, dV θ
i = 0,

where f ∈C∞(J∞(R,R)), ω ∈ Ωr,s(J∞(R,R)) and Dx(ω) is the Lie derivative. Since d = dH + dV

this implies,

d2
H = 0, d2

V = 0, and dHdV +dV dH = 0.

The integration by parts operator I : Ω1,s(J∞(R,R))→Ω1,s(J∞(R,R)) is

I(Σ) =
1
s

θ
0∧

∞

∑
i=0

(−1)i(Dx)
i(∂ui Σ), Σ ∈Ω

1,s(J∞(R,R)) (6.1)

and I satisfies the same properties as in (2.3),

Σ = I(Σ)+dHη , I2 = I, Ker I = Image dH . (6.2)

The space of functional s forms (s ≥ 1) on J∞(R,R), F s(J∞(R,R)) ⊂ Ω1,s(J∞(R,R)), is
defined to be the image of Ω1,s(E) under I,

F s(J∞(R,R)) = I(Ω1,s(J∞(R,R))). (6.3)

Equation (6.1) applied to Definition 6.3 shows that if Σ ∈ F s(E) then there exists α ∈
Ω0,s−1(J∞(R,R)) such that

Σ = dx∧θ
0∧α . (6.4)

However, not every differential form Σ ∈ Ω1,s(J∞(R,R)) written in the form (6.4) is in the space
F s(J∞(R,R)). In the case of F 2(J∞(R,R)) the following is easy to show using the definition of I
in (6.1), see also Proposition 3.6 and 3.7 in [3].
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Lemma 6.1. Let Σ ∈F 2(J∞(R,R)), then there exists a unique skew-adjoint differential operator,
S= siDi

x such that,

Σ = dx∧θ
0∧S(θ 0). (6.5)

The differential δV : F s(J∞(R,R))→F s+1(J∞(R,R)) is defined by

δV = I ◦dV : F s(J∞(R,R))→F s+1(J∞(R,R)), s = 0, . . .

where we let F 0(J∞(R,R)) = Ω1,0(J∞(R,R)). This leads to the differential complex

C∞(J∞(R,R)) dH−→ F 0(J∞(R,R)) δV−→ F 1(J∞(R,R)) δV−→ F 2(J∞(R,R)) . . . , (6.6)

which is exact and is known as the Euler complex, see Theorem 2.7 [2].

6.2. Symplectic Forms, Symplectic Operators, and Hamiltonian Vector Fields

Let Γ be the Lie algebra of prolonged evolutionary vector fields on J∞(R,R). We begin by recalling
the appropriate definitions (see Section 2.5 [10]).

Definition 6.1. An element Σ ∈F 2(J∞(R,R)) is a symplectic form on Γ if Σ 6= 0 and δV (Σ) = 0.
A skew-adjoint differential operator S= siDi

x is symplectic if dx∧θ 0∧S(θ 0) is a symplectic form.

Definition 6.1 combined with Lemma 6.1 shows there is a one-to-one correspondence between
symplectic forms and symplectic operators. We now define Hamiltonian vector fields.

Definition 6.2. Let Σ be a symplectic form. A vector field Y ∈ Γ is Hamiltonian if

δV ◦ I(Y Σ) = 0. (6.7)

The vector field Y is a degenerate direction if I(Y Σ) = 0.

Definition 6.2 is equivalent to Σ being invariant under the flow of Y on F 2(J∞(R,R)) as shown
in the following theorem.

Theorem 6.1. Let Σ be a symplectic form. An evolutionary vector field Y ∈ Γ is Hamiltonian with
respect to Σ if and only if

L \
Y Σ = I ◦π

1,2 ◦LY Σ = 0, (6.8)

where L \ = I ◦π1,2 ◦L is the projected Lie derivative on F 2(J∞(R,R)), see Theorem 3.21 in [3].

Proof. Using Lemma 3.24 in [3] and the fact that δV Σ = 0, we have

L \
Y Σ = I ◦dV (Y Σ)+ I(Y δV Σ) = I ◦dV (Y Σ). (6.9)

By the first property in equation (6.2), I ◦dV ◦ I = I ◦dV , so conditions (6.7) and (6.8) are equivalent
through equation (6.9). �
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M.E. Fels and E. Yaşar / Variational Operators, Symplectic Operators, and the Cohomology of Scalar Evolution Equations

We now write out definition 6.2 in a more familiar form. The exactness of the Euler complex
and the condition δV ◦ I(Y Σ) = 0 implies there exists λ = 2Hdx ∈F 0(J∞(R,R)) such that

I(Y Σ) = δV λ = dx∧θ
0 ·E(2H). (6.10)

Writing Y = pr(K∂u) and Σ= dx∧θ 0∧S(θ 0) where S= siDi
x is a skew-adjoint differential operator,

the left side of equation (6.10) is then

I(Y Σ) = I(dx∧
(
siDi

x(K)θ 0−Ksiθ
i)
)

= dx∧θ
0 (siDi

x(K)− (−Dx)
i(Ksi)

)
= dx∧θ

0 ·2S(K).

(6.11)

Using this computation in (6.10) shows that condition (6.7) (or (6.8)) is then equivalent to the
following.

Corollary 6.1. Let Σ be a symplectic form with corresponding symplectic operator S. The evolu-
tionary vector field Y = pr(K∂u) ∈ Γ is Hamiltonian if and only if there exists H ∈ C∞(J∞(R,R))
such that

S(K) = E(H). (6.12)

Corollary 6.1 just shows that Definition 6.2 agrees with the standard symplectic Hamiltonian
formulation for time independent evolution equations [10].

6.2.1. Symplectic Potential

If Σ is a symplectic form, the exactness of the δV complex implies there exists ψ ∈F 1(J∞(R,R))
such that Σ = δV (ψ). The functional form ψ is a symplectic potential for Σ.

Lemma 6.2. Let Σ ∈F 2(J∞(R,R)) be symplectic (and so δV closed), then there exists a smooth
function P ∈C∞(J∞(R,R)) such that

Σ = dx∧θ
0∧S(θ 0), where S=

1
2
(FP−F∗P) (6.13)

where FP = PiDi
x is the Fréchet derivative of P.

Proof. A symplectic potential ψ ∈F 1(J∞(R,R)) for Σ can be written using (6.4) as

ψ = dx∧θ
0 ·P, P ∈C∞(J∞(R,R)). (6.14)

Writing Σ = δV ψ and using equation (6.14) produces (6.13). �

The Hamiltonian condition on Y ∈ Γ in terms of a symplectic potential ψ is the following.
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Lemma 6.3. The evolutionary vector field Y ∈ Γ is Hamiltonian for the symplectic form Σ = δV ψ

if and only if there exists λ ∈F 0(J∞(R,R)) such that

L \
Y ψ = δV λ . (6.15)

Proof. Using the exactness of the δV complex we show δV L \
Y ψ = 0 which is equivalent to equa-

tion (6.15). By Theorem 6.1, Y is Hamiltonian if and only if

0 = L \
Y δV ψ = δV L \

Y ψ (6.16)

where we have used L \
Y ◦δV = δV ◦L \

Y (Lemma 3.24 [3]). This proves the lemma. �

Using either Lemma 6.3 or equations (6.13) and (6.1) we have the following simple corollary.

Corollary 6.2. Let Σ be a symplectic form with symplectic potential ψ = dx∧θ 0 ·P. The evolution-
ary vector field V = pr(K∂u) ∈ Γ is Hamiltonian if and only if there exists H ∈C∞(J∞(R,R)) such
that

1
2
(FP−F∗P)(K) = S(K) = E(H) (6.17)

where FP is the Fréchet-derivative of P on J∞(R,R).

A straight forward computation writing Σ = δV ψ classifies the first order symplectic operators,
see also Theorem 6.2 in [10]

Lemma 6.4. An element Σ ∈F 2(J∞(R,R)) of the first order form,

Σ = dx∧θ
0∧θ

1 ·A A ∈C∞(J∞(R,R))

is symplectic, if and only if there exists P(x,u,ux,uxx)∈C∞(J∞(R,R)) depending on up to the second
order derivative, such that

A =
∂P
∂ux
−Dx

(
∂P

∂uxx

)
. (6.18)

6.3. Time Dependent Systems

Most of the definitions and results from Sections 6.1 and 6.2 extend immediately to the case of time
dependent systems. Let E = R× J∞(R,R), and label the extra R with the parameter t. The contact
forms are

θ
i
E = dui−ui+1dx (6.19)

and we let Ω
r,s
tsb
(E) be the bicomplex of t semi-basic forms on E,

Ω
r,s
tsb
(E) = { ω ∈Ω

r,s(E) | ∂t ω = 0 , r = 0,1; s = 0 . . . }.

A generic form ω ∈Ω
1,2
tsb
(E) is given by

ω = dx∧ (ξi jθ
i
E ∧θ

j
E), ξi j ∈C∞(E).
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The anti-derivations dE
H : Ω

r,s
tsb
(E)→Ω

r+1,s
tsb

(E) and dE
V : Ω

r,s
tsb
(E)→Ω

r,s+1
tsb

(E) are determined by

dE
H(ω) = dx∧Dx(ω)dx, dE

V ( f ) = fiθ
i
E , dE

V θ
i
E = 0, (6.20)

and satisfy (dE
H)

2 = 0,(dE
V )

2 = 0,dE
HdE

V +dE
V dE

H = 0. However d 6= dE
H +dE

V . The integration by parts
operator I induces a map IE : Ω

r,s
tsb
(E)→ Ω

r,s
tsb
(E) having the formula (6.1) and properties (6.2). We

let

F s
tsb
(E) = IE

(
Ω

1,s
tsb
(E)
)
. (6.21)

The mapping δ E
V = IE ◦ dE

V gives rise to the exact sequence as in (6.6). A form Σ ∈ F 2
tsb
(E) is

symplectic if δ E
V Σ = 0 and Lemma 6.2 becomes the following.

Lemma 6.5. An element Σ = dx∧ θ 0
E ∧S(θ 0

E) ∈F 2
tsb
(E) where S = siDi

x, and si ∈ C∞(E) is sym-
plectic if and only if there exists P ∈C∞(E) such that

S=
1
2
(LP−L∗P) (6.22)

where LP = PiDi
x.

We use Theorem 6.1 to define Hamiltonian vector fields in this case.

Definition 6.3. An evolutionary vector field Y = pr(K∂u) where K ∈ C∞(E) is Hamiltonian with
respect to the symplectic form Σ ∈F 2

tsb
(E) if

L \
T Σ = IE ◦π

1,2 ◦LT Σ = 0 (6.23)

where T = ∂t +Y and L \
T = IE ◦π1,2 ◦LT is the projected Lie derivative.

Note that T in Definition 6.3 agrees with T in equation (2.10). We can also write condition (6.23)
as follows.

Lemma 6.6. An evolutionary vector field Y = pr(K∂u) is a Hamiltonian vector field for the sym-
plectic form Σ = dx∧θ 0

E ∧ (siθ
i
E) if and only if there exists ξ ∈Ω0,2(E) such that

π
1,2 ◦LT (dx∧θ

0
E ∧ (siθ

i
E)) = dx∧Dx(ξ ) = dE

Hξ . (6.24)

Proof. We have kernel IE = Image dE
H , therefore equation (6.23) can be written as equation (6.24).

�

A formula for ξ in equation (6.24) in terms of ρ = siθ
i
E is given in the proof of Theorem 7.1.

The analogue to Lemma 6.3 also holds in this case where Y is replaced by T . In order to prove
this we now show the commutation formula in equation (6.16) holds where Y is replaced by T .

Lemma 6.7. If ψ = dx∧θ 0
E ·P where P ∈C∞(E), then L \

T δ E
V ψ = δ E

V L \
T ψ .
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Proof. Since T = ∂t +Y and L \
Y δ E

V ψ = δ E
V L \

Y ψ (Lemma 3.24 [3]), we need to check

L \
∂t

δ
E
V ψ = δ

E
V L \

∂t
ψ

We write out both side of this equation. The left side is

IE ◦π
1,2
(

1
2

dx∧θ
0
E ∧ [Pi,tθ

i
E − (−Dx)

i(Pi,tθ
0
E)]

)
=

1
2

dx∧θ
0
E ∧ [Pi,tθ

i
E − (−Dx)

i(Pi,tθ
0
E)]. (6.25)

The right side is

δV (dx∧θ
0
E ·Pt) =

1
2

dx∧θ
0
E ∧
[
Pt,iθ

i
E − (−Dx)

i(Pt,iθ
0
E)
]
. (6.26)

Since the mixed partials are equal Pt,i = Pi,t , equations (6.25) and (6.26) are equal, which proves the
lemma. �

Lemma 6.8. The evolutionary vector field Y ∈ Γ is Hamiltonian for the symplectic form Σ = δ E
V ψ

if and only if there exists λ ∈F 0(E) such that

L \
T ψ = δ

E
V λ . (6.27)

Proof. Using the exactness of the δ E
V complex we show δ E

V L \
T ψ = 0 which is equivalent to equa-

tion (6.27). By Definition 6.3, Y is Hamiltonian if and only if

0 = L \
T Σ = L \

T δ
E
V ψ = δ

E
V L \

T ψ

where we have used Lemma 6.7. This proves the lemma. �

Using Lemma 6.8 we have the following corollary which is the t-dependent version of Corol-
lary 6.2.

Corollary 6.3. Let Σ = dx∧θ 0
E ∧S(θ 0

E) be a symplectic form with symplectic potential ψ = dx∧
θ 0 · P. The evolutionary vector field Y = pr(K∂u) ∈ Γ is Hamiltonian if and only if there exists
H ∈C∞(E) such that

1
2
(Pt +(LP−L∗P)(K)) =

1
2

Pt +S(K) = E(H). (6.28)

Proof. We just need to compute

L \
T (dx∧θ

0
E ·P) = dx∧θ

0
E ·Pt +dx∧θ

0
E · (LPK−L∗PK) = dx∧θ

0
E · (Pt +LPK−L∗PK)

Using this computation in equation (6.27) with λ = 2Hdx gives equation (6.28). �

The function H in (6.28) is the Hamiltonian.

Remark 6.1. A symplectic form Σ is t-invariant if L∂t Σ = 0. In this case Σ determines a well
defined symplectic form Σ̄ on the quotient of E by the flow of ∂t , q : E → E/∂t = J∞(R,R) such
that q∗Σ̄ = Σ. Definition 6.3 where Y and Σ are t-invariant implies Definition 6.2 for Σ̄ and Ȳ = q∗Y
and equation (6.28) becomes equation (6.17).
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7. Variational and Symplectic Operator Equivalence

A time independent evolution equation ut = K(x,u,ux, . . . ,un) is a symplectic Hamiltonian evolu-
tion equation [10] if there exists a symplectic operator S and a function H called the Hamiltonian
such that equation (1.6) holds. With this definition, the determination of the possible symplectic
Hamiltonian evolution equations is typically approached in two ways. The first way consists of
determining the possible symplectic operators of a certain order [10]. Then for a given class of
symplectic operators S, determine K which satisfy equation (1.6). The second approach starts with
a given K and then determines if there exists a symplectic operator S such that equation (1.6) holds.

By comparison Theorem 1.3, whose proof is given in this section, combines these two questions
and resolves the characterization of symplectic Hamiltonian evolution equations by the invariants
H1,2(R∞). This can simultaneously solve the existence of S and the existence of the Hamiltonian
function H in equation (1.6) as done for the special case given in Theorem 1.4.

7.1. H1,2(R∞) and Symplectic Hamiltonian Evolution Equations

Given a scalar evolution equation ut = K(t,x,u,ux, . . .), we identify the manifolds R∞ and E =

R× J∞(R,R) by identifying their coordinates which in turn induces an identification of smooth
functions. Define the projection map Π : T ∗(R∞)→ T ∗(E) by

Π(θ i) = θ
i
E , Π(dx) = dx, Π(dt) = 0, (7.1)

where θ i are given in equation (2.11) and θ i
E are in equation (6.19). Also denote by Π the induced

projection map Π : Ωr,s(R∞)→Ω
r,s
tsb
(E) where for example

Π
(
dx∧θ

0∧ (siθ
i)+dt ∧β

)
= dx∧θ

0
E ∧ (siθ

i
E). (7.2)

Lemma 7.1. The map Π : Ωr,s(R∞)→Ω
r,s
tsb
(E) is a bicomplex co-chain map,

Π(dHω ) = dE
H Π(ω), Π(dV ω) = dE

V Π(ω). (7.3)

Proof. Equation (7.3) follows for the case ω = θ i directly from equations (2.15) and (6.20), and
generically from the anti-derivation property of the operators. �

Lemma 7.2. The function Π : Ω1,2(R∞)→ Ω
1,2
tsb
(E) induces a well defined injective linear map

Π̂ : H1,2(R∞)→ Kerδ E
V ⊂F 2

tsb
(E) defined by

Π̂([ω]) = IE ◦Π(ω) (7.4)

where ω is a representative of [ω].

Proof. To show Π̂ is well defined, suppose ω ′ = ω +dHξ . Then by equation (7.3) and property 3
in equation (6.2) applied to IE gives

IE ◦Π(ω ′) = IE ◦ (Π(ω)+Π(dHξ )) = IE ◦ (Π(ω)+dE
H(Π(ξ )) = IE ◦Π(ω).

Therefore Π̂ is well defined.
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We now show Π̂([ω]) is δV
E closed. We use equation (7.3) and compute

IE ◦dE
V ◦ IE ◦Π(ω) = IE ◦dE

V ◦Π(ω) = IE ◦Π(dV ω). (7.5)

Since dV ω ∈ H1,3(R∞), Theorem 3.2 implies there exists ξ ∈ Ω0,3(R∞) such that dV ω = dHξ so
equation (7.5) becomes

IE ◦dE
V ◦ IE ◦Π(ω) = IE ◦Π(dHξ ) = IE ◦dE

H ◦Π(ξ ) = 0.

Therefore Π̂([ω]) is δV closed.
We now show Π̂ is injective. Let [ω] ∈ H1,2(R∞) and let ω = dx∧ θ 0 ∧ ε − dt ∧βββ (ε) be the

unique representative from Theorem 4.1, where ε = riθ
i and ε∗ = −ε . Then Π̂([ω]) = dx∧ θ 0

E ∧
(siθ

i
E), and (siθ

i
E)
∗ = −(siθ

i
E) since X = Dx. If Π̂([ω]) = 0, then siθ

i
E = 0 and ω = 0. This shows

Π̂([ω]) ∈F 2
tsb
(E) and that Π̂ is injective. �

In particular we have

Corollary 7.1. If [ω] 6= 0 then Π̂([ω]) ∈F 2
tsb
(E) is a symplectic form.

We now set out to prove the fact that Π̂ in Lemma 7.2 is in fact a bijection which will imply
Theorem 1.2 in the Introduction. We will use the following Lemma.

Lemma 7.3. Let si,ξi j ∈C∞(R∞) then

1] dt ∧
(
π

1,2 ◦LT (dx∧θ
0
E ∧ siθ

i
E)
)
= dt ∧LT (dx∧θ

0∧ siθ
i),

2] dt ∧dx∧Dx(ξi jθ
i
E ∧θ

j
E) = dt ∧dx∧X(ξi jθ

i∧θ
j) .

(7.6)

Proof. Since dt ∧θ i
E = dt ∧θ i and X = Dx these identities follow. �

We now have the main theorem.

Theorem 7.1. Let S = siDi
x be a skew-adjoint differential operator on E. The form Σ = dx∧θ 0

E ∧
(siθ

i
E) is symplectic, and Y = pr(K∂u) is a Hamiltonian vector-field for Σ if and only if

ω = dx∧θ
0∧ ε−dt ∧βββ (ε) (7.7)

satisfies dHω = 0, where ε = S(θ 0) and βββ (ε) is given in equation (4.1).

Proof. Supposed Σ is symplectic and Y is Hamiltonian, then Lemma 6.6 produces ξ = ξabθ a
E ∧θ b

E
satisfying equation (6.24). Let

ω = dx∧θ
0∧ (siθ

i)+dt ∧ (ξabθ
a∧θ

b). (7.8)

Equations (7.6) and (6.24) give

dHω = dt ∧T (dx∧θ
0∧ (siθ

i))+dx∧X(dt ∧ξabθ
a∧θ

b)

= dt ∧LT (dx∧θ
0
E ∧ (siθ

i
E)+dx∧dt ∧Dx(ξabθ

a
E ∧θ

b
E)

= dt ∧
(

π
1,2 ◦LT (dx∧θ

0
E ∧ (siθ

i
E))−dx∧Dx(ξabθ

a
E ∧θ

b
E)
)
= 0.

Therefore [ω] ∈ H1,2(R∞). Now Theorem 3.4 implies ξabθ a ∧ θ b = −βββ (siθ
i) so that ω in equa-

tion (7.8) and equation (7.7) are the same.
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Suppose now that ω in equation (7.7) is dH closed. By Lemma 7.2, Σ = Π̂(ω) is a symplectic
form. So we need only show that Y is Hamiltonian. Again we refer to Lemma 6.6 and show the
existence of ξ = ξabθ a

E ∧θ b
E in equation (6.24).

Writing βββ (siθ
i) = Babθ a∧θ b and using equations (7.6) we have

dHω = dt ∧T (dx∧θ
0∧ (siθ

i))−dx∧X(dt ∧Babθ
a∧θ

b)

= dt ∧
(

π
1,2 ◦LT (dx∧θ

0
E ∧ (siθ

i
E))+dx∧Dx(Babθ

a
E ∧θ

b
E)
)
.

(7.9)

This will vanish if and only if

π
1,2 ◦LT (dx∧θ

0
E ∧ (siθ

i
E))+dx∧Dx(Babθ

a
E ∧θ

b
E) = 0 (7.10)

because this term is t semi-basic. Equation (7.10) produces ξ = −Π(βββ (siθ
i)) = Babθ a

E ∧ θ b
E in

equation (6.24) and therefore Y is a Hamiltonian vector field for Σ. �

We now summarize the results of Lemma 7.2 and Theorem 7.1 by the following corollary.

Corollary 7.2. Let ut = K be an evolution equation, and let Y = pr(K∂u) be the corresponding
evolutionary vector field on E and let ZY (E)⊂F 2

tsb
(E) be the subset of symplectic forms for which

Y is a Hamiltonian vector field. Define the function Ψ : ZY (E)→ H1,2(R∞) given by

Ψ(dx∧θ
0
E ∧ εE) = [dx∧θ

0∧ ε−dt ∧βββ (ε)], (7.11)

where dx∧θ 0
E∧εE ∈ZY (E) with εE = S(θ 0

E) and S= siDi
x is the corresponding symplectic operator,

and ε = S(θ 0) = siX i(θ 0). The function Ψ : ZY (E)→ H1,2(R∞) is an isomorphism and Ψ̂ = Ψ−1

where Ψ̂ is defined in equation (7.4).

With Theorem 1.1 and Corollary 7.2 in hand the proof of Theorem 1.2 and 1.3 are now easily
given.

Proof. (Theorems 1.2 and 1.3) We start with Theorem 1.2 and suppose that S= siDi
x ∈ZY (E) is a

symplectic operator for the scalar evolution equation ∆ = ut −K and that Y = pr(K∂u) is a Hamil-
tonian vector field for Σ. Then with Ψ from equation (7.11) in Corollary 7.2 and Φ in equation (1.5)
in Theorem 1.1 we have,

Φ
−1 ◦Ψ(S) =−1

2
siDi

x

is a variational operator and so S is a variational operator for ∆ (by the abuse of notation in
Remark 2.1). The fact that Φ−1 ◦Ψ is an isomorphism then proves Theorem 1.2.

To prove Theorem 1.3 we identify as above, a symplectic operator S on E as an operator on
J∞(R2,R) (see Remark 2.1). The function Φ in equation (1.5) defines an isomorphism between
symplectic operators for ∆ and H1,2(R∞). This proves Theorem 1.3. �

As our final Lemma we show for completeness how formula (5.13) can be determined from the
symplectic potential.

Lemma 7.4. Let S= siDi
x be a symplectic operator and let ψ = dx∧θ 0

E ·P∈C∞(E) be a symplectic
potential. The unique representative for Ψ(S) ∈ H1,2(R∞) in Theorem 5.2 has ε = S(θ 0). Further-
more there exists a representative ω for Ψ(S) where ω in equation (5.12) can be written ω = dV η
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where

η = dx∧θ
0 ·P−dt ∧ γ. (7.12)

Proof. By equation (7.11) of Corollary 7.2 we have the unique representative as stated in the
lemma.

We prove the second part of the lemma by first using Theorem 4.2 to construct a representative
ω0 for Ψ(S) such that ω0 = dV η0 with η0 = dx∧θ 0 ·Q−dt∧γ0. By equation (4.17) of Corollary 4.3
and equation (6.22) for the operator in the form ε = S(θ 0) gives

ε =
1
2
(LQ−L∗Q)θ

0 =
1
2
(LP−L∗P)θ

0. (7.13)

Lemma 6.5 and equation (7.13) show ψ0 = dx∧ θ 0
E ·Q is a symplectic potential for S and that

δ E
V ψ0 = δ E

V ψ . Therefore using equation (6.2) (for IE) and the exactness of the dE
V complex,

ψ = ψ0 +dE
V (Adx)+dE

H ξ (7.14)

for some A ∈C∞(E) and ξ ∈Ω0,1(E). We then let

η = η0 +dV (Adx)+dHξ , and ω = ω0−dHdV ξ , (7.15)

where we are computing dH and dV on R∞. Note that by equation (7.3) and (7.14) we have Π(η) =

ψ so that η has the form in equation (7.12). We then compute using equation (7.15) and ω0 = dV η0

that

dV η = dV (η0 +dHξ ) = ω0 +dV dHξ = ω,

which proves the lemma. �

7.2. Time Independent Operators

Equation (1.6) defines when the time independent evolution equation ut =K(x,u,ux, . . .) is a Hamil-
tonian evolution equation with symplectic operator S. This is precisely the same definition that the
ordinary differential equation K(x,u,ux, . . .) = 0 admits S as a variational operator. The following
simple lemma is the key to decoupling the variational operator problem for time independent scalar
evolution equations.

Lemma 7.5. Let S = siDxi be a time independent symplectic operator with symplectic potential
P ∈C∞(J∞(R,R)) (equation (6.13) in Lemma 6.2). Then

S(ut) = E
(
−1

2
Put

)
. (7.16)
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Proof. By the product formula in the calculus of variations (equation 5.80 in [17]) the left side of
equation (7.16) is

E
(
−1

2
Put

)
=−1

2
(
F∗Put +F∗ut

P
)

=−1
2
(F∗Put −DtP)

=−1
2
(
F∗Put −PiDi

xut
)

=−1
2
(F∗Put −FPut) .

(7.17)

Equation (7.17) together with the fact from equation (6.13) that 2S(ut) = FPut−F∗Put show that the
two sides of equation (7.16) agree. �

We then have the following.

Theorem 7.2. Let S be a t-independent symplectic operator. The following are equivalent,

(1) ut = K(x,u,ux, . . . ,u2m+1), m≥ 1, satisfies S(K) = E(H).
(2) S is a symplectic variational operator for the ODE K = 0,
(3) S is a variational operator for ut = K (see Remark 2.1).

This converts the symplectic Hamiltonian question for the evolution equation into a variational
operator problem for the ODE K = 0.

Proof. Suppose ut = K(x,u, ...,u2m+1) is Hamiltonian for the t-independent symplectic operator S,
so that S(K) = E(H) on J∞(R,R). By definition S is a variational operator for the ODE K = 0. So
(1) and (2) are trivially equivalent.

We show (1) implies (3). Suppose that S(K) = E(H). Using equation (7.17) in Lemma 7.5 we
have

S(ut −K) = S(ut)−E(H) = E
(
−1

2
Put −H

)
,

where P is a symplectic potential for S (see equation (6.13)). Therefore S is a variational operator
for ut −K.

Finally we show (3) implies (1). Lemma 7.4 which allows Q in equation (5.13) to be replaced
with the symplectic potential P so that hypothesis (3) implies,

(F∗P−FP)(ut −K) = E(∆P+L) = E(Put −PK +L). (7.18)

Substituting from equation (7.17) into equation (7.18) we get

(F∗P−FP)(−K) = E(−PK +L).

Therefore

S(K) = E(2(L−PK)),

and ut = K is a time independent Hamiltonian evolution equation for the symplectic operator S.
�
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It is worth noting that if [ω] ∈ H1,2(R∞) then [∂t ω]K=0 ∈ H1,2(K = 0) [5]. That is, in the
time independent case, the form β in Lemma 3.2 (restricted to the ODE K = 0) defines an H0,2

cohomology class for the ODE K = 0.

8. First Order Operators and Hamiltonian Evolution Equations

8.1. First Order Operators for Third Order Equations

For a third order evolution equation

ut = K(t,x,u,ux,uxx,uxxx) (8.1)

we write the conditions for when E= 2RDx+X(R), R∈C∞(R∞) is a variational operator. This will
prove Theorem 1.4 in the Introduction.

Proof. (Theorem 1.4) By Theorem 1.1 and Corollary 4.2 the skew-adjoint operator E = 2RDx +

X(R) is a variational operator for (8.1) if and only if the skew-adjoint form ε =−Rθ 1− 1
2 R0θ 0 is a

solution to

−L∗∆(ε)∧θ
0 =

(
T (ε)−X3(K3ε)+X2(K2ε)−X(K1ε)+K0ε

)
∧θ

0 = 0 (8.2)

where Ki = ∂uiK. Using T (θ 0) = dV K = Kiθ
i and T (θ 1) = X(dV K) = X(Kiθ

i) we have

T (ε) =−T (R)θ 1− 1
2

T (X(R)))θ 0−RX(Kiθ
i)− 1

2
X(R)Kiθ

i. (8.3)

The highest possible θ i∧θ 0 term in equation (8.2) using (8.3) is θ 4. We find from equation (8.2)

[θ 4∧θ
0] =−RK3 +RK3 = 0.

While for θ 3∧θ 0, θ 2∧θ 0 and θ 1∧θ 0 we have from equations (8.3) and (8.2),

[θ 3∧θ
0] =2X(K3)R−2K2R+3K3X(R),

[θ 2∧θ
0] =−3X(K2R)+3X2(RK3)+

3
2

X(K3X(R)),

[θ 1∧θ
0] =−T (R)−2K0R+K1X(R)+

3
2

X2(K3X(R))

+X3(K3R)−X2(K2R)−X(K2X(R)).

(8.4)

For the coefficient of θ 3∧θ 0 to be zero we have from equation (8.4),

X(R) =
2

3K3
(K2−X(K3))R = K̂2R (8.5)

where K̂2 = 2
3K3

(K2−X(K3)). The coefficient of θ 2 ∧ θ 0 in equation (8.4) is zero on account
of (8.5). For the coefficient of θ 1∧θ 0 in (8.4) to be zero gives

T (R) =−2K0R+K1X(R)+
3
2

X2(K3X(R))+X3(K3R)−X2(K2R)−X(K2X(R)). (8.6)

Simplifying equation (8.6) using equation (8.5) we get

T (R) =
(
−2K0 +K1K̂2−

1
2
(
X(K3)K̂2

2 +K3K̂3
2
)
+X(K3X(K̂2))

)
R (8.7)
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It follows that a non-vanishing R (which we may assume to be positive) satisfying equations (8.5)
and (8.7), which is necessary and sufficient for the existence of a first order variational operator
for ∆ = ut −K in equation (8.1), is equivalent to A = X(logR) and B = T (logR) satisfying the
conditions in Theorem 1.4. This proves Theorem 1.4. �

The form κ in equation (1.7) for the KdV equation ut = uxxx +uux satisfies

κ =−uxdt, dHκ =−uxxdx∧dt.

Therefore according to Theorem 1.4 there is no first order formulation for the KdV equation as a
symplectic Hamiltonian evolution equation.

8.2. First Order Hamiltonians Operators and their Potential Form

Let vt = D ◦E(H(x,v,vx, . . .)) be a time independent Hamiltonian evolution equation where D is
a first order Hamiltonian operator. According to [16] or [1] we may choose coordinates (using a
contact transformation) such that D = Dx. The following is Theorem 1 in [15] in the context of
scalar evolution equations.

Lemma 8.1. The potential form of the Hamiltonian evolution equation,

vt = DxE(H1(x,v,vx, . . .)). (8.8)

is given by the equation

ut = E(H1)|v=ux . (8.9)

Equation (8.9) admits E= Dx as a first order variational operator, and satisfies

Dx (ut −E(H1)|v=ux) = E(−1
2

uxut +H1|v=ux). (8.10)

There is an abuse of notation in this lemma where Dx is used as the total x derivative operator in
either variable u or v depending on context.

Proof. Starting with equation (8.8), let v = ux so that (8.8) becomes

utx = (DxE(H1)) |v=ux = Dx (E(H1)|v=ux) . (8.11)

Integrating equation (8.11) with respect to x gives the potential form (8.9).
To prove equation (8.10) holds, we simply need the change of variables formula, see exercise

5.49 in [17],

E(H1|v=ux) = (Dx)
∗ (E(H1|v=ux)) =−Dx (E(H1|v=ux)) . (8.12)

Equation (8.12) together with the simple fact −2E(utux) = utx proves equation (8.10). �

The second term in the right hand side of equation (8.10) is just the pullback of the Hamiltonian
function in (8.8). We also note the following simple corollary.

Corollary 8.1. Every Hamiltonian evolution equation vt = D(E(H1(x,v,vx, . . .))) with first order
Hamiltonian operator D is the symmetry reduction of an equation ut = K(x,u,ux, . . .), of the same
order, which admits an invariant first order variational operator.
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8.3. Bi-Hamiltonian Evolution Equations with a First Order Hamiltonian Operator

We now present sufficient conditions when the potential form of a compatible bi-Hamiltonian sys-
tem admits another variational operator.

Theorem 8.1. Let vt = K(x,v,vx, . . .) = Dx (E(H1(x,v,vx, . . .))) be a Hamiltonian evolution equa-
tion with potential form

ut = E(H1)|v=ux . (8.13)

Let D0 be second time independent Hamiltonian operator with Hamiltonian H0(x,v,vx, . . .) satisfy-
ing,

vt = Dx (E(H1)) = D0(E(H0)).

Assume D0 also satisfies the compatibility condition (equation 7.29 in [17])

D0 (E(H1)) = DxE(H2). (8.14)

Then the right hand side of the potential form satisfies

E(E(H1)|v=ux) =−E(H2|v=ux) (8.15)

where a, E=D0|v=ux . Furthermore if E=D0|v=ux is symplectic, then E is a variational operator for
the evolution equation (8.13) and

E(ut −K) = E(Qut +H2|v=ux) (8.16)

where Q is defined in equation (5.28) where E= F∗Q−FQ.

Proof. First we apply E=D0|v=ux to the right hand side of equation (8.13), and use condition (8.14)
to get

E(E(H1)|v=ux) = (D0(E(H1)) |v=ux

= (Dx(E(H2)) |v=ux

=−E(H2|v=ux).

(8.17)

Again the last line follows from the change of variables formula in the calculus variations (exercise
5.49 in [17]). This verifies equation (8.15). Then by part (1) of Theorem 7.2 equation (8.15) shows
that E is a variational operator for equation (8.13). If Q is the function from equation (5.28) we then
have E(ut) = (F∗Q−FQ)(ut) = E(Qut) and equation (8.17) that

E(ut −E(H1)|v=ux) = E(Qut +H2|v=ux) . (8.18)

�

aD0 is the push-forward of E by the quotient map q : (t,x,u,ux, . . .)→ (t,x,v,vx, . . .).
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Theorem 8.1 makes the hypothesis that E = D0|v=ux is a symplectic operator. This holds in the
case of the Hamiltonian operators given by Theorem 5.3 in [10],

D0 = h(v)

(√
c1 + c2

∫ v

0

1
h(y)

dyDx ◦

√
c1 + c2

∫ v

0

1
h(y)

dy+D3
x

)
◦h(v) (8.19)

satisfy the compatibility conditions with Dx in Corollary 3.2 of [8] when h(v) = (k1v+ k2)
−1. This

gives

E= D0|v=ux =
1

k1ux + k2

(√
c1 +

1
2

k1u2
x + k2uxDx ◦

√
c1 +

1
2

k1u2
x + k2ux +D3

x

)
◦ 1

k1ux + k2

(8.20)
which are symplectic [10].

9. Examples

Example 9.1. The Harry-Dym equation zt = z3zxxx [10,21] is a compatible bi-Hamiltonian system,

zt = D̂1E(Ĥ1) = D̂0E(Ĥ0) (9.1)

where

D̂1 = z2 ◦Dx ◦ z2 , Ĥ1 =−
1
2

z2
x

z
, and D̂0 = z3 ◦D3

x ◦ z3 , Ĥ0 =−
1
z
. (9.2)

The change of variable z = v−1 maps the Hamiltonian operator D̂1 to canonical form [1,16], and
the Hamilonian operators and the associated Hamiltonians in equation (9.2) become

D1 = Dx , H1 =−
1
2

v2
x

v3 , and D0 = v−1D3
x ◦ v−1 , H0 =−v. (9.3)

The Harry-Dym equation (9.1) in these coordinates is then,

vt = DxE(H1) = D0(E(H0)) =
vxxx

v3 −6
vxvxx

v4 +
6v3

x

v5 . (9.4)

The potential form of equation (9.4) is found by letting v = wx and integrating to get (see
also (8.9))

wt = E(H1)|v=wx =
wxxx

w3
x
− 3w2

xx

2w4
x
. (9.5)

Equation (8.10) of Lemma 8.1 as it applies to the potential Harry-Dym equation (9.5) produces the
following variational operator equation for Dx,

Dx

(
wt −

wxxx

w3
x
+

3w2
xx

2w4
x

)
= E

(
−1

2
wxwt −

1
2

w2
xx

w3
x

)
.

We now apply Theorem 8.1 to obtain a second variational operator. The compatibility condition
in equation (8.14) is satisfied with the operators from equation (9.3) with

D0(E(H1)) = DxE(H2), where H2 =
1
2

v2
xx

v5 −
15
8

v4
x

z7 . (9.6)
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The operator D0 in equation (9.3) is of the form (8.19) so that by equation (8.20)

E= D0|v=wx = w−1
x D3

x ◦w−1
x (9.7)

is a symplectic or variational operator. Since the compatibility condition in equation (8.14) is satis-
fied and E is a symplectic operator Theorem 8.1 applies. Therefore the operator E in equation (9.7)
is a variational operator for the potential Harry-Dym equation in (9.5). The function Q in equa-
tion (5.28) is easily determined for E (using the fact that −2E is a symplectic operator) to be

Q =
w2

xx−wxwxxx

2w3
x

. (9.8)

Equation (8.16) with Q in equation (9.8) and H2 in equation (9.6) (with v = wx) gives the variational
operator equation for the potential Harry-Dym equation (9.5),

E

(
wt −

wxxx

w3
x
+

3w2
xx

2w4
x

)
= E

(
w2

xx−wxwxxx

2w3
x

wt +
1
2

w2
xxx

w5
x
− 15

8
w4

xx

w7
x

)
.

If we return to the original coordinates for the Harry-Dym equation and make the change of
variable given by x = u,w = x,wx = u−1

x , . . . to the potential form in equation (9.5) we get the
Krichever-Novikov equation (or Schwarzian KdV), pg. 120 in [10],

ut = uxxx−
3
2

u2
xx

ux
. (9.9)

In particular the Krichever-Novikov in equation (9.9) is the potential form of the Harry-Dym equa-
tion (9.1). These different coordinate representations of the Harry-Dym equation and the Krichever-
Novikov equation is summarized by the diagram,

ut = uxxx− 3
2

u2
xx

ux
wt =

wxxx
w3

x
− 3w2

xx
2w4

x

zt = z3zxxx vt =−v−1D3
x(v
−1)

.......................................................................................................................................................................................
.....
.......
.....

(x = u,z = ux,zx = uxxu−1
x )

.............................................................................................................................................................................................................................................................................................................................................................................................................................
(x = w,w = x,wx = u−1

x )

.........................................................................................................................................................................................................................................................................................................................................................................................................................................

(x = x,v = z−1)

....................................................................................................................................................................................
.....
.......
.....

(x = x,v = wx) (9.10)

The variational or symplectic operators for the Krichever-Novikov equation are obtained by
applying the change of variables x = u,w = x,wx = u−1

x , . . . to Dx and equation (9.7) giving the well
known symplectic or variational operators for the Krichever-Novikov equation [10],

E1 = u−1
x Dx ◦u−1

x =
1
u2

x
Dx−

uxx

u3
x
, E0 =

1
u2

x
D3

x−3
uxx

u3
x

D2
x +

(
3

u2
xx

u4
x
− uxxx

u3
x

)
Dx. (9.11)

With quotient map q(t,x,u,ux,uxx, . . .) = (t = t,x = u,z = ux,zx = uxxu−1
x , . . .), the operators

from (9.11) project q∗Ei = D̂i to the Hamiltonian operators in equation (9.2).
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We now compute the explicit unique representative for the H1,2(R∞) cohomology class for the
Krichever-Novikov equation (9.9) corresponding to the first operator in (9.11) (Theorem 4.1). This
is computed using formula (1.4) in Theorem 1.1 to be,

ω1 =−
1

2u2
x

dx∧θ
0∧θ

1 +dt ∧
[

θ
0∧
(

4uxxxux−3u2
xx

4u4
x

θ
1 +

uxx

2u3
x

θ
2− 1

2u2
x

θ
3
)
+

1
u2

x
θ

1∧θ
2
]
.

(9.12)
We have dV ω1 = 0 and for the forms η and λ in Theorem 5.3 we may choose

η1 =
1

2ux
dx∧θ

0 +dt ∧
(

u2
xx−2uxxxux

4u3
x

θ
0 +

uxx

2u2
x

θ
1 +

1
2ux

θ
2
)

λ1 =−
3u2

xx

4u2
x

dt ∧dx.
(9.13)

Likewise formula (1.4) for the second operator in (9.11) gives the unique cohomology representative
(Theorem 4.1),

ω̂0 = dx∧θ
0∧
(

uxuxxx−3u2
xx

2u4
x

θ
1 +

3uxx

2u3
x

θ
2− 1

2u2
x

θ
3
)
− 1

2u2
x

dt ∧θ
2∧θ

3

+dt ∧θ
1∧
(

1
2u2

x
θ

4− uxx

u3
x

θ
3− 5uxuxxx−6u2

xx

2u4
x

θ
2
)
− 1

2u2
x

dt ∧θ
0∧θ

5

+
2u3

xuxxxxx−18u2
xuxxuxxxx−12u2

xu2
xxx +69uxu2

xxuxxx−39u4
xx

4u6
x

dt ∧θ
0∧θ

1

+dt ∧θ
0
(

10u2
xuxxxx−48uxuxxuxxx +39u3

xx

4u5
x

θ
2 +

3(4uxuxxx−7u2
xx)

4u4
x

θ
3 +

2uxx

u3
x

θ
4
)
.

(9.14)

In this case dV ω̂0 6= 0, but [ω̂0] = [ω0] where

ω0 = ω̂0 +dH

(
uxx

2u3
x

θ
0∧θ

1
)

(9.15)

and dV ω0 = 0. Furthermore with ω0 in equation (9.15) the forms η and λ in Theorem 5.3 can be
chosen to be

η0 =
2u2

xx−uxuxxx

2u3
x

dx∧θ
0 +

2u2
xx−uxuxxx

2u3
x

dt ∧θ
2 +

uxxxxu2
x−3uxuxxuxxx +u3

xx

2u4
x

dt ∧θ
1

− 2u3
xuxxxxx−10u2

xuxxuxxxx−6u2
xu2

xxx +27uxu2
xxuxxx−12u4

xx

4u5
x

dt ∧θ
0

λ0 =−
u4

xx

8u4
x

dt ∧dx.

(9.16)

For λi in equations (9.13) and (9.16), it is difficult to determine whether [λi]∈H2,0(R∞) is trivial or
not (see Theorem A.2). However, it is possible but not easy to show λi 6= dκi where κi is t-invariant
by using the infinite sequence of conservation laws [10] for the Krichever-Novikov (Schwarzian
KdV) equation (9.9). The forms λi define a non-trivial cohomology class in the t-invariant varia-
tional bi-complex for (9.9).
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Example 9.2. The Harry Dym equation can be written in the form

vt = D3
x

(
1√
v

)
= Di (E(Hi)) , i = 0,1 (9.17)

where the Hamilonian operators and their Hamiltonians are

D0 = D3
x , H0 = 2

√
v and D1 = 2vDx + vx , H1 =

1
8

v−
5
2 v2

x .

Equation (9.17) is obtained from equation (9.4) by substituting v =−2
1
3
√

v̂.
Another potential form (or integrable extension) for the Harry-Dym equation (9.17) can be

obtained by letting v = uxxx in equation (9.17) so that

utxxx =
(
D3

xE(H0)
)
|v=uxxx ,

which after integrating three times gives,

ut = E(H0)|v=uxxx =

√
1

uxxx
. (9.18)

We show that D3
x is a variational operator. First using the change of variables formula in the calculus

of variation for v = uxxx (exercise 5.49 [17]) we have(
−D3

xE(H0)
)∣∣∣∣

v=uxxx

= E(H0|v=uxxx) . (9.19)

The operator D3
x is symplectic which together with equation (9.19) shows that D3

x is a variational
operator for equation (9.18) and giving,

D3
x (ut −E(H0)|v=uxxx) = utxxx +E(H0|v=uxxx) = E

(
−1

2
utuxxx +2

√
uxxx

)
.

In equation (8.14) compatibility was used to show the second Hamiltonian operator for a bi-
Hamiltonian equation became a variational operator for the potential form. In order to use a similar
argument in this case we need to show D1E(H0) = D0E(H−1). We find

D1 (E(H0)) = (2vDx + vx)

(
1√
v

)
= 0 = D0(0). (9.20)

In analogy to equation (8.14), this gives rise with H−1 = 0 to the variational operator

E= D1|v=uxxx = 2uxxxDx +uxxxx. (9.21)

Using the fact that operator E in equation (9.21) is a symplectic operator, the compatibility condi-
tion (9.20) gives

E(ut −E(H0)|v=uxxx) = 2uxxxutx +uxxxxut −E(E(H0)) |v=uxxx

= E
(

1
2

u2
xxut

)
.

(9.22)

Equation (9.22) shows directly that E in (9.21) is a variational operator for equation (9.18).
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It is worth noting that E(K) = 0 in this example and that [ω] = dV [η ] where [η ] ∈ H1,1(R∞).
The representative

ω = dx∧θ
0∧ ε−dt ∧βββ (ε)+dH(θ

0∧θ
1 ·uxx)+

1
3

dH ◦dV (uuxxθ
1− (uxuxx +uuxxx)θ

0)

with ε =−1
2E(θ

0) =−uxxxθ 1− 1
2 uxxxxθ 0 satisfies ω = dV η where

η = dx∧θ
0 ·
(
−2

3
uxuxxx−

1
3

uuxxxx

)
−dt ∧βββ (−2

3
uxuxxx−

1
3

uuxxxx).

Since dHη = 0, [η ] ∈ H1,1(R∞). This also produces an example where

Q =−2
3

uxuxxx−
1
3

uuxxxx

satisfies L∗
∆
(Q) = 0, as well as equation (A.6). By Theorem A.1, Corollary A.1 or Corollary A.3, Q

is not the characteristic of a classical conservation law

Example 9.3. The cylindrical KdV equation is (see [21])

vt = vxxx + vvx−
v
2t

(9.23)

while it’s potential form is

ut = uxxx +
1
2

u2
x−

u
2t
. (9.24)

The form κ in equation (1.7) in Theorem 1.4 is κ = t−1dt = dH(log t) and so equation (9.24) admits
E1 = tDx as a variational operator. In equation (5.13) we have Q1 =−1

2 tux leading to

E1

(
ut −uxxx−

1
2

u2
x +

u
2t

)
= E

(
−1

2
tux

(
ut −uxxx−

1
2

u2
x +

u
2t

)
− 1

12
tu3

x

)
.

Note that the Lagrangian on the right side of this equation differs from that in equation (1.3) by a
total divergence.

By solving the equation θ 0 ∧L∗
∆
(ε) = 0 from (4.1) for third order forms ε we find that equa-

tion (9.24) admits a third order symplectic or variational operator,

E0 = t2D3
x +

1
3
(2t2ux + tx)Dx +

1
6
(2t2uxx + t).

For E0 we have

Q0 =−
1
6
(
t2u2

x + txux +3uxxxt2)
in equation (5.13) leading to

E0

(
ut −uxxx−

1
2

u2
x +

u
2t

)
= E

(
Q0

(
ut −uxxx−

1
2

u2
x +

u
2t

)
− 1

72
(
t2u4

x +2txu3
x
))

If we now compute the reduction of the potential cylindrical KdV by substituting w =
√

t ux into
the x-derivative of equation (9.24) we get

wt = wxxx +
1√
t
wwx = D1(E(H1)) = D0(E(H0)) (9.25)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

645
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where

D1 = Dx, H1 =
1
2

w2
x +

1
6
√

t
w3, D0 = D3

x +
2w
3
√

t
Dx +

wx

3
√

t
, H0 =

1
2

w2. (9.26)

Equation (9.25) can of course be obtained from the cylindrical KdV equation (9.23) by the change
of variables w =

√
t v. It is unclear (to the authors) if the cylindrical KdV in equation (9.24) is a bi-

Hamiltonian evolution equation for which D1 and D0 in equation (9.26) are Hamiltonian operators.
Reference [21] states there are no Hamiltonians for the cylindrical KdV. It is straightforward to work
out the symplectic or variational operators for the potential cylindrical KdV in these new variables
from equation (9.25) by following Theorem 8.1.

More generally any evolution equation of the form

ut = uxxx +a(t)u2
x . (9.27)

admits Dx as a first order variational operator. We find after a long computation that equation (9.27)
admits a third order variational operator in the case where a(t)ȧ(t) 6= 0 only when

a(t) =± 1√
c1t + c2

. (9.28)

For the + sign in equation (9.28), the change of variables t = c−1
1 (t̂ − c2), x = c

− 1
3

1 x̂, u = 1
2 c

1
3
1 û,

takes equation (9.27) with a(t) in (9.28) to the potential form of the cylindrical KdV obtained from
equation (9.25). The same result holds in the other cases with slightly different changes of variable.

10. Conclusions

The determination of a variational or symplectic operator for a scalar evolution equation has been
shown to be equivalent to the non-vanishing of a cohomology class in H1,2(R∞). The arguments
used to prove this clearly extend to other types of differential equations including systems. For
example Theorem 5.1 holds independently of ∆ being a evolution equation and so the variational
operators for ∆ always determine an element of the cohomology Hn−1,2(R∞) as in Theorem 5.1.

There remain many open theoretical questions such as how the compatibility condition for sym-
plectic operators appears in the cohomology. Another interesting problem is to determine under
what conditions the symmetry reduction of a variational operator equation is a Hamiltonian system
(the converse of Lemma 8.1).

Many difficult computational questions have also not been resolved. We were unable to
compute the dimension of H1,2(R∞) in our examples. Preliminary computations using equation
θ 0 ∧L∗

∆
(ρ) = 0 from Theorem 3.1 suggests that dimH1,2(R∞) = 2 for the Krichever-Novikov

equation in Example 1. However we were not able to give a full proof of this fact. We have also
not explored in any detail the obvious generalization of Noether’s Theorem which arises from the
existence of a variational operator or equivalently by utilizing a non-trivial element of H1,2(R∞).
This would provide an alternate derivation for identifying symmetries and conservation laws for
symplectic Hamiltonian systems, see Theorem 7.15 in [17] and [13].

A. The Vertical Differential

The vertical differential induces a mapping dV : Hr,s(R∞)→Hr,s+1(R∞) defined by dV [ω] = [dV ω].
Let ut = K be a scalar evolution equation with equation manifold R∞. We now examine when
[ω] ∈ ImagedV .
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Theorem A.1. Let [ζ ] ∈ H1,1(R∞). There exists [κ] ∈ H1,0(R∞) such that [ζ ] = dV [κ] if and only
if δV ◦Π(ζ ) = 0 where Π : Ω1,1(R∞)→ Ω

1,1
tsb
(E) is the induced map from equation (7.1) and ζ is

any representative of [ζ ].

This answers the question of when [ζ ] is the image of a classical conservation law [κ]. To relate
Theorem A.1 to the theory of characteristics for a conservation law, suppose [ζ ] ∈ H1,1(R∞) with
(unique) canonical representative given in Theorem 3.3 by

ζ = dx∧θ
0 ·Q−dt ∧βββ (Q)

where the function Q satisfies L∗
∆
(Q) = 0. Theorem A.1 states that the function Q is the character-

istic of a classical conservation law for ∆ if and only if Q = E(L). The test for this condition is the
Helmholtz condition δ E

V (dx∧θ 0
E ·Q) = 0.

Proof. Suppose [ζ ] ∈ H1,1(R∞) where ζ = dx∧ (aiθ
i)−dt ∧β is a representative, then

IE ◦dE
V ◦Π(dx∧ (aiθ

i)−dt ∧β ) = IE ◦dE
V
(
dx∧ (aiθ

i
E)
)
= 0.

This implies by equation (6.2),

dx∧ (aiθ
i
E) = dE

V (gdx)+dE
H(miθ

i
E). (A.1)

Let µ = miθ
i ∈Ω1,0(R∞) and

ζ̂ = ζ −dH µ. (A.2)

so that [ζ̂ ] = [ζ ]. Now by equation (7.3), the definition of Π in equation (7.1), and equation (A.1),

Π(ζ̂ ) = Π(ζ )−dE
H ◦Π(µ) = dx∧ (aiθ

i
E)−dE

H(miθ
i
E) = dE

V (gdx) = giθ
i
E .

Therefore there exists β̂ ∈Ω0,1(R∞) such that,

ζ̂ = giθ
i∧dx−dt ∧ β̂ = dV (gdx)−dt ∧ β̂ . (A.3)

Now dHdV ζ̂ =−dV dHζ = 0 and therefore from equation (A.3),

dHdV ζ̂ = dt ∧dx∧X(dV β ) = 0. (A.4)

However dV β ∈Ω0,2(R∞) and the only way the contact two form dV β satisfies equation (A.4) is if
dV β = 0. This implies from equation (A.3) that dV η̂ = 0.

Using the vertical exactness of Ω1,1(R∞) we conclude there exists κ ∈ Ω1,0(R∞) such that
ζ̂ = dV κ . Now

dV dHκ =−dHdV κ =−dH ζ̂ = 0.

Again by vertical exactness of the (augmented) variational bicomplex for dV : Ω2,0(R∞) →
Ω2,1(R∞) applied to dHκ we have,

dHκ = a(t,x)dt ∧dx.

Since R2 is simply connected we may write

dHκ = a(t,x)dt ∧dx = d(g(t,x)dx+h(t,x)dt). (A.5)
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Finally let

κ̂ = κ−g(t,x)dx−h(t,x)dt,

so that dV κ̂ = dV κ = ζ̂ , and equation (A.5) gives

dH κ̂ = dHκ−d(g(t,x)dx+h(t,x)dt) = 0.

Therefore [ζ ] = dV [κ̂] and [κ̂] ∈ H1,0(R∞). �

Corollary A.1. Let [ζ ] ∈ H1,1(R∞) with canonical representative given by

ζ = dx∧θ
0 ·Q−dt ∧β

where L∗
∆
(Q) = 0 (see Theorem 3.1). Then [ζ ] = dV [κ] where [κ]∈H1,0(R∞) if and only if the func-

tion Q is in the image of the Euler operator. That is if and only if there exists A(t,x,u,ux,uxx, . . .) ∈
C∞(E) such that Q = E(A).

Corollary A.2. If ut = K(t,x,u, . . . ,u2m), m≥ 1 is even order, then every solution Q to L∗
∆
(Q) = 0

is the characteristic of a conservation law.

As is well known, the characteristic of a conservation law is a solution to L∗
∆
(Q) = 0 but the

converse is not necessarily true. Corollary A.1 identifies the characteristics which come from con-
servation laws. See Example 9.2 for a solution to L∗

∆
(Q) = 0 which is not the characteristic of a

conservation law.
We now examine the case of H1,2(R∞).

Theorem A.2. Let [ω] ∈ H1,2(R∞). Then [ω] = dV [η ] where [η ] ∈ H1,1(R∞) if and only if [ω] ∈
KerΛ where Λ : H1,2(R∞)→ H2,0(R∞) is defined in equation (4.18).

Proof. Let [ω] ∈ H1,2(R∞) with representative ω satisfying ω = dV η and λ be as in Lemma 4.1.
That is

[ω] = [dV η ] dHη = dV λ .

Suppose now that λ = dHκ so that [ω] ∈ KerΛ. Let η̂ = η +dV κ . Then

[dV η̂ ] = [dV η ], dH η̂ = dHη +dHdV κ = dV λ −dV dHκ = 0.

Therefore [ω] = dV [η̂ ] where [η̂ ] ∈ H1,1(R∞). This proves sufficiency of the condition.
Suppose now that [ω] = dV [η ] where [η ] ∈ H1,1(R∞). Let ω be the representative such that

ω = dV η . By hypothesis dHη = 0 and so for λ in Lemma 4.1 we have

dHη = dV λ = 0.

The same argument as in the second part of the proof of Corollary 4.4 implies that there exists
κ ∈Ω1,0(R2) such that λ = dHκ . Therefore Λ([ω]) = [λ ] = [dHκ] = 0. �

Theorem A.2 is demonstrated in Example 9.2. As a simple corollary to Theorem A.2 we can
identify the elements of H1,1(R∞) which are not the image of a conservation law as follows.

Corollary A.3. The map dV : H1,1(R∞)/dV (H1,0(R∞))→KerΛ is an isomorphism. Moreover, we
can identify η ∈ H1,1(R∞)/dV (H1,0(R∞)) with the space of functions Q ∈C∞(R∞) such that

(F∗Q−FQ)(ut −K) = E(Q(ut −K)) δ
E
V (dx∧θE ·Q) 6= 0. (A.6)
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