Study on Influencing Factors of Forestry Economic Growth in Guangdong Province Based on Grey Correlation Analysis

Hongjie Gao, Xiaowen Zheng*, Xiaoling Li, Qiuju Huang, Shengfu Lin

College of Economy and Trade, Zhongkai University of Agriculture and Engineering, Guangzhou Guangdong 510225, China
*Corresponding author. Email: 694632654@qq.com

ABSTRACT

Based on the data of guangdong rural statistical yearbook (2011-2018) and guangdong statistical yearbook (2011-2018), the grey correlation analysis method was used to analyze the factors influencing the growth of forestry economy in guangdong province. The results show that the correlation between GDP and forestry economic growth > The correlation between afforestation area and forestry economic growth > The correlation between sunshine hours in > and forestry economic growth > The correlation between population density and forestry economic growth > The correlation between average annual temperature and forestry economic growth > The correlation between average annual rainfall and forestry economic growth > The correlation between the number of forestry workers and the growth of forestry economy > The correlation between total forestry investment and forestry economic growth.

Keywords: Grey correlation analysis; Guangdong province; Forestry economic growth; Factors affecting the...
resources play an important role in promoting the development of forestry economy in key state-owned forest areas in heilongjiang province[4] (Zhang, Lv and Liu, 2017) based on the partial least square regression model, the marginal contribution of the change of forestry industry composition and the increase of factor input to the growth of heilongjiang province's forestry output value is analyzed.[5] (Jiang and Liu, 2017) based on the semi-parametric hybrid model, it is concluded that government investment has a positive external effect on forestry economic growth.[6] (Luo et al. 2017) the dynamic analysis of the industrial structure and competitiveness of the three forest regions in the south, southwest and northeast was carried out by dynamic deviation-share analysis.[7] (Yan, Jin and Zhang, 2018) this paper studies the coordinated development mode of forestry informatization and forestry economy in China by using information economy law.[8] (Xiang, Chen and Lia, 2018) the dynamic deviation-share analysis method is used to analyze the forestry economic growth in the Yangtze river economic belt.[9] (Li and Zhang, 2018) using c-d production function and solow residual value method, it is found that the progress of forestry technology has important contribution to the increase of forestry output in China.[10] In general, scholars' methods of studying the influencing factors of forestry economic development are developing in the direction of diversification. The above analysis of the influencing factors of forestry economic development in various regions of China provides an important reference for this paper. This study is based on the forestry economic data of guangdong rural statistical yearbook (2011-2018) and guangdong statistical yearbook (2011-2018), selection of forestry output value as an indicator reflects the core of forestry economic growth in guangdong province, in the forest coverage rate, the average annual rainfall, average annual temperature, annual sunshine hours, afforestation area, regional GDP and population density, complete forestry investment and forestry on-the-job worker total number of the nine variables as explained the influencing factors of forestry economic growth in guangdong province, the grey relational model is used to analyze the relevant data and find out the main factors influencing the forestry economic growth in guangdong province.

2. RESEARCH METHODS AND DATA SOURCES

2.1. RESEARCH METHOD

The research method used in this paper is the gray system proposed by professor deng julong after a lot of experiments and research, and has been developed for quite a long time. The gray system is a system between the white system and the black system(Deng, 2002). The grey relational analysis used in this paper is an information processing system based on the grey system theory, and then studies the relationship between known information and unknown information through calculation and analysis.[11] During the application of this model, if the development trends of the two variables in the study show a consistent or synchronous trend, then the correlation between the two factors is relatively high; Otherwise, the correlation between the two is low. Therefore, gray correlation analysis is a scientific research method that finds out the same or similar development trend among variables or factors through data analysis, so as to obtain the degree of correlation between them.

2.2. DATA SOURCE AND INFLUENCE FACTOR SELECTION

The data used in this study are from guangdong statistical yearbook (2011-2018) and guangdong rural statistical yearbook (2011-2018), the total forestry output value is selected as the reference series and set as \(X(k) \). Forest coverage rate, average annual rainfall, average annual temperature, annual sunshine hours, afforestation area, gross regional product, population density, total forestry investment and number of forestry workers on the job were selected as the data series composed of factors influencing the system behavior, that's comparing sequences, and set them as \(X_1(k), X_2(k), X_3(k), X_4(k), X_5(k), X_6(k), X_7(k) \) and \(X_8(k) \), among them k=1, 2, 3, 4, 5, 6, 7, 8 each represents the data in the corresponding statistical yearbook from 2011 to 2018.

3. GREY CORRELATION ANALYSIS OF INFLUENCING FACTORS OF FORESTRY ECONOMIC GROWTH IN GUANGDONG PROVINCE

3.1. SET UP REFERENCE SEQUENCE AND COMPARISON SEQUENCE

According to the principle of grey correlation analysis, a reference sequence is set up \(X_0 = \{x_0(k), k = 1, 2, \cdots, n\} \), to compare the sequence \(X_i = \{x_i(k), k = 1, 2, \cdots, n\}(i=1, 2, \cdots, m) \). Combined with the data of guangdong rural statistical yearbook (2011-2018) and guangdong statistical yearbook (2011-2018), the original data summary is obtained as shown in table 1.
Table 1 summary of the original data of factors influencing the forestry economic growth in Guangdong province from 2010 to 2017

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total forestry output value ($100 million)</td>
<td>2802.16</td>
<td>3328.1</td>
<td>4691</td>
<td>5595</td>
<td>6500</td>
<td>7150</td>
<td>7696</td>
<td>8022</td>
</tr>
<tr>
<td>Land area covered with trees (%)</td>
<td>57</td>
<td>57.3</td>
<td>57.7</td>
<td>58.2</td>
<td>58.69</td>
<td>58.88</td>
<td>58.98</td>
<td>59.08</td>
</tr>
<tr>
<td>Average annual rainfall (mm)</td>
<td>1867.7</td>
<td>1336.8</td>
<td>1847.6</td>
<td>2124.5</td>
<td>1652.5</td>
<td>1845.7</td>
<td>2321</td>
<td>1710.7</td>
</tr>
<tr>
<td>Annual average temperature (Celsius)</td>
<td>21.9</td>
<td>21.58</td>
<td>21.8</td>
<td>21.9</td>
<td>22.1</td>
<td>22.6</td>
<td>22.3</td>
<td>22.4</td>
</tr>
<tr>
<td>Annual sunshine hours (hours)</td>
<td>1647</td>
<td>1862.2</td>
<td>1547.9</td>
<td>1715.1</td>
<td>1836</td>
<td>1735.8</td>
<td>1622</td>
<td>1757.3</td>
</tr>
<tr>
<td>Afforestation area (thousands of hectares)</td>
<td>95.14</td>
<td>125.48</td>
<td>107.5</td>
<td>139.06</td>
<td>151.47</td>
<td>123</td>
<td>101</td>
<td>81</td>
</tr>
<tr>
<td>Gross Domestic Product ($100 million)</td>
<td>46013.0</td>
<td>53210.2</td>
<td>57067.9</td>
<td>62163.9</td>
<td>67809.8</td>
<td>72812.5</td>
<td>79512.0</td>
<td>89705.2</td>
</tr>
<tr>
<td>Population density (population / km2)</td>
<td>581</td>
<td>584</td>
<td>590</td>
<td>593</td>
<td>597</td>
<td>604</td>
<td>612</td>
<td>621</td>
</tr>
<tr>
<td>Total forestry investment completed ($10,000)</td>
<td>77995</td>
<td>505088</td>
<td>636673</td>
<td>983675</td>
<td>732897</td>
<td>967229</td>
<td>790191</td>
<td>817000</td>
</tr>
<tr>
<td>Number of active staff (persons)</td>
<td>35916</td>
<td>32260</td>
<td>31294</td>
<td>31271</td>
<td>29685</td>
<td>30424</td>
<td>26265</td>
<td>25526</td>
</tr>
</tbody>
</table>

3.2. DIMENSIONLESS DATA PROCESSING

During the study of one or more sets of data, because the data in each factor in the system is inconsistent in terms of dimensions, there will be some uncontrollable factors in the process of comparing the data, affecting the final result stability. Therefore, when conducting gray correlation analysis, the necessary processing must be performed on the research data, so that the data appears dimensionless and normalized, the common methods for dimensionless processing in gray correlation analysis are averaging, initialization, etc. The initialization method is selected in this paper. According to the formula:

\[Y(k) = \frac{X(k)}{X(1)} \quad (i = 1, 2, \ldots, n) \]

data on the raw economic sequence obtained \(X_0, X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8 \) and \(X_9 \) initialize to get the corresponding \(Y_0, Y_1, Y_2, Y_3, Y_4, Y_5, Y_6, Y_7, Y_8 \) and \(Y_9 \), the dimensionless processing results of the data are shown in Table 2.

<table>
<thead>
<tr>
<th>Fact or</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y_0)</td>
<td>1.0000</td>
<td>1.1877</td>
<td>1.6741</td>
<td>1.9967</td>
<td>2.3196</td>
<td>2.5516</td>
<td>2.7465</td>
<td>2.8628</td>
</tr>
<tr>
<td>(Y_1)</td>
<td>1.0000</td>
<td>1.0053</td>
<td>1.0123</td>
<td>1.0211</td>
<td>1.0296</td>
<td>1.0330</td>
<td>1.0347</td>
<td>1.0365</td>
</tr>
<tr>
<td>(Y_2)</td>
<td>1.0000</td>
<td>0.7157</td>
<td>0.9892</td>
<td>1.1375</td>
<td>0.8848</td>
<td>0.9882</td>
<td>1.2427</td>
<td>0.9159</td>
</tr>
<tr>
<td>(Y_3)</td>
<td>1.0000</td>
<td>0.9854</td>
<td>0.9954</td>
<td>1.0000</td>
<td>1.0091</td>
<td>1.0320</td>
<td>1.0183</td>
<td>1.0228</td>
</tr>
<tr>
<td>(Y_4)</td>
<td>1.0000</td>
<td>1.1307</td>
<td>0.9398</td>
<td>1.0413</td>
<td>1.1148</td>
<td>1.0539</td>
<td>0.9848</td>
<td>1.0670</td>
</tr>
<tr>
<td>(Y_5)</td>
<td>1.0000</td>
<td>1.3189</td>
<td>1.1299</td>
<td>1.4616</td>
<td>1.5921</td>
<td>1.2928</td>
<td>1.0616</td>
<td>0.8514</td>
</tr>
<tr>
<td>(Y_6)</td>
<td>1.0000</td>
<td>1.1564</td>
<td>1.2403</td>
<td>1.3510</td>
<td>1.4737</td>
<td>1.5824</td>
<td>1.7280</td>
<td>1.9496</td>
</tr>
<tr>
<td>(Y_7)</td>
<td>1.0000</td>
<td>1.0052</td>
<td>1.0155</td>
<td>1.0207</td>
<td>1.0275</td>
<td>1.0396</td>
<td>1.0534</td>
<td>1.0688</td>
</tr>
<tr>
<td>(Y_9)</td>
<td>1.0000</td>
<td>0.8982</td>
<td>0.8713</td>
<td>0.8707</td>
<td>0.8265</td>
<td>0.8471</td>
<td>0.7313</td>
<td>0.7107</td>
</tr>
</tbody>
</table>

Source: This study

3.3. DIFFERENTIAL SEQUENCE

Ask for this \(Y_0 \) and \(Y_1 \) difference between \(\Delta_i \), Poor sequence \(\Delta_i \) formula is:

\[\Delta = (\Delta(1), \Delta(2), \ldots, \Delta(k)) \]

which

\[\Delta(k) = |Y_0(k) - Y_1(k)|, \quad (i = 0, 1, 2, \ldots, n) \]

results as follows:

\[\Delta_i = (0.0000, 0.1824, 0.6618, 0.9756, 1.2900, 1.5186, 1.7117, 1.8263) \]
\[\Delta z = (0.0000, 0.4719, 0.6848, 0.8592, 1.4349, 1.5634, 1.5037, 1.9469) \]
\[\Delta t = (0.0000, 0.2023, 0.6786, 0.9967, 1.3105, 1.5196, 1.7282, 1.8400) \]
\[\Delta s = (0.0000, 0.0570, 0.7342, 0.9553, 1.2049, 1.4977, 1.7616, 1.7958) \]
\[\Delta s = (0.0000, 0.1312, 0.5442, 0.5350, 0.7276, 1.2588, 1.6849, 2.0114) \]
\[\Delta s = (0.0000, 0.0313, 0.4338, 0.6457, 0.8459, 0.9692, 1.0184, 0.9132) \]
\[\Delta t = (0.0000, 0.1825, 0.6586, 0.9760, 1.2921, 1.5120, 1.6931, 1.7939) \]
\[\Delta s = (0.0000, 5.2882, 6.4889, 10.6154, 7.0771, 9.8496, 7.3849, 7.6122) \]
\[\Delta s = (0.0000, 0.2895, 0.8028, 1.1260, 1.4931, 1.7045, 2.0152, 2.1521) \]

Based on differential sequence \(\Delta t \), find the two-stage minimum difference and the maximum difference.

Order the First Layer Minimum Value \(\min \Delta (k) \).

Maximum order \(\max \Delta (k) \), as follows:

\[
\min \Delta (k) = (\min \Delta (1), \min \Delta (2), \min \Delta (3), \ldots, \min \Delta (k))
\]
\[
\max \Delta (k) = (\max \Delta (1), \max \Delta (2), \max \Delta (3), \ldots, \max \Delta (k))
\]

Maximum order \(\max \Delta (k) \), as follows:

\[
\min \Delta (k) = (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)
\]
\[
\max \Delta (k) = (1.8263, 1.9469, 1.8400, 1.7958, 2.0114, 1.0184, 1.7939, 10.6154, 2.1521)
\]

According to the minimum sequence \(\min \Delta (k) \) and maximum sequence \(\max \Delta (k) \), the result is calculated as the minimum difference and the maximum difference between the two levels \(m \), The maximum difference is \(M \), as follows:

\[
m = \min (\min \Delta (k)) = 0.0000
\]
\[
M = \max (\max \Delta (k)) = 10.6154
\]

3.4. Calculate Correlation Coefficient

According to the principle of grey correlation analysis model, Comparison sequence \(X_i \) Reference sequence \(X^0 \) when \(k \)
grey correlation coefficient of the moment \(\xi(k) \) formula is:

\[
\xi(k) = \frac{\min (\min \Delta (k)) + m \max (\max \Delta (k))}{|X^0(k) - X(k)| + \rho \max (\max \Delta (k))}
\]

of which \(\rho \) for resolution coefficients, and \(\rho \in [0,1] \). In this study, the resolution coefficient is taken \(\rho = 0.5 \). The

\[
\xi(k) = \frac{m + \rho M}{\Delta(k) + 0.5 \cdot 10.6154} = \frac{5.3077}{\Delta(k) + 5.3077}
\]

Put \(\Delta t \sim \Delta s \) data substitution formula

The formula to:

\[
\xi(k) = \frac{m + \rho M}{\Delta(k) + 0.5 \cdot 10.6154} = \frac{5.3077}{\Delta(k) + 5.3077}
\]

Calculated correlation coefficients as follows:

\[
\xi_1 = (1.0000, 0.9668, 0.8891, 0.8447, 0.8045, 0.7775, 0.7561, 0.7440)
\]
\[
\xi_2 = (1.0000, 0.9183, 0.8857, 0.8607, 0.7872, 0.7725, 0.7792, 0.7316)
\]
\[
\xi_3 = (1.0000, 0.9633, 0.8866, 0.8419, 0.8020, 0.7774, 0.7544, 0.7426)
\]
\[
\xi_4 = (1.0000, 0.9894, 0.8785, 0.8475, 0.8150, 0.7799, 0.7508, 0.7472)
\]
\[
\xi_5 = (1.0000, 0.9759, 0.9070, 0.9084, 0.8794, 0.8083, 0.7590, 0.7252)
\]
\[
\xi_6 = (1.0000, 0.9941, 0.9244, 0.8915, 0.8625, 0.8456, 0.8390, 0.8532)
\]
\[
\xi_7 = (1.0000, 0.9668, 0.8896, 0.8447, 0.8042, 0.7783, 0.7582, 0.7474)
\]
\[
\xi_8 = (1.0000, 0.5009, 0.4499, 0.3333, 0.4286, 0.3502, 0.4182, 0.4108)
\]
\[
\xi_9 = (1.0000, 0.9483, 0.8686, 0.8250, 0.7804, 0.7569, 0.7248, 0.7115)
\]

3.5. Calculation of Correlation

Collect the correlation coefficients at each time (that is, the points in the curve) into a single value, that is, find the average value, and use this as the quantitative expression of the degree of correlation between the comparison sequence and the reference sequence, correlation formula \(\rho \) is calculated as:

\[
\rho = \frac{1}{n} \sum_{k=1}^{n} \xi(k) \quad k = 1, 2, \cdots, n
\]

\(\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4, \Gamma_5, \Gamma_6, \Gamma_7, \Gamma_8, \Gamma_9 \) Respectively, forest coverage and the correlation of forestry economic growth, with an average annual rainfall of forestry, annual average temperature of correlation between economic growth and forestry, annual sunshine time of correlation between economic growth and forest, afforestation area of correlation between economic growth and the correlation of forestry economic growth, regional GDP and correlation of forestry economic growth, population density and forestry, forestry investment total completion of correlation between economic growth and forestry and forestry on-the-job worker number of correlation between economic growth and correlation of forestry economic
growth. According to the calculation formula of correlation degree Γ_i:

$$
\Gamma_1 = 0.8478 \\
\Gamma_2 = 0.8419 \\
\Gamma_3 = 0.8460 \\
\Gamma_4 = 0.8510 \\
\Gamma_5 = 0.8704 \\
\Gamma_6 = 0.9013 \\
\Gamma_7 = 0.8486 \\
\Gamma_8 = 0.4865 \\
\Gamma_9 = 0.8269
$$

3.6. RANKING BY CORRELATION DEGREE

According to the obtained value, rank Γ_i in a certain order according to the value of correlation degree. The higher the value of Γ_i, the higher the correlation degree. On the contrary, the smaller the value of Γ_i, the lower the correlation degree. The sorting results are as follows:

$$
\Gamma_6 > \Gamma_3 > \Gamma_4 > \Gamma_7 > \Gamma_1 > \Gamma_5 > \Gamma_2 > \Gamma_9 > \Gamma_8
$$

4. ANALYSIS OF EMPIRICAL RESULTS

The empirical analysis shows that $\Gamma_6 > \Gamma_3 > \Gamma_4 > \Gamma_7 > \Gamma_1 > \Gamma_5 > \Gamma_2 > \Gamma_9 > \Gamma_8$ namely the correlation degree of gross regional product and forestry economic growth > The correlation between afforestation area and forestry economic growth > The correlation between annual sunshine hours and forestry economic growth > The correlation between population density and forestry economic growth > The correlation between forest coverage rate and forestry economic growth > The correlation between annual average temperature and forestry economic growth > The correlation between average annual rainfall and forestry economic growth > The correlation between the number of forestry workers and the growth of forestry economy > The correlation between total forestry investment and forestry economic growth. From the calculation results, the forest coverage rate, annual average rainfall, annual average temperature, annual sunshine hours, afforestation area, gross regional product, population density and number of forestry workers have a great correlation with the growth of forestry economy in guangdong province. Among them, the correlation between GDP and guangdong forestry economic growth is 0.9013, which is highly correlated with each other. To improve the forestry economic growth of guangdong province, we can focus on this aspect. In addition, the correlation between afforestation area, annual sunshine hours, population density, forest coverage, annual average temperature, annual average rainfall and the number of on-the-job forestry employees is slightly lower than that of forestry economic growth, and the coefficients between GDP and forestry economic growth are 0.8704, 0.8510, 0.8486, 0.8478, 0.8460, 0.8419 and 0.8269 respectively, which are also important factors affecting the forestry economic growth of Guangdong Province. The result shows that the relationship between the total forestry investment and the forestry economic growth is small (0.4865), which is weaker than other factors.

5. CONCLUSION

Through the correlation analysis of factors affecting the growth of the forestry economy in guangdong province, the following conclusions are drawn: GDP has the greatest correlation with Guangdong's forestry economic growth. The total completed forestry investment has the smallest correlation with the forestry economic growth in Guangdong province. This inspired Guangdong province to vigorously promote economic development, thereby enhancing the growth of forestry economy.

ACKNOWLEDGMENT

Fund project: Innovation fund for college students of Zhongkai University of Agriculture and Engineering in 2019 “An Empirical Study on Consumers’ Purchasing Intention of Camellia Oil in Qingyuan City” (Project Number: 2019A35)

REFERENCES

