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 1.  INTRODUCTION

Silicon Neuronal Networks (SNNs) [1–3] refers to a network of 
spiking neurons designed using silicon-based neuronal soma 
and synaptic circuits. Armed with local unsupervised learning 
rules such as Spike Timing Dependent Plasticity, they are a prime 
candidate to arrive at the goal of realizing autonomous learning 
machines addressing the major issues of high power consumption 
and von-Neumann bottleneck prevalent in contemporary comput-
ing architectures. These circuits are designed to mimic as closely 
as possible the electrophysiological dynamics of the neuronal cell 
body and synapses in the brain. Though various biologically real-
istic neuronal soma circuits have been proposed in the past, the 
need for a biomimetic synaptic circuit persists. The nervous system 
consists of a multitude of chemical synapses comprising various 
neurotransmitters (glutamate, GABA, etc.) which act on spe-
cific receptors on the postsynaptic membrane with low (GABAA, 
GABAB) or high (AMPA, NMDA) reversal potentials. Synapses 
are the key structures that localize memory as well as information 
processing in the nervous system, and biomimetic synaptic models 
have long been known to enhance the processing capability of the 
overall network to perform complex computational tasks [4]. In 
this manuscript, the experimental results of a low power biomi-
metic analog silicon synaptic circuit with pseudo-5-bit synaptic 
efficacy are presented. The circuits in the dawn approximated post-
synaptic currents as pulses and neglected the exponential rising 
and decaying characteristics of these currents. Circuits proposed 
in the recent past have incorporated these temporal dynamics as 
well as focused on reducing the circuit footprint by having a single 
synapse circuit emulate multiple synapses. However, none of the 

low-power oriented circuits proposed to date take into account the 
experimentally observed first-order dependence of synaptic cur-
rent on the difference between synaptic reversal potential and the 
instantaneous value of the membrane potential of the postsynaptic 
neuron. This phenomenological description of synaptic current 
is of paramount importance in implementing the experimentally 
observed phenomenon of shunting or silent inhibition. A few 
[3,5,6] synaptic circuits incorporate the effect of synaptic reversal 
potential but their implementation is not biomimetic as the current 
generated in these circuits is unidirectional. In addition to incor-
porating this effect, special emphasis has been put in the design to 
minimize the static power consumption of the synaptic circuit. As 
the synapses are activated in an event-based manner, a large scale 
SNN will have many synapses staying dormant at any particular 
time interval thus making static power consumption an important 
metric to be capitalized upon. The proposed circuit was designed 
in TSMC 250 nm process. The next section of this manuscript pro-
vides a brief description of the synaptic circuit along with the setup 
used for measurements, followed by results, discussion, and the 
planned future work.

2.  SYNAPTIC MODEL

Kinetic models [7] of chemical synapses that describe the neu-
rotransmitter kinetics are capable of precisely reproducing the 
experimentally observed dynamics of postsynaptic currents. 
Following the analysis in Destexhe et al. [7] and generalizing the 
response over various receptor types, a phenomenological descrip-
tion of the synaptic current is given by:
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where gsyn is the synaptic conductance, Vmem is the post-synaptic 
potential and Esyn is the synaptic reversal potential. Our synaptic 
circuit implements this model.

3.  PROPOSED SYNAPTIC CIRCUIT

3.1.  Operation and Description

The proposed synaptic circuit (Figure 1) can be compartmen-
talized into three major blocks, a binary-weighted Digital to 
Analog Converter (M1–M10), an integrator circuit similar to 
the log domain integrator [8] (Csyn and M11), and a transcon-
ductance stage (M12–M18) to simulate the first-order depen-
dence of synaptic current described by Equation (1). All the 
transistors operate in the sub-threshold regime and the circuit 
functions as follows. The DAC activated by an input pulse at 
the node nVin, sources a current Iw into the node Vsyn charging it 
linearly. The strength of Iw depends on the synaptic weight con-
trolled by the state of the binary bits (nWa–nW2) and the value 
of the bias voltage sVw. During the DAC activation Iw is given by 
(ignoring short channel effect):
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where Iwo, sVw and Vsyn represent the leakage current, the gate volt-
age and the source voltage of the transistors M4, M6, M8, and M10 
respectively. When the input pulse turns off, the DAC is deactivated 
shutting down Iw, and the transistor M11 operating in the satura-
tion region linearly discharges the node Vsyn sinking a constant cur-
rent Iτ given by:
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where Iτo represents the leakage current of M11, and sVt is the bias 
voltage that controls the strength of Iτ and thus the time constant of 
the synaptic circuit (along with the capacitor Csyn). This node Vsyn 
is connected to the tail transistors of the transconductance stage 
(M12 and M13) which generates either an Excitatory Postsynaptic 

Figure 1 | Schematic diagram of the proposed synaptic circuit. 
Dimensions of the transistors: M4 = 0.3758 * (w/l), M6 = w/l, M8 = 2 * 
(w/l) and M10 = 4 * (w/l) with w = 2 µm, l = 500 nm. Tail transistor M13 
is three times wider than M12.

Currents (EPSC) or inhibitory postsynaptic current depending on 
the value of Esyn relative to Vmem described by Equation (4):
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where Io and Vref represent the leakage current and the source volt-
age of the tail transistors respectively. The tangent hyperbolic func-
tion can be approximated by a linear function around the origin, 
thus for a small voltage difference between Esyn and Vmem, Equation (4) 
can be linearized to obtain:
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The phenomenological model of Equation (1) to describe the 
synaptic current is thus realized. Here the first term (in bracket) 
represents the transconductance of the circuit, represented by 
gsyn in Equation (1). The source of the tail transistors is connected 
to the node Vref set to 20 mV. It minimizes the leakage current 
of the transconductance stage when the circuit is inactive (with 
Vsyn = 0 V).

3.2. � Design Methodology and  
Measurement Setup

To minimize the static power consumption the transconductance 
stage of the circuit was implemented using PMOS-based current 
mirrors (M17 and M18) which resulted in the use of NMOS tran-
sistors in the DAC and integrator stages, unlike the conventional 
log domain integrator circuit. Synapses due to their sheer large 
numbers occupy most of the silicon real estate in an SNN chip, 
thus it is most important to minimize the footprint of the synaptic 
circuit. The value of synaptic efficacy usually controlled by a DAC 
stage takes up the most area. Towards this endeavor, in contrast 
to the conventional design approach such as in Wang and Liu [9] 
and Moradi and Indiveri [10] where significant stress is put on 
the accuracy of DAC resolution leading to overhead in terms of 
area and static power consumption respectively, the DAC stage 
of the proposed circuit is relatively compact. This was achieved 
by trading off the accuracy of DAC resolution (see Figure 1 cap-
tion) using a combination of half- and full-sized transistors to 
construct it. As the bit resolution of biological synapses is still 
unknown, this approach was chosen making sure that its output 
changes monotonically with the change in the corresponding 
input synaptic efficacy, without significant stress on the accuracy 
of its resolution (i.e. the value of jump in the output per unit input 
change). The DAC stage arms the synaptic circuit with 4-bit of 
synaptic efficacy and the fifth bit is controlled by the node nWx4 
in the transconductance stage. When turned on, the tail transis-
tor M13 which is three times the size of M12 is activated thus 
resulting in a four times increase in the magnitude of the synaptic 
current. Table 1 lists down the synaptic weights given by the 5-bit 
input, nWa, nW0, nW1, nW2, and nWx4. We call it pseudo-5-bit 
as the total number of weight values we get is 27 instead of 32.  
In our circuit, instead of using 32 transistors to realize full 5-bit, 
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Table 1 | Pseudo 5-bit synaptic weights. Bit value of 0(1) corresponds to 
voltage of VddInt (0)

nWx4 (MSB) nW2 nW1 nW0 nWa (LSB) Weight value

0 0 0 0 0 0
0 0 0 0 1 1
. . . . . . . . . . . . . . . . . .
0 1 1 1 1 15
1 0 1 0 0 16 (4 × 4)
1 0 1 0 1 20 (4 × 5)
1 0 1 1 0 24 (4 × 6)
. . . . . . . . . . . . . . . . . .
1 1 1 1 1 60 (4 × 15)

Figure 4 | Synaptic current output over the dynamic range of the synaptic 
weights. Parameters used: sVw = 135 mV, sVt = 0, Esyn = 600 mV.

Figure 2 | Dependence of synaptic current on synaptic reversal potential. 
Y-axis reflects the peak value of the synaptic current. Parameters used:  
sVw = 140 mV, sVt = 0, Esyn = 600 mV with maximum synaptic efficacy.

Figure 3 | Synaptic currents emulating the response of excitatory 
neurotransmitters AMPA, NMDA (with Esyn = 600 mV) and inhibitory 
neurotransmitters GABAA, GABAB (with Esyn = 800 mV). sVt was set to  
10 mV for NMDA and GABA mode and to 120 mV for AMPA and  
GABAA mode.

we used seven full-sized transistors for M6, M8 and M10 and one 
half-size transistor for M4. This shrinks not only the footprint of 
these transistors but also that of M2 by reducing the charge injec-
tion phenomenon.

The fabricated chip consists of 128 synaptic circuits connected to a 
single qualitatively modeled [11] neuronal soma circuit. The scale 
of synaptic current in the proposed circuit was designed to interact 
with this silicon neuron circuit, whose membrane capacitance is 
about 900 fF. Since the membrane capacitance of the neuronal cells 
is about several hundreds of picofarads and the scale of synaptic 
currents is about several hundreds of picoamperes, the range of 
synaptic current of the proposed circuit is set to about 10 pA allow-
ing a margin of about an order of magnitude. The synaptic circuits 
were laid out in groups of four each configured to mimic one of 
the four major neurotransmitters. Another group of 16 synapses, 
(hereafter referred to as TEG) were connected to a high resistance 
circuit designed using a transconductance amplifier with source 
degeneration to measure the synaptic current. A spike address 
decoder and register array were used to route spikes to designated 
synaptic inputs and store the synaptic weights respectively. These 
modules were configured using an onboard FPGA.

4.  RESULTS

Unless specified otherwise, the results presented are from the syn-
apses in the TEG and the voltage parameters listed in the caption 
of Figure 2 were used for measurement. The synaptic current was 

measured and plotted in terms of voltage across the high resis-
tance circuit. Figure 3 shows the synaptic waveforms mimicking 
the response of the four major neurotransmitters. Figure 4 shows 
the plot of synaptic currents over the dynamic range of synap-
tic weights described in Table 1. The synapse was configured to 
be in excitatory mode with Esyn = 600 mV. Figure 2 demonstrates 
the first-order dependence of synaptic current on the difference 
between synaptic reversal potential (Esyn) and membrane poten-
tial (Vmem). Membrane potential was kept fixed at 700 mV (resting 
potential of neuronal soma). As expected from Equation (5) the 
relationship is approximately linear. Zero crossing occurs at around 
707 mV instead of 700 mV due to the mismatch of transistors in the 
transconductance stage. The variation in the value of the time con-
stant of the (falling phase of) synaptic waveform across the range 
of synaptic efficacy for different values of sVt is plotted in Figure 5. 
The maximum time constant obtained for the value of sVt = 0 V was 
on average around 175 ms with a standard deviation of 10.5% about 
the mean. The mean and the percentage standard deviation around 
the mean for the rest of the sVt values are labelled in Figure 5.

To characterize the mismatch and examine the desired monotonic-
ity of the DAC stage, the following procedure was adopted. With 
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the spiking circuitry of the neuronal soma deactivated, thus acting 
as a passive membrane, excitatory postsynaptic potential from 128 
synaptic circuits was measured individually across the range of 
weight values of 4-bit binary-weighted DAC (from 0000 to 1111) 
giving a total of 2048 EPSPs. Due to the non-linear relationship 
between EPSP and EPSC an elaborate procedure involving current 
sources in the neuron circuit was used to construct a lookup table 
mapping the value of EPSP to corresponding EPSC. The mean and 
the standard deviation (represented by error bars) of the peak value 
of the synaptic current across the range of 4-bit synaptic efficacy 
for 128 synaptic circuits are plotted in Figure 6. Out of 128 synaptic 
circuits, a kink in the desired monotonicity was observed in 58 syn-
apses between the synaptic efficacy value of 7(0111) and 8(1000). 
The maximum standard deviation was recorded to lie in between 
5% and 20% of the mean value for maximum and minimum values 
of synaptic efficacy respectively (error bars at synaptic efficacy 
values 15 and 1 respectively).

The static power consumption of each circuit was limited to be 
under 2 pW and the dynamic energy consumption is measured as 
follows. For sVw = 110 mV (peak synaptic current of around 5 pA) 
and time constant of 160 ms, the input stage of our circuit con-
sumes around 40 f J per synaptic event and the integrator and the 
transconductance stage consume around 500 f J (this value reduces 
to 112 f J for a time constant of 3 ms).

Figure 6 | Average value of the peak synaptic current for 128 synapses 
across the range of synaptic efficacy to characterize the DAC. Error bars 
capture variation across mean value of current.

Figure 5 | Profile of time constant for various values of sVt across the 
range of synaptic efficacy.

5.  DISCUSSION

As described above the deviation of EPSC intensity from the 
desired monotonicity with respect to the value of synaptic efficacy 
was observed between efficacy values of 7(0111) and 8(1000) for 
around 46% of the synaptic circuits. Around 6% of the synaptic 
circuits displayed deviation from monotonicity between the syn-
aptic efficacy value of 3 and 4, and 11 and 12. The probable reason 
for this deviation is device mismatch combined with second-order 
and parasitic effects associated with the half-size transistor (M4 in 
Figure 1), but this could not be confirmed quantitatively due to the 
unavailability of statistical mismatch data in TSMC 250 nm CMOS 
PDK needed to perform Monte-Carlo simulation. The observed 
variation in standard deviation between the minimum and maxi-
mum values of synaptic efficacy is apparent from the size of transis-
tors used in the DAC stage (see Figure 1 caption). For the synaptic 
efficacy value of 1, only the half-size transistor M4 (w = 750 nm,  
l = 500 nm) is active. As smaller devices exhibit higher mismatch, 
the standard deviation about the mean value of EPSC is higher 
in this case, and as the value of synaptic efficacy increases with 
additional full-size transistors M6 (w = 2 µm, l = 500 nm), M8  
(w = 2 × 2 µm2, l = 500 nm) and M10 (w = 2 × 4 µm2, l = 500 nm) 
being activated the standard deviation about the mean decreases.

Data similar to one in Figure 6 but with the synaptic reversal potential 
value of set to 800 mV displayed higher standard deviation with 
respect to the mean value of the peak synaptic current. In other 
words the variance in the peak value of the synaptic current (mea-
sured for all synapses) for a particular value of synaptic efficacy was 
higher in the case of inhibitory synapses than in the case of excitatory 
ones. When configured in the inhibitory mode [(Esyn = 800 mV) > 
(Vmem = 700 mV)], most of the current sourced out of the Vmem node 
is activated through the path M15 → M17 → M18. The use of rela-
tively short transistors (L = 400 nm) in the current mirror devices 
(M17 and M18) led to a higher mismatch among them through-
out the synaptic array and thus higher standard deviation was 
observed. When configured in the excitatory mode [(Esyn = 600 mV)  
> (Vmem = 700 mV)], the current sourced into the node Vmem is acti-
vated through the shorter path consisting of M16. Due to their 
larger dimension, transistors M15 and M16 are better matched 
throughout the synaptic array and thus the standard deviation is 
smaller for synaptic circuits configured in the excitatory mode 
than in inhibitory mode. In other words, over the range of various 
reversal potential values, higher the contribution of current from 
transistor M18 into the node Vmem, which would depend on the rela-
tive difference between Esyn and Vmem, higher would be the standard 
deviation about the mean value of synaptic current throughout the 
synaptic array. As the transition frequency of the MOS transistor 
depends inversely on the square of its length, using a longer device 
leads to a sluggish synaptic response when configured in inhibitory 
mode (due to the relatively long path taken by the current). Making 
a trade-off between the response time and the probable mismatch 
effects, the length of the transistors was chosen to be 400 nm. This 
mismatch along with the Drain Induced Barrier Leakage effect on 
M18 led to a higher leakage current in the case synapses configured 
in inhibitory mode than in excitatory mode, also resulting in the 
offset in the zero-crossing observed in Figure 4. Though this addi-
tional leakage current can be compensated in the soma circuit, this 
difference needs to be minimized. One possible way which was ver-
ified via simulation was to separately control the bulk voltage of the 
current mirror transistors and fix it at a value higher than Vdd.
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A standard deviation of about 10% around the mean value was 
observed in the time constants over the range of synaptic efficacy for 
various sVt values (Figure 5). This variation arises due to the transition 
of the operating region of the transistor M11 from saturation to linear 
during the discharging phase of the node Vsyn. Ideally during the dis-
charge phase, the transistor M11 should be sinking a constant current 
depending only on the value of applied bias voltage sVt independent 
of its drain voltage (Vsyn), but the transistor deviates from this ideal 
behavior for smaller values of Vsyn and the current drawn decreases. 
The node Vsyn charges up to different voltage levels for different values 
of synaptic efficacy, thus during the discharge phase there is a varia-
tion in the value of time constant across the range of synaptic efficacy, 
even if the value of the bias voltage sVt is kept constant.

6.  CONCLUDING REMARKS

Experimental results of a low power biomimetic silicon synaptic cir-
cuit fabricated in TSMC 250 nm technology node was presented. The 
circuit is the first low power synaptic circuit that takes into account 
the effect of synaptic reversal potential and the instantaneous mem-
brane potential of the postsynaptic neuron on the synaptic current. 
To capitalize on the event-based nature of neuronal communication 
the design focused on minimizing static power consumption of the 
synaptic circuit, a metric not yet evaluated or reported in almost all 
contemporary CMOS based synaptic circuits. This first-generation 
chip contains only 128 synapses with just one input stage per integra-
tor. The number of input stages can be increased to a higher number, 
the design is completely modular. Thus the number of synapses can 
be expanded by placing additional silicon synaptic modules. Issues 
related to device mismatch in the DAC and the transconductance 
stage were characterized and will be fixed in the future.
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