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ABSTRACT
In this paper, multi-sine cosine algorithm (MSCA) is presented to solve nonlinear bilevel programming problems (NBLPPs);
where three different populations (completely separate from one another) of sine cosine algorithm (SCA) are used. The first
population is used to solve the upper level problem, while the second one is used to solve the lower level problem. In addition,
the Kuhn–Tucker conditions are used to transform the bilevel programming problem to constrained optimization problem. This
constrained optimization problem is solved by the third population of SCA and if the objective function value equal to zero, the
obtained solution from solving the upper and lower levels is feasible. The heuristic algorithm didn’t used only to get the feasible
solution because this requires a lot of time and efforts, so we used Kuhn–Tucker conditions to get the feasible solution quickly.
Finally, the computational experiments using 14 benchmark problems, taken from the literature demonstrate the effectiveness
of the proposed algorithm to solve NBLPPs.
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1. INTRODUCTION

Many practical problems such as engineering design, management,
economic policy and traffic problems, can be formulated as nonlin-
ear bilevel programming problems (NBLPP). So, it has been stud-
ied and received increasing attention in the literatures. The NBLPP
is a nested optimization problem with two levels (namely the upper
and lower level) in a hierarchy order. The decision maker at the
upper level (the leader) firstly optimizes his/her objective function
independently. After the leader picks his/her decision, the decision
maker at the lower level (the follower) makes his/her decision. The
leader knows the objective and constraints of the follower whomay
be known or not the objective and (or) constraints of the leader.
However, the leaders’ decision is directly influenced by the deci-
sion of the follower. Throughout the most recent decades, some
surveys and bibliographic reviews were given by several authors in
[1–3]. In addition, reference books on NBLPPs and related issues
have emerged in [4,5].

Figure 1 show that the general structure of NBLPP involving the
interlinked optimization and decision-making tasks at both levels.
from the figure we can see that for any given upper level decision
vector, there is a corresponding lower level optimization problem
must be solved which provides the rational optimal (response) of
the follower for the leader’s decision [6].

*Corresponding author. Email: yousria_naga@yahoo.com

Figure 1 General sketch of a bilevel problem.

The NLBPP is a nonconvex problem, which is extremely difficult
to solve. Firstly, Jeroslow [7] pointed out to that, then Ben-Ayed
and Blair [8] and Bard [9] proved sequentially that the bilevel pro-
gramming problem is a NP-Hard problem. Also, Vicente et al. [10]
showed that even the search for the local optima to the nonlinear
bilevel programming is NP-Hard operation. For more detailed dis-
cussion of the complexity issues in bilevel programming problem
(see [11]). Therefore,many researchers devote their efforts to devel-
oping algorithms for solving NLBPP.

Traditional methods for solving NBLPPs can be classified to
the following categories [6]: Branch-and-bound method, decent
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approach, approaches based on Kuhn–Tucker conditions and
penalty function approach [12]. But, the properties such as differ-
entiation and continuity are necessary when using these traditional
approaches [13,14]. In addition, the NBLPP is nonconvex, which
is extremely difficult to solve by traditional methods. Thus, most
of researchers tend to use the metaheuristic algorithms for solving
the NBLPP because of their good characteristics such as simplicity,
global search capability, implicit parallelism and overcome difficul-
ties and limitations of traditional techniques. These methods are
population-based approaches which are able to find optimal solu-
tion for large scale problems easily [15,16].

The first use of the metaheuristic algorithms to solve NBLPP was
through Mathieu et al. [17]; where they developed a genetic algo-
rithm (GA) to handle this type of problems. For the same rea-
son, other kinds of GA were proposed for solving NBLPP in Refs.
[18–24]. In addition, in Refs. [25–28], the neural network approach
was used to solveNBLPP; where it can converge to the optimal solu-
tion rapidly. Furthermore, other metaheuristic algorithms are used
to solve NBLPP such as tabu search [29–32], simulated annealing
[33], particle swarmoptimization (PSO) [34–36], fruit fly optimiza-
tion algorithm [37] and evolutionary algorithms [38,39].

Sine cosine algorithm (SCA) [40], is a novel population-based opti-
mization algorithm for solving optimization problems. Due to its
efficiency and simplicity, it has gained the interest of researchers
from various fields for solving optimization problems. In this
paper, multi-sine cosine algorithm (MSCA) is presented for solving
NBLPPs; where two populations of SCA are used to solve the upper
level problem and the lower level problem. On the other hand, the
Kuhn–Tucker conditions is used to convert the NBLPP to a con-
strained optimization problem which is solved by the third pop-
ulation of SCA. If the objective function value of the constrained
optimization problem equal to zero, the obtained solution from
solving the upper and lower levels is feasible. Many benchmark
problems, taken from the literature, used to demonstrate the effec-
tiveness of the proposed algorithm.

This paper is organized as follows: Section 2 presents the definition
and properties of the bilevel programming problem. Section 3 is
devoted for a brief introduction to SCA and presentation of the pro-
posed approach. Computational experiments are introduced and
discussed in Section 4. Finally, the conclusion and future works are
given in Section 5.

2. DEFINITION AND PROPERTIES
OF NBLPP

The NBLPPs consist of two levels, namely, the upper and lower lev-
els each having its nonlinear objective function. NBLPPs are formu-
lated as follows:

Min
x,y

F
(
x, y

)
,

Subject to: g
(
x, y

)
≤ 0

where y solves the following problem
Min
y

f
(
x, y

)
,

h
(
x, y

)
≤ 0;

(1)

where, F
(
x, y

)
, f
(
x, y

)
are the two objective functions of the upper

and lower level problems, respectively. g
(
x, y

)
and h

(
x, y

)
are the

constraint functions of the upper and lower level problems, respec-
tively. x ∈ Rn1, y ∈ Rn2are the decision variables under the control
of the upper lower level problems, respectively. Next we give the fol-
lowing definitions of the NBLPPs [4]:

i. The constraint region (CR) of NBLPPs

CR = {
(
x, y

)
|g
(
x, y

)
≤ 0, h

(
x, y

)
≤ 0} . (2)

ii. The projection of CR onto the upper level’s decision space

CR (X) = {x|there exist y such that
(
x, y

)
∈ CR} . (3)

iii. For each fixed x ∈ CR (X), the CR of the lower level problem

CR (x) = { y|h
(
x, y

)
≤ 0} . (4)

iv. For each fixed x ∈ CR (X), the rational reaction set of the lower
level problem

M (x) = { y|y ∈ arg min { f
(
x, y

)
, y ∈ CR (x)}} . (5)

v. The inducible region of NBLPP

IR = {
(
x, y

)
|
(
x, y

)
∈ CR, y ∈ M (x)} . (6)

Firstly, we suppose that CR ≠ 𝜙is compact and CR (X) ≠ 𝜙. For
each x ∈ CR (X), the lower level problem (LP) is formulated as
follows:

Min
y

f
(
x, y

)
Subject to: h

(
x, y

)
≤ 0.

(7)

To avoid situations where (7) is not well posed, it is natural to
assume that CR (x) ≠ 𝜙,M (x) ≠ 𝜙. Even so, NBLPmay be not well
defined when the rational reaction set, M (x), is not single-valued
[4]. In [9], Bard used examples to illustrate the difficulties that often
arise whenM (x)is multi-valued and discontinuous. Here, we con-
sider the situation that there is a unique solution to the lower level
problem for each fixed x ∈ CR (X). The reader can refer to [4,6]
for how to do when that M (x) is multi-valued. Then, we can give
the definitions of feasible solution and optimal solution to NBLP as
follows [35]:

Definition 1. A solution
(
x, y

)
is said to be feasible to NBLPP if(

x, y
)
∈ IR.

Definition 2. A feasible solution
(
x∗, y∗

)
is called to be optimal to

NBLPP if F
(
x∗, y∗

)
≤ F

(
x, y

)
, ∀

(
x, y

)
∈ IR.

From the definition of the feasible solution to NBLPP,
(
x, y

)
is a fea-

sible solution means that y solves problem (7) for fixed x. By apply-
ing Kuhn–Tucker conditions for problem (7), there exists 𝛽, such
that

∇y f
(
x, y

)
+ 𝛽T∇yh

(
x, y

)
= 0

𝛽Th
(
x, y

)
= 0,

𝛽 ≥ 0;

(8)
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where 𝛽 ∈ Rm is a column variable. Obviously, Eq. (8) can be equiv-
alently transformed into the optimization problem as follows:

Min
𝛽

‖∇yf
(
x, y

)
+ 𝛽T∇yh

(
x, y

)
‖2 + ‖𝛽Th

(
x, y

)
‖2

subject to: 𝛽 ≥ 0.
(9)

Therefore, if
(
x, y

)
is a feasible solution to NBLPP, there exists an

optimal solution to problem (9) and the optimal value equals zero.
That is to say, we can solve Eq. (8) to judge whether the point(
x, y

)
∈ CR is feasible to NBLPP.

Now, we can give the following definition:

Definition 3. Denote w
(
x, y

)
as the feasible weighting value of the

point
(
x, y

)
is given by

w = min
𝛽≥0

⎛⎜⎜⎝
‖
‖‖‖
∇yf

(
x, y

)
+𝛽T∇yh

(
x, y

)‖‖‖‖
2

+ ‖𝛽Th
(
x, y

)
‖2
⎞⎟⎟⎠ . (10)

Obviously, the smaller the feasible weighting value is, the closer(
x, y

)
is near the feasible region.

(
x, y

)
is a feasible solution if the fea-

sible weighting value equals zero. In Section 3 a brief explanation of
the sine cosine algorithm is provided with a detailed description of
the proposed method.

3. THE PROPOSED ALGORITHM

3.1. Brief Introduction to Sine
Cosine Algorithm

SCA [40] is a novel population-based optimization algorithm for
solving optimization problems. The SCA starts with creating amul-
tiple initial random candidate solutions. This random set is eval-
uated by an objective function and improved by a set of rules as
any optimization technique. Then, by using a mathematical model
based on the sine and cosine functions, these random solutions is
moved toward the best solution. There is no guarantee of finding
a solution in a single run. However, with enough number of ran-
dom solutions and optimization steps (iterations), the probability
of finding the global optimum increases. The SCA is used the fol-
lowing equation to update the positions of solutions [40].

x d
i,k+1 = {

x d
i,k + r1 × sin (r2) × ||r3p d

k − x d
i,k
|| , r4 < 0.5

x d
i,k + r1 × cos (r2) × ||r3p d

k − x d
i,k
|| , r4 ≥ 0.5

∀i = 1, 2, ..., PS;

(11)

where PS is the population size, x d
i,k is the position of the current

solution in d-th dimension at k-th iteration, r1, r2 and r3 are random
numbers, pdk is position of the destination point in d-th dimension
at k-th iteration, || indicates the absolute value and r4 is a random
number in [0, 1]. The parameter r1 dictates the movement direc-
tion (or the next position regions) which could be either in the
space between the solution and destination or outside it as shown
in Figure 2. The parameter r2 defines how far the movement should
be toward or outward the destination. The parameter r3 gives ran-
dom weights for destination in order to stochastically emphasize
(r3 > 1) or deemphasize (r3 < 1) the effect of desalination in defin-
ing the distance. Finally, the parameter r4 equally switches between
the sine and cosine components [41].

Figure 2 Effects of sine and cosine in Eq. (11) on the next position.

Mathematically, the steps of SCA are described as below:

Step 1. Initialization:

Initially agents are generated randomly and the parameters of SCA
are stetted to form the initial population that satisfying the feasibil-
ity of the solved problem (the search domain).

Step 2. Evaluation:

For each agent, the desired optimization fitness function is
evaluated.

Step 3. Setting the best position:

In the first generation, set the best position pk and its objective value
equal to the position and objective value of the best initial agent.

Step 4. Updating agents positions:

The position of search agents is updated according to Eq. (11).

Step 5. Updating the best position pk:

Determine the best agent of the current population with the best
objective value. If the objective value is better than the objective
value of pk, then update pkand its objective value with the position
and objective value of the current best agent.

Step 6. Termination criteria:

If themaximumnumber of generations has been produced, orwhen
the agents of the population convergences, the algorithm is termi-
nated and the best solution obtained so far is returned as the SCA
global optimum. Otherwise, Update the SCA parameters (r1, r2, r3,
and r4) and go to step 2. Convergence occurs when all agents posi-
tions in the population are identical.

The steps previously described are used in the proposed algorithm:
multi-SCAs to solve the NBLPPs.

3.2. The Proposed Algorithm

The idea of the proposed algorithm is to used three population of
SCA, as that described previously, to solve theNBLPPs.One of them
is used to solve the upper level problem, while the second is used to
solve the lower level problem and the third one is used to solve the
problem (9). The flow chart of the proposed algorithm is shown in
Figure 3. The steps details of it are described as follows:

Step 1. Solve the upper level’s problem using the first population of
SCA (1) to obtain x*.
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Figure 3 The flow chart of the proposed algorithm

Step 2. Solve the lower level’s problem using the second population
of SCA (2) to obtain y*.

Step 3. By using x∗ and y∗, problem (9) is solved by using the third
population of SCA (3). If there exists a solution to problem (9) and
the objective function value equal to zero, then the solution

(
x∗, y∗

)
is feasible, and added to the feasible list and Compute upper level
and lower level’s objective function values; otherwise, the solution(
x∗, y∗

)
is infeasible.

Step 4. Terminal conditions; where if the number of iterations is
larger than the maximum number of iterations, go to Step 5, other-
wise go to Step 1.

Step 5.Output the optimal solutions and output the upper level and
lower level’s objective function values.

The MSCA code is implemented in MATLAB, and the results are
compared with previous studies, to ensure the ability of the pro-
posed approach to solve NBLPPs. The simulations have been exe-
cuted on an Intel(R) core (TM) i5 CPU M430 @ 2.27 GHz proces-
sor, installedmemory (RAM): 6.00 GB. In Section 4, computational
experiments are performed and their results discussed.

4. COMPUTATIONAL EXPERIMENTS

4.1. Benchmark Problems

In this section, for computational experiments, 14 benchmark
problems were used to illustrate the feasibility and efficiency of the
proposed algorithm for solving NBLPPs. In these problems, the
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properties of the upper/lower objective functions are differentiable/
convex, differentiable/nonconvex, nondifferentiable/ convex and
nondifferentiable/nonconvex. The descriptions and details of these
problems are as follows:

Problem 1:

min
x

F(x, y) = (x1 − 30)2 + (x2 − 20)2 − 20y1 + 20y2,
subject to ∶ x1 + 2x2 ≥ 30,

x1 + x2 ≤ 25,
x2 ≤ 15,

min
0≤y≤10

f(x, y) =
(
x1 − y1

)2 + (
x2 − y2

)2 .
Problem 2:

min
0≤x≤50

F(x, y) = 2x1 + 2x2 − 3y1 − 3y2 − 60,

subject to : x1 + x2 − y1 − 2y2 ≤ 40,

min
0≤y≤10

f(x, y) =
(
−x1 + y1 + 20

)2 + (
−x2 + y2 + 20

)2 ,
subject to : x1 − 2y1 ≥ 10,

x2 − 2y2 ≥ 10.

Problem 3:

min
x≥0

F(x, y) = −x21 − 3x22 − 4y1 + y2
2
,

subject to : x2
1
+ 2x2 ≤ 4,

min
y≥0

f(x, y) = 2x2
1
+ y2

1
− 5y2,

subject to : x21 − 2x1 + x22 − 2y1 + y
2
≥ −3,

x2 + 3y1 − 4y2 ≥ 4.

Problem 4:

min
x≥0

F(x, y) = −8x1 − 4x2 + 4y1 − 40y
2
− 4y3,

min
y≥0

f(x, y) = x1 + 2x2 + y1 + y
2
+ 2y3,

subject to : y2 + y3 − y1 ≤ 1,
2x1 − y1 + 2y2 − 0.5y3 ≤ 1,
2x2 + 2y1 − y

2
− 0.5y3 ≤ 1

y ≥ 0.

Problem 5:

min
0≤x≤15

F(x, y) = x2 +
(
y − 10

)2 ,
subject to : − x + y ≤ 0,

min
0≤y≤20

f(x, y) =
(
x + 2y − 30

)2 ,
subject to : x + y ≤ 20.

Problem 6:

max
0≤x≤1

F(x, y) = 100x + 1000y1,

max
y1,y2

f(x, y) = y1 + y2,

subject to : x + y1 − y2 ≤ 1,

y1 + y2 ≤ 1.

Problem 7:

min
x≥0

F(x, y) = (x − 1)2 + 2y1 − 2x,
min

y1,y2≥0
f(x, y) =

(
2y1 − 4

)2 + (
2y2 − 1

)2 + xy1,
subject to : 4x + 5y1 + 4y

2
≤ 12,

4y2 − 4x − 5y1 ≤ −4,
4x − 4y1 + 5y

2
≤ 4,

4y1 − 4x + 5y2 ≤ 4.

Problem 8:

min
x

F(x, y) = (x1 + y1)(x2 + y2)2

1 + x1y1 + x2y2
,

subject to : x21 + x22 ≤ 100,
x1 ≥ 0
x2 ≥ 0

min
0≤y≤20

f(x, y) = −F(x, y),
subject to : 0 ≤ y1 ≤ x1,

0 ≤ y2 ≤ x2.

Problem 9:

min
x

F(x, y) = ||(x1 − 30)2 + (x2 − 20)2 − 20y1 + 20y2 − 225|| ,
subject to : 30 − x1 − 2x2 ≤ 0,

x1 + x2 − 25 ≤ 0,
x2 ≤ 15,

min
0≤y≤10

f(x, y) =
(
x1 − y1

)2 + (
x2 − y2

)2 .
Problem 10: the same problem 9 except

F(x, y) = ||sin((x1 − 30)2 + (x2 − 20)2 − 20y1 + 20y2 − 225)||

Problem 11: the same problem 9 except

F(x, y) = ||tan((x1 − 30)2 + (x2 − 20)2 − 20y1 + 20y2 − 225)||

Problem 12: the same problem 7 except

F(x, y) = ||(x − 1)2 + 2y1 − 2x + 1.2097||

Problem 13: the same problem 7 except

F(x, y) = ||sin((x − 1)2 + 2y1 − 2x + 1.2097)||

Problem 14: the same problem 7 except

F(x, y) = ||tan((x − 1)2 + 2y1 − 2x + 1.2097)||

4.2. Results

The proposed algorithmwas executed 50 independent runs on each
of the above 14 benchmark problems. In all runs, we record the best
solution found

(
x∗, y∗

)
, the upper’s objective values at the best solu-

tion F
(
x∗, y∗

)
and the lower’s objective values at the best solution

F
(
x∗, y∗

)
.

In addition, the 14 benchmark problems have been optimized and
solved, using new evolutionary algorithms (NEA), by Wang et al.
[19] and the combining particle swarm optimization with chaos
searching technique (PSO-CST), by Wan et al. [35]. Hence, their
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results are comparable with the present optimization results that
obtained by MSCA.

Figures 4–8 show the obtained feasible results, F
(
x, y

)
and

f
(
x, y

)
by the proposed approach MSCA for the test problems 1–

5 and some of these set of feasible solutions are available in the
Appendix (Table A.1 to Table A.5). From the figure, we can see that
the proposed approach can provide many feasible solutions for the
NBLPP in one run. So, the proposed algorithmMSCA is better than
the other methods that solve the NBLPPs, where it gives the leader
(the upper level) the ability to choose the appropriate solution from
many feasible solutions.

The comparison between the best solution
(
x∗, y∗

)
and the best

results, upper level’s objective function F
(
x∗, y∗

)
and lower level’s

objective function f
(
x∗, y∗

)
, that obtained by NEA, PSO-CST and

the proposed approach MSCA are listed in Tables 1 and 2.

Figure 4 The obtained feasible results, F
(
x, y

)
and f

(
x, y

)
, by the

proposed approach multi-sine cosine algorithm (MSCA) for problems 1.

Figure 5 The obtained feasible results, F
(
x, y

)
and f

(
x, y

)
, by the

proposed approach multi-sine cosine algorithm (MSCA) for problems 2.

From the Tables 1 and 2, it is clear that results obtained by MSCA
are better than that obtained by NEA and PSO-CST for problems 1,
2, 4, 8, 12 and 14 for both upper level’s objective function values and
the lower level’s objective function values.While the results of prob-
lems 11 and 13 that obtained by MSCA are only better than PSO-
CST for both upper level’s objective function values and the lower
level’s objective function values. But, the results obtained by MSCA
for Problem 5 are worse than both algorithms, NEA and PSO-CST,
for both upper level’s objective function values and the lower level’s
objective function values.

For problem 3, only the upper level’s objective function values that
obtained by MSCA is better than that obtained by NEA and PSO-
CST. For problem 6, only the upper level’s objective function value
that obtained by MSCA is better than that obtained by NEA and
PSO-CST. For problem 7, the upper level’s objective function value
by MSCA is better than that obtained by NEA and PSO-CST, while

Figure 6 The obtained feasible results, F
(
x, y

)
and f

(
x, y

)
, by the

proposed approach multi-sine cosine algorithm (MSCA) for problems 3.

Figure 7 The obtained feasible results, F
(
x, y

)
and f

(
x, y

)
, by the

proposed approach multi-sine cosine algorithm (MSCA) for problems 4.
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the lower level’s objective function value is better than PSO-CST
and worse than NEA.

For problem 9, the results obtained by MSCA are better than PSO-
CST for both upper level’s objective function values and the lower
level’s objective function values. But, for comparison with NEA,
MSCA succeeded only in obtaining a value for the upper level’s
objective function same as that obtained by NEA. Finally, for prob-
lem 10, the results obtained byMSCA are better than NEA for both
upper level’s objective function values and the lower level’s objective
function values. But, for comparison with PSO-CST, MSCA suc-
ceeded only in obtaining a value for the upper level’s objective func-
tion to be same as that obtained by PSO-CST.

In general, we can say that the proposed approach MSCA was
able to get better solutions for the upper level’s objective function
values for most benchmark problems in comparison with NEA and

Figure 8 The obtained feasible results, F
(
x, y

)
and f

(
x, y

)
, by the

proposed approach multi-sine cosine algorithm (MSCA) for problems 5.

PSO-CST. So, the proposed algorithm MSCA is effective and effi-
cient to solve NBLPPs.

5. CONCLUSION

This paper proposed MSCA to solve NBLPPs. Three population
of sine cosine algorithm (SCA) are used. The first one is used to
solve the upper level problem, while the second is used to solve the
lower level problem. In addition, the bilevel programming problem
is converted to a constrained optimization problem by the Kuhn–
Tucker conditions. The third population of SCA is used to solve
this constrained optimization problem to check the feasibility of the
obtained solutions; where if the objective function value equal to
zero, the obtained solution from solving the upper and lower levels
is feasible. The heuristic algorithm didn’t used only to get the fea-
sible solution because this requires a lot of time and efforts, so we
used Kuhn–Tucker conditions to get the feasible solution quickly.
Finally, the proposed approach is tested by using 14 benchmark
problems taken from the literature. The proposed approach has
many features which can be concluded in many points as follows:

1. It has flexible adaptation to solve NBLPPs.

2. The solution quality is increased by usingMSCAwith different
populations to solve the upper level problem, the lower level
problem and the optimization problem that made up of trans-
forming the bilevel programming problem using the Kuhn–
Tucker conditions.

3. It is unlike traditional techniques; where it searches by a pop-
ulation of points, not single point. So, it can provide many fea-
sible solutions for the NBLPP.

4. The numerical results that obtained by the computational
experiments prove the superiority of the proposed algorithm,
where it is better than those reported in the literature.

In our future works, we will focus on proposed other heuristic
algorithms to solve NBLPP with consider other and more complex
bilevel programming problems. In addition, this approach could be
treating the multilevel programming problem.

Table 1 Comparison between the best solution
(
x∗, y∗

)
obtained by NEA, PSO-CST and the proposed approachMSCA for problems 1–14.(

x∗, y∗
)

Problem No. NEA PSO-CST MSCA

1 (20, 5, 10, 5) NA (16.713, 8.286, 9.999, 4.02)
2 (0, 30, −10, 0) NA (19.980, 23.065, −5.733, 5.5127)
3 (4.4E-7, 2, 1.875, 0.9063) (0.3844, 1.6124, 1.8690, 0.8041) (0.3365, 1.0785, 1.73627, 0.56497)
4 (1.25E-13, 0.9, 0, 0.6, 0.4) (0.1324, 0.1754, 0.6935, 0.7327, 0.2273) (0.1885, 0.06320, 0.8608, 0.8449, 0.4560)
5 (10.0, 10.0) (10.0020, 9.9961) (10.0914, 9.9085)
6 (1.4E-12, 1, 7.07E-13) (0.1511, 0.6256, 0.369) (0.1510, 0.6256, 0.369)
7 (1.8888, 0.8889, 0) (1.8602, 0.9073, 0.005) (1.8602, 0.9073, 0)
8 (7.0709, 7.0713, 7.0709, 7.0703) (7.0321, 6.842047, 5.9071, 6.8312) (7.0321, 6.842044, 6.9071, 6.8312)
9 (20, 5, 10, 5) (17.2024, 7.4665, 7.2189, 2.4251) (17.2023, 7.4765, 7.2138, 2.4250)
10 (19.5629, 5.2722, 10, 5.2722) (0.1946, 14.9870, 6.1019, 7.9628) (0.1946, 14.9870, 6.1019, 7.9628)
11 (6.2048, 12.8594, 6.2048, 10) (10.6084, 10.0550, 9.4545, 5.1257) (10.6231, 10.0435, 9.3548, 5.0235)
12 (1.8888, 0.8889, 0) (0.8606, 1.4599, 0.3138) (0.8606, 1.4599, 0.3138)
13 (0.6648, 1.5746, 0.0721) (0.9099, 1.5294, 0.1762) (0.9099, 1.5294, 0.1762)
14 (0.6648, 1.5746, 0.0721) (0.9233, 1.5083, 0.1899) (0.9233, 1.5083, 0.1899)

PSO, particle swarm optimization; MSCA, multi-sine cosine algorithm; NEA, new evolutionary algorithms.
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Table 2 Comparison between the best results, F
(
x∗, y∗

)
and f

(
x∗, y∗

)
found by NEA, PSO-CST and the proposed approach MSCA for

problems 1–14.

F
(
x∗, y∗

)
f
(
x∗, y∗

)
Problem No. NEA PSO-CST MSCA NEA PSO-CST MSCA

1 225 NA 194.242 100 NA 63.229
2 0 NA −25.904 100 NA 38.635
3 −12.68 −12.68 −13.1380 −1.016 −1.016 0.4163
4 −29.2 −29.2 −33.9402 3.2 3.2 2.9329
5 100.001 100.58 101.846 3.5E−11 0.001 0.008
6 1000 640.7139 640.71 1 0.9946 0.9946
7 −1.2098 −1.1660 −1.0745 7.6168 7.4441 7.4637
8 1.9802 1.9816 1.9800 −1.9802 −1.9816 −1.9800
9 0.0000 0.0075 0.0000 100 125.0854 124.987
10 6.86E−15 0.0000 0.0000 91.45 84.2367 84.6547
11 1.47E−14 0.0001 0.0000054 8.18 25.6292 25.6543
12 2.22E−16 0.0082 0.0000 7.62 2.5621 2.5611
13 1.22E−16 0.0374 0.00065 2.50 2.6969 2.5644
14 1.22E−16 0.0337 0.0000 2.50 2.7442 2.4446

PSO, particle swarm optimization; MSCA, multi-sine cosine algorithm; NEA, new evolutionary algorithms.
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APPENDIX: SOME OF THE FEASIBLE
SOLUTIONS FOR THE TEST PROBLEMS 1–5

Table A.1 The set of feasible solutions obtained by multi-sine cosine algorithm (MSCA) for test problem 1.

x1 x2 y1 y2 F
(
x, y

)
f
(
x, y

)
16.4834960466894 8.51650395330898 10.0000000000000 2.63861763169650 167.338913208160 76.5852685972360
19.9999610471097 5.00003895289030 10.0000000000000 4.55420770367797 216.083764547691 100.197986446486
19.9994429763476 5.00055702365228 10.0000000000000 9.03645054727345 305.723441329499 116.277296371236
19.9999999997282 5.00000000027182 9.99999999999974 8.85599101619236 302.119820321134 114.868666709429
15.6851161584213 9.31488384157868 10.0000000000000 8.21240746227845 283.335755962416 33.5359999016581
18.3898918090829 6.61010819084000 10.0000000000000 2.85413135279575 171.166441921726 84.4976465760407
17.2385457971006 7.40927578297419 9.99999999999886 1.66210253238730 154.623100329667 85.4265456290013
19.2502404571777 5.74975954282235 9.99999999999992 4.72648563974966 213.156396110878 86.6140379963173
18.9761803650813 6.02381963491871 9.99999999999994 0.211221836439455 121.082653669293 114.358107113358
18.1758460986601 6.82415389989657 9.99999999999574 5.20000368052242 217.413609546716 69.4823233641385
15.5531318369073 9.43458936624393 9.99999999999958 5.78905780241159 236.121057629907 44.1271735809760
19.7401398125080 5.25986018749199 9.99999999999856 6.95678332015329 261.672119162261 97.7498716853925
19.0936753908462 5.90632460915376 9.99999891688560 9.99999993214684 317.579622808003 99.4531294631476
17.2274674197367 7.77253257994694 9.99999999999996 7.65973063136341 265.843160649615 52.2490095829606
19.0321290913861 5.96787090861395 10.0000000000000 8.17160812485705 280.627001602484 86.4358136417173
15.0000000000003 9.91798247504626 9.99999999999998 3.45043811219105 195.655839617287 66.8291300855036
18.9269605855044 6.07303941449359 9.99999999998792 7.65889278422407 269.750288709944 82.2055562056510
19.5424621286193 5.45753787138068 9.99999999999972 8.14708230858107 283.784949265316 98.2922327558147
16.7136534124213 8.28634658757844 9.99999999999985 4.02531451947929 194.242972301187 63.2295364274879
17.5060426160103 7.47159078123141 9.99999999999480 0.130602422568305 115.672057117347 110.230785835468
15.0002970717591 9.99970292824088 10.0000000000000 4.81163219552818 221.229673369476 51.9190487334729
18.6650489169518 6.33495108304819 10.0000000000000 8.45236251712773 284.261928300336 79.5665039143385
17.0179068399914 7.98209315956506 10.0000000000000 6.05130472184851 233.990922077486 52.9789604060176
15.8204430979949 8.50939077578589 9.99999999999870 2.86878651913862 190.469664663594 65.6939742371186
17.0530962421431 7.94690375775025 9.99999999999986 6.74880199335452 247.875485807238 51.1816144387828
15.0001613434793 8.68862772639577 10.0000000000000 8.60127598935184 324.967822220753 25.0092437867890
17.3409044097306 7.65909559026935 9.99999999999924 5.44569881772352 221.464599168172 58.7880028255303
18.0908751374792 6.90912445615208 9.99999999999254 2.01477280896775 153.493733675130 89.4169385366964
17.8848537837812 7.11514605258855 9.99999999529601 6.43942540281612 241.584737236888 62.6275176623175
16.9528200885189 8.04717991147873 9.99999999999988 5.35774689802051 220.253749671525 55.5747571171931
18.1923817058604 6.80761829413955 10.0000000000000 8.44690329813828 282.396850815986 69.8023733388520

Table A.2 The set of feasible solutions obtained by multi-sine cosine algorithm (MSCA) for test problem 2.

x1 x2 y1 y2 F
(
x, y

)
f
(
x, y

)
15.5387897122692 38.1450436155856 −9.15491945801839 4.53573422523622 −39.6027058169920 207.244207857494
2.60740248477875 41.9509110988793 −4.61852559060798 7.36809024165173 −82.8805293574979 375.835577689184
0.18717823930710 43.8931706442540 −6.61513244790278 8.26437186046296 −83.6734168219315 418.438354621163
0.02680932035748 35.2991104178593 −8.80039621280156 −4.7499391602369 −68.8443031387396 526.795725183233
7.07103583706055 19.4657433022623 −7.31896341018606 0.60300138289248 −43.3667813975830 32.7654643878523
19.9802129722810 23.0655234782115 −5.73346216726769 5.51275477227811 −25.9047110318464 38.6350246069557
11.7710636419019 6.54015612646236 −4.25558792658300 −7.5472083282536 −30.2312650629096 50.7467568495800
12.9704706831220 31.3300477541001 −3.95188862592689 9.30234285492468 −53.5334405100755 13.5834593807383
20.9473118708197 8.63797495412984 −0.44246685074850 −0.8408886748432 −25.4159506602448 112.625795432668
12.3302573925890 11.7445465983031 −2.74689258714901 −0.8786690476717 −38.8433540516780 78.6513997277838
7.98626409971397 33.0974022387324 −4.65476892486140 −0.7219464089927 −63.1605672647203 245.128791992776
4.48113373869799 30.4780537544522 −3.31816650112116 1.40888620607920 −71.5612867736927 231.106874658538
1.32154550037616 32.0495948357767 −5.55505693513630 4.31855628859339 −72.7413330296154 231.992520653631
4.21103920420309 30.8252147842564 −5.34277831212989 8.14214086062079 −66.3748014394606 116.321614161765
9.05459700982721 38.6683374581766 −9.61705014608239 4.17990467127684 −51.7079930002750 211.679205898914
0.07989908374101 11.7959341798244 −6.05548370439718 −3.0575269461838 −53.4696848991508 218.714472812962
2.41826382733149 45.2397947136916 −3.94963764352691 10.8150988155511 −88.5543541284479 393.905962062056
11.3500250502695 16.9028783280638 −5.68380781069236 −6.3639026885098 −37.1514047954477 19.4700057069557
14.6180234494580 39.4112881786770 −8.26699332368971 13.0005953223612 −45.3742613086918 49.4203046793626
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Table A.3 The set of feasible solutions obtained by multi-sine cosine algorithm (MSCA) for test problem 3.

x1 x2 y1 y2 F
(
x, y

)
f
(
x, y

)
0.99954526995436 1.16948795841407 9.50508979688807 4.50002437717950 −22.8723367936572 69.8447916543844
0.56918155742448 0.781344934570686 3.33349052270050 1.53342431098634 −13.1380393389281 4.09297280062670
0.84859268806525 0.308810945584173 9.98317824524428 4.28011065713497 −22.6195678942323 79.7035136911194
1.22954933869177 0.587053750521192 8.34396693106365 1.93719315666943 −32.1688382922881 62.9594015158913
0.26553572538002 1.83795256408921 3.89613479114882 0.88518781659479 −25.0056997989268 10.8949456707324
1.11557088809851 0.497492625214286 4.01676551735323 0.96032191814755 −17.1318390257390 13.8217924434060
0.81584142820524 1.20434759564482 9.96006144854210 2.52523092754962 −38.4804111860976 87.9078638929383
0.73651799391718 1.55852841371877 6.42547393133041 2.45240890593463 −27.5170774878842 30.1095882232611
1.04512758235492 1.34049718249537 8.53808873750856 1.36062455464306 −38.7841455235697 68.2804198431533
0.76202919664434 1.44867591530624 9.19990189958513 1.14545956671451 −42.3642041986663 80.0722741214944
1.20145811040292 0.95697878066106 4.45272476459092 1.91156235376235 −18.3477551770018 13.1559492424954
0.66285799880180 0.86310985389979 4.54786053773273 1.59179499005126 −18.3318874468509 13.6028219735614
0.62958003973951 0.06523865112941 9.30407513153499 1.39385731965786 −35.6826015698181 80.3892695078353
0.23228828455389 1.72190351617758 7.24846434514192 3.37000776229657 −26.5857180668436 35.7981122455927
0.39663826579551 0.91513735375060 6.24320858120901 0.01107937291180 −27.6424626149141 39.2369003517093
0.72177004130695 1.04467113399381 4.59129313474070 0.34755653828856 −22.0393423187836 20.3840939427307
0.97147411543027 0.26025064644296 7.30591591805685 2.82913573275856 −22.3666078317291 41.1182526518257
0.67499551190213 0.08836974125421 6.36099444670490 2.48734200098138 −19.7361541315696 28.9367782282797
0.66808821967701 0.11114460423195 5.12978559415573 1.72193028383340 −18.0374997126612 18.5977325613830
0.15866041902200 1.00661557603358 5.09921098818522 2.88481570224924 −15.1396801991016 11.6282204479112
0.77282063698029 0.33724842143606 8.44951283743064 2.47910964376220 −28.5905279541538 60.1932224449795
0.33657304637855 1.07853609436302 1.73627648803347 0.56497801480557 −10.2289075310003 0.416328799967051
1.09896346774441 0.99338615332173 7.39461010372874 0.41435888724943 −33.5749159797433 55.0239055567936

Table A.4 The set of feasible solutions obtained by multi-sine cosine algorithm (MSCA) for test problem 4.

x1 x2 y1 y2 y3 F
(
x, y

)
f
(
x, y

)
0.0219789522662545 0.077011832938644 0.055711815243667 0.308524587820997 0.306776636661773 −13.8291217483969 1.15379229453176
0.148067816195352 0.177472256740090 0.725271660036854 0.440460620052212 1.21053529223336 −21.4539108873977 4.08981519423132
0.168021537291266 0.116175395218021 0.124084378838530 0.390268921459030 0.250747086453702 −17.9262815680241 1.41621980093227
0.0123703137499864 0.431178847175924 0.363257842542576 0.364210321817028 0.505830926517453 −16.9623831072842 2.61385802549634
0.843518302596460 0.113291096249447 0.581349533963859 0.154011416917199 1.38093666823368 −16.5601160195367 4.56733478244378
0.414582368495294 0.100595800835866 0.541880760168823 0.160931470802675 0.321502368887112 −9.27478741828599 1.96159093891275
0.127657430738104 0.283815821231952 0.491349291504876 0.248206081969839 1.04438585415068 −14.2969122602094 3.52361615497808
0.0140761551525193 0.0583750824277646 0.261579199793153 0.366371624544478 0.633499007005176 −16.4886537815584 2.02577515835603
0.252324479525196 0.0386892819302381 0.346189906301264 0.182136907727001 1.15726007108396 −12.7031099321333 3.17254999958185
0.265697761819986 0.461664257911050 0.026670974533030 0.000480820231789 0.500389149535003 −5.88634463548354 2.21695637147691
0.143699999342032 0.0053359195584884 0.161327226651221 0.447399856503252 0.411813336196394 −20.0688823712810 1.58672559400627
0.518377547658868 0.223043952665171 0.559980575472251 0.105803815706327 0.978409584122738 −10.9450648547866 3.58706901241326
0.632872932051398 0.0593690400478564 0.864194044803383 0.051786184588027 1.65985680231169 −10.5545580301569 4.98730484616189
0.0823677222322206 0.0045694785637084 0.219563039521511 0.561756819476326 0.624143499303446 −24.7658143102934 2.12111353696437
0.963324106942369 0.0190578149530657 0.601579089920769 0.010725389313378 1.19913176034682 −10.6020503695906 4.01200773677629
0.143788836089682 0.0190012603820694 0.688239480740719 0.757643255540148 0.559687005304804 −31.0178360501080 2.74704810374430
0.0145966468436354 0.569003182561170 0.235304544063625 0.457047476193431 0.653063889962365 −22.3457223363260 3.15108281214776
0.195948136196853 0.0789312669982073 0.716872768205968 0.809817735748292 0.798362302266633 −34.6019777237420 3.47722577868079
0.527145075605880 0.229044481651444 0.427678982149580 0.340308328500235 0.972132172334458 −20.9234844322017 3.69748569422750
0.0365697252020392 0.0550243411412149 0.591029056011186 0.568475692615912 0.862775968845162 −24.3386705221536 3.03167509380189
0.188572921721599 0.0632043643092972 0.860849632739098 0.844946184511238 0.456092038627976 −33.9402178350150 2.93296154484648
0.400626069464438 0.187323838293649 0.786531748282482 0.451499811431901 1.20041765317899 −23.6698399857522 4.41414061212409
0.236480219662212 0.169131522541224 0.172408285000627 0.266531515364797 0.0235352068949085 −12.6341361496316 1.06075347889990
0.357820606982177 0.483245276098604 0.0894287179525100 0.260795908343957 0.341761206418330 −16.2367122478734 2.35805819831251
0.130841683032999 0.146346235320911 0.770780343077803 0.479208757894081 0.883711805134506 −21.2521945695377 3.44094686491572
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Table A.5 The set of feasible solutions obtained by multi-sine cosine algorithm (MSCA) for test problem 5.

x y F
(
x, y

)
f
(
x, y

)
4.54434711375526 4.54431459818833 50.4155938938367 267.879464464703
9.93189321542748 9.93189017160819 98.6471417913780 0.04174929463726
4.84160820966831 4.84160789016214 50.0501792147651 239.481072540709
13.5573439330933 6.44265606598530 196.456270385054 12.6546958714265
7.76503492696258 7.76503032586637 65.2908568612458 44.9557432988312
12.8977790812233 7.10221469600974 174.749864896063 8.39719573254597
9.19849039252296 9.19847563899968 85.2546668026141 5.78190075986046
4.95455549576239 4.95455508606452 50.0041345401467 229.108617013369
12.0700032264420 7.92999389563460 149.969903158429 4.28493718675652
5.41720241899285 5.41719191379270 50.3482120033490 189.018880735276
8.05159577927594 8.05158458834688 68.6245172092216 34.1667727199599
11.0902067092904 8.90978707056004 124.181249086307 1.18857779413173
9.06993556756303 9.06992747622094 83.1287660992336 7.78526894225452
5.96728465772724 5.96728285202540 51.8712937819153 146.365224668810
5.11983492087859 5.11980061967912 50.0290556087321 214.346109546181
14.2557531911277 5.74422783887468 221.338095733756 18.1117581517450
12.1273766665743 7.87261159343451 151.599046245361 4.52583138356921
5.49721908525848 5.49721736933950 50.4944690903080 182.475416412343
5.02239346585321 5.02239236113826 50.0010139322998 222.989167265069
12.4456383902228 7.55430870753585 160.875320838222 5.98166466593585
4.17896823484413 4.17896272455500 51.3482504699564 304.960082205521
6.96583456382562 6.96580876405524 57.7291676268717 82.8563784185986
12.7371684550677 7.26282840324340 169.727568602862 7.49212554878433
7.89532648981604 7.89527810624009 66.7660346308632 39.8680772491621
12.8152978766264 7.18468857158428 172.157838105634 7.92605474416644
14.4263399738156 5.57362048994727 227.712120607124 19.5931855733581
6.31551130053454 6.31550686996195 53.4611726124771 122.179308681212
10.5193213529967 9.48066709657031 110.925828392197 0.26971866175790
8.13431855516288 8.13431821981965 69.6479068617641 31.3269127902098
5.27988668172122 5.27984871830056 50.1570314939460 200.517377942069
5.41219412384739 5.41219384803432 50.3398105222224 189.431679999866
10.0914679984401 9.90853033524031 101.846093063112 0.00836700440941
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