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1. INTRODUCTION

After the initiation of fuzzy set (FS) by Zadeh [1] in 1965, the notion
of intuitionistic fuzzy set (IFS) was propounded by Atanassov [2] in
1986. IFS includes both the degree of membership (DMS) and the
degree of non-membership (DNonMS), whereas fuzzy set includes
only the DMS. The concept of BCI/BCK algebra was presented by
Iseki and co-workers [3-5]. Merging the concepts of FS and BCK
algebra, fuzzy BCK algebra was initiated by Xi [6]. In 1993, the idea
of FS was connected with BCI algebra by Ahmad [7]. Later on a
lot of works on BCK/BCI algebra and ideals in fuzzy set environ-
ment were done by several researchers [8-12]. Intuitionistic fuzzy
subalgebra and intuitionistic fuzzy ideal (IFI) in BCK algebra were
presented by Jun and Kim [13] in 2000 as an extension of FS con-
cept in BCK algebra. As the time goes, BCK/BCI algebra and ideals
were studied by Senapati ef al. [14,15] in context of intuitionistic in
various directions. Bipolar fuzzy set (BFS) [16] is the generalization
of FS which involves the degree of positive membership (DPMS)
and the degree of negative membership (DNegMS) of an element.
Bipolar fuzzy environment can be realized by an example. The seri-
als broadcasted in Television have both good effect and bad effect
on young generation. Good effect can be treated as positive effect
and bad effect can be treated as negative effect. Extension work on
BESwas given by Chen [17] in the form of m-polar FS. In 2013,
including the measure of neutral membership and generalizing the
notion of IFS, the concept of picture fuzzy set (PFS) was initiated by
Cuong [18]. After the initiation of PFS, different types of research
works in context of PES were performed by several researchers
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fuzzy implicative ideal (PFII) of BCK algebra are introduced and some related basic results are presented. A relation between m-
polar PFI and m-polar PFII is established. It is shown that an m-polar PFII of a BCK algebra is an m-polar PFI. But the converse
of the proposition is not necessarily true. Converse is true only in implicative BCK algebra. The concept of m-polar picture fuzzy
commutative ideal (PFCI) is also explored here and some related results are investigated.

© 2020 The Authors. Published by Atlantis Press SARL.

This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

[19-21]. In this paper, we introduce the concept of m-polar pic-
ture fuzzy subalgebra (PFSA), m-polar picture fuzzy ideal (PFI) and
m-polar picture fuzzy implicative ideal (PFII), m-polar picture
fuzzy commutative ideal (PFII) of BCK algebra and explore some
results related to these. Also, we develop relationships of m-polar
PFI with m-polar PFII and m-polar PFCI of BCK algebra.

2. LIST OF ABBREVIATIONS

FS - Fuzzy set

IFS - Intuitionistic fuzzy set

BES - Bipolar fuzzy Set

PES - Picture fuzzy set

DMS - Degree of membership

DNonMS - Degree of non-membership
DPMS - Degree of positive membership
DNegMS - Degree of negative membership
DNeuMS - Degree of neutral membership-
FI - Fuzzy ideal

IFI - Intuitionistic fuzzy ideal

PFSA - Picture fuzzy subalgebra

PFI - Picture fuzzy ideal
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PFII - Picture fuzzy implicative ideal
PFPII - Picture fuzzy positive implicative ideal

PECI - Picture fuzzy commutative ideal

3. PRELIMINARIES

Here, we recapitulate some basic concepts of FS, IFS, BCK/BCI alge-
bra, FL, IFI, BES, m-polar FS and PFS. We define m-polar PES, some
basic operations on m-polar PFSs, (6, ¢,1)-cut of m-polar PFS,
image and inverse of m-polar PES.

Definition 1. Let A be the set of universe. Then a FS [1] P over A is
defined as P = {(a, up(a)) : a € A}, where up : A — [0,1]. Here,
up(a) is DMS of ain P.

The DNonMS was missing in FS. Including this type of uncertainty,
Atanassov defined IFS in 1986.

Definition 2. Let A be the set of universe. An IFS [2] P over A is
defined as P = {(a, up(a), vp(a)) : a € A}, where up(a) € [0,1] is
the DMS of a in P and vp(a) € [0, 1] is the DNonMS of a in P with
the condition 0 < up(a) + vp(a) < 1foralla € A.

Here, sp(a)=1 — (up(a) + vp(a)) is the measure of suspicion of a in
P, which excludes the DMS and the DNonMS.

Iseki introduced a special type of algebra namely BCI algebra in
1980.

Definition 3. An algebra (A, {,0) is said to be BCI algebra [4] if
for any a, b, ¢ € A, the below stated conditions are meet.
i [@0bh)O@do]Ocdb) =0
ii. [a0@Ob)]Ob=0
iii. aQa=0
iv. a0b=0andbQa=0=>a=0>
A BCI algebra with the condition 0 a = 0 for all a € A is called
BCK algebra.
A relation “<” on A isdefined asa < biffad b = 0.

Proposition 1. In a BCK algebra (A, {,0) the followings hold.

i 00a=0
ii. aQ00=a
iii. aQ@Ob)<b
iv. aOb<a

v. @Ob)Oc=@Oc)Ob
vii (@aQ@O@Ob))=adbforalla,b,ceA

Definition 4. Let (A, (,0) be a BCK algebra and P = (up, 9p, vp)
be a FSin A. Then P is said to be FI [6] of A if

i up(0) = up(a)
il.  up(a) = up(ad b)Aup(b)foralla,b € Aandforl=1,2,...,m

Definition 5. Let (A, (,0) be a BCK algebra and P = (up, p, vp)
be an IFS in A. Then P is said to IFI [13] of A if

i up(0) = up(a) and vp(0) < vp(a)

il.  up(a) = up(a b) A up(b) and vp(a) < vp(a O b) V vp(b) for all
a,be A

Definition 6. A BFS [16] Pis defined as P = (a, up(a), vp(a)) : a €
A, where up(a) € (0, 1] measures how much a particular property is
satisfied by an element and vp(a) € [—1,0) measures how much its
anti property is satisfied by that element. DMS 0 means the element
has no relevancy to the property.

Definition 7. An m-polar FS [17] P over the set of universe A is
an object of the form P = {(a,up(a)) : a € A}, where up :
A — [0,1]™ (m is a natural number). Here, [0, 1]™ is the poset with
respect to partial order relation “<” which is defined as: a < b iff
pi(a) < py(b) for 1 =1,2,...,m; where p; : [0,1]™ — [0, 1] is called
I-th projection mapping.

Including more possible types of uncertainity, Cuong defined PFS
in 2013 generalizing the concepts of FS and IFS.

Definition 8. Let A be the set of universe. Then a PFS [18] P over
the universe A is defined as P = {(a, up(a), np(a), vp(a)) : a € A},
where pp(a) € [0,1] is the DPMS of a in P, np(a) € [0,1] is the
degree of neutral membership (DNeuMS) of a in P and vp(a) €
[0,1] is the DNegMS of a in P with the condition 0 < up(a) +
np(a) + vp(a) < 1foralla € A.Foralla € A,1 — (up(a) +
1p(a) + vp(a)) is the measure of denial membership a in P. Some-
times, (1p(a), np(a), vp(a)) is called picture fuzzy value for a € A.

Motivated by this definition, below we define m-polar PES.

Definition 9. An m-polar PFS P over the set of universe A is an
object of the form P = {(a, up(a),np(a), vp(a)) : a € A}, where
up + A= [0,1",mp : A > [0,1]"and vp : A — [0,1]" (mis
a natural number) with the condition 0 < p; o up(a) + p; o np(a) +
provp(a) < 1foralla e Aandforl=1,2,..,m. Fora € A, each
of up(a), np(a) and vp(a) is an m-tuple fuzzy value. Here, p; o up(a),
p1 o np(a) and p; o vp(a) represent I-th components of up(a), np(a)
and vp(a) respectively for [ = 1,2, ..., m.

The basic operations on m-polar PFSs consisting of equality, union
and intersection are defined below.

Definition 10. Let P = {(a, up(a), np(a), vp(a)) : a € A}and Q =
{(a, ug(a),nq(a),vo(a)) : a € A} be two m-polar PFSs over the
universe A. Then

i PCQiffp e up(a) < pyo po(a), pronp(a) < prongla) and
provp(a) = pjovga) foralla € Aand forl=1,2,..,m.

ii. P = Qiffp oup(a) = p;ouqgla),p;onpla = p;ongla)and
provp(a) = pjovg(a)foralla € Aandforl = 1,2,...,m.

iii. ~pre(PUQ) = {(a, max(p;o up(a), pro po(a)), min(p;onp(a), pro
Nq(@)), min(p; o vp(a), pyo vo(a)) : a € Atforl=1,2,..,m.

iv.  po(PNQ) = {(a, min(p;o up(a), p;o uo(a)), min(p;onp(a), po
Nq(@)), max(p; o vp(a), p;o vo(a)) = a € A} forl=1,2,..,m.

Definition 11. Let P = {(a, up,Np,vp) : a € A} be an m-polar
PFES over the universe A. Then (8, ¢, ¥)-cut of P is the crisp set in
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A denoted by Cg 4 (P) and is defined as Cg ¢ (P) = {a € A :
proupa) = pyo6,ponp(a) > prog,provp(a) < ppop for
1=1,2,...,m},where p;0 8 € [0,1],p; 0 ¢p € [0,1],p; 09 € [0,1]
with the condition 0 < pjo8+pjop+pop <lforl=1,2,..,m.
The mentionable fact is that each of 8, ¢ and ¢ is an m-polar fuzzy
value. Here, p; 06, p;o ¢ and p; o 3 represent /-th components of the
m-polar fuzzy values 6, p and 9 for [ = 1,2, ...,m

Definition 12. Let A; and A, be two sets of universe. Let
h : Ay — A, be a surjective mapping and P =
{(ay, up(ay), np(ay), vp(ay)) : a3 € A;} be an m-polar PFS in
Ay. Then the image of P under the map h is the m-polar PFS
h(P) = {(az, tnp)(@2), Nnp)(@2), Vip)(a2)) = ay € Ay}, where p; o

Mup(az) = V. b o up(ay), pro Ny (az) = A onp(ar)
a;€h™ (ay) a;€h™ " (ay)
and p; o vyp)(az) = A pyovp(ay) for all ay € A, and for
uleh_l(az)
1=1,2,..,m.

Definition 13. Let A; and A, be two sets of universe. Let h :
A; — A, be a mapping and Q = {(az, ug(az), Ng(az), volaz)) -
a, € A,} be an m-polar PFS in A,. Then the inverse
image of Q under the map h is the m-polar PFS Q) =
{(@1, 1) (a1), 1) (a1), Vi1 (A1) ap € Ap}, where p; o
M1y (@1) = pi o po(h(ar)), pr o ny-1g(ar) = pyo ng(h(ar)) and
Prov-1g(ar) = provg(h(ay)) foralla; € Ay andforl=1,2,..,m.

Definition 14. Let P = {(ay, up(ay), np(ay), vp(ay)) : a; € A}
and Q = {(az, Ho(a2),No(az),vq(az)) : ap € Ay} be two m-
polar PESs over the sets of universe A; and A, respectively. Then
the Cartesian product of P and Q is the m-polar PFS P X Q=
{((a’ b)’ MPXQ((a7 b))’ 77P>(Q((a7 b))7 VPXQ((a’ b))) . (as b) € Al X AZ}:
where p; o tp,o((a, b)) = pyo up(a) A pyo ug(b), pyo Npyq((a, b)) =
Pionp(a) A pponqb) and py o vpo((a, b)) = pyovp(a) V pyo vy(b)
forall (a,b) € A; X Ayand forl =1,2,...,m.

4. m-POLAR PFI

Let us first define m-polar PFSA of a BCK algebra.

Definition 15. Let (A, {,0) be a BCK algebra and P = (up, np, vp)
be an m-polar PFS in A. Then P is said to be m-polar PFSA of A if
pre up(ab) = pro pp(a) A pre up(b), pronp(ad b) 2 pronp(a) A
pronp(b)and pyovp(adb) < pyovp(a) VvV pyovp(b) foralla,be A

andforl=1,2,..,m.

Example 1. Consider a BCK algebra (A, {0, 0) defined in the follow-
ing tabular form:

TRT O
SN oo
ST oo
T oo o
o' o

Now, let us consider a 3-polar PES P as follows:

(0.25,0.35,0.4), ifa=0
(0.15,0.25,0.35), ifa=p
Hp(a) = .
(0.1,0.15,0.25), ifa=gq
(0.15,0.25,0.4), ifa=r

(0.2,0.3,0.4), ifa=0
(0.1,0.2,0.3), ifa=
np(a) = . b
(0.05,0.1,0.2), ifa=gq
(0.1,0.2,0.35), ifa=r
and
(0.1,0.15,0.2), ifa=0
(0.15,02,0.3), ifa=
vp(@) = e
(0.2,03,04), ifa=gq
(0.15,0.2,0.25), ifa=r

It is easy to show that P is a 3-polar PFSA of A.

Proposition 2. Let P = (up,np, vp) be an m-polar PFSA of a BCK

algebra A. Then p; o up(0) = py o pp(a), pr o 9p(0) = py o Mp(a) and
provp(0) < provp(a)foralla € A and forl=1,2,...,m.

Proof. Itis observed that

proup(0) = pyoup(ada)
= pro up(a) Ap;o up(a)
[because P is an m-polar PFSA of A]
= pl ° ,up(a),

prenp(0) = prenp(ada)
2 pronp(a) A pronp(a)
[because P is an m-polar PFSA of A]
= pronp(a)

and p; o vp(0) = pyovp(ada)
< provp(a)V provp(a)
[because P is an m-polar PFSA of A]
= pyovp(a)foralla € A
andforl=1,2,..,m.

Thus, p; o up(0) 2 p; o up(a), p;onp(0) = p;onp(a) and p;o vp(0) <
provp(a)foralla e Aandforl=1,2,...,m.

Now, let us define m-polar PFI of a BCK algebra.

Definition 16. Let (A, {,0) be a BCK algebra and P = (up, 1p, vp)
be an m-polar PFS in A. Then P is said to m-polar PFI of A if

i proup(0) = pyoup(a), pyonp(0) = p;onp(a) and p; o vp(0) <
provp(a)

i proup(a) = propp(a b)Apiepp(b), pronp(a) = prenp(a O b)A
pronp(b)and pjovp(a) < provp(a O b)Vpovp(b) foralla, b € A
andforl=1,2,...,m

Now, we are going to investigate some important results on m-polar
PFI of a BCK algebra.

Proposition 3. Let P = (up,np, vp) be an m-polar PFI of a BCK
algebra (A, O, 0). Then pjo pp(a) > pyo up(b), pronp(a) = pronp(b)
and p; o vp(a) < pyovp(b) for a,b € A witha < b and forl =
1,2,..,m.
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Proof. Leta,b € A suchthata < b. Thena{b=0.

Now, p; o tp(a)

> pro up(a®b) Ap;oup(b) [as Pis an m-polar PFI of A]
= pro up(0) A py o up(b)

= p; o up(b) [as P is an m-polar PFI of A],

pienp(a)

= pronp(a b) A p;onp(b) [as Pis an m-polar PFI of A]
= pronp(0) A p; o np(b)

= p; o np(b) [as P is an m-polar PFI of A]

and p; o vp(a)

< provp(ad b) V pyovp(b) [as Pis an m-polar PFI of A]
= provp(0) V p; o vp(b)

= p; o vp(b) [as P is an m-polar PFI of A]
forl=1,2,..,m.

Thus, p; o up(a) 2 p;o up(b), pyonp(a) = pyonp(b) and p; o vp(a) <
provp(b) fora,b € Awitha< bandforl=1,2,..,m.

Proposition 4. Let (A, O, 0) be a BCK algebra and P = (uup, 1)p, Vp)
be an m-polar PFI of A. Then p; o up(a) = p; o up(b) A p; o up(c),
prenp(@) 2 pronp(b) Aprenp(c) and pyovp(a) < provp(b)V provp(c)
fora,b,ce AwithaQb<c

Proof. Leta,b,c€ AwithaQb < c. Then (adb)c=0.

Now, p; o pp(a)

> propup(a b) Apyo pup(b)
[because P is an m-polar PFI of A]

Z proup((@O b) Qo) A proup(c) Apyo pup(b)
[because P is an m-polar PFI of A]

= pr o 4p(0) Apyo up(c) A pyo up(b)

= pro Up(b) A pyo pp(c)
[because P is an m-polar PFI of A],

pienp(a)

2 pronpa b) A p;onp(b)

[because P is an m-polar PFI of A]
2 pronp((a® b) O ) Apronp(c) Apyonp(b)
[because P is an m-polar PFI of A]
= pronp(0) A promp(c) A pyonp(b)
= pronp(b) A pronp(c)

[because P is an m-polar PFI of A]

and p; o vp(a)

< provp(@aQb)V provp(b)

[because P is an m-polar PFI of A]
<provp((@a®b)Oo) Vv provp(e) v povp(b)
[because P is an m-polar PFI of A]

= provp(0) V provp(c) V pyovp(b)

= provp(b) V pyovp(c)

[because P is an m-polar PFI of A]
forl=1,2,..,m.

Thus, it is obtained that pjo ip(a) 2 proup(b) Apre up(c), pronp(a) >
Pi o np(b) A pponp(c) and p; o vp(a) < pyo vp(b) V py o vp(c) for
a,b,ce AwithaQb<c.

Proposition 5. Every m-polar PFI of a BCK algebra is an m-polar
PFSA.

Proof. Let (A, ¢, 0) be a BCK algebra and A is an m-PFI of A. Since
P is an m-polar PFI, therefore,

propup(adb)

2 proup((a® b) O a) A p;o up(a)

= p;o up((a a) O b) A pyo up(a) [by Proposition 1 ]
= pyo up(0O b) A p;o up(a)

= p; o up(0) O p; o up(a) [by Proposition 1 ]

Z pro up(@) O pro up(b),

pionp(adb)

= pronp((ad b)Oa)Apyonp(a)

= pronp((ad a) O b) A p; o np(a) [by Proposition 1 ]
= p1oNp(00 b) A p;onp(a)

= p;o1p(0) A p; o p(a) [by Proposition 1 ]

> pronp(a) A p;onp(b)

and p; o vp(a O b)

< provp((a®b)Oa)Vpovp(a)

=povp((@a® a) O b)V p, o vp(a) [by Proposition 1 ]
=provp(0Qb) V pyovp(a)

= p; o vp(0) V p; o vp(a) [by Proposition 1 ]

< provp(@) V provp(b),

foralla,b€ Aandforl=1,2,...,m.

Hence, P is an m-polar PFSA of A.

But, the converse of the above proposition is not true in general
which is shown in following example. Proposition 6 states under
which condition an m-polar PFSA is an m-polar PFIL.

Example 2. Let us suppose the BCK algebra given in Example 1 and
a 3-polar PFS P as follows:

(0.2,0.3,0.4), ifa=0, q
Hp(a) = .
(0.1,0.2,0.3), ifa=p,r
(0.25,0.35,0.45), ifa=0,q
Np(a) = .
(0.15,0.25,0.3), ifa=p,r
and
(0.3,0.2,0.1), ifa=0,q
vp(a) = .
(0.4,0.3,0.2), ifa=p,r

Here, (0.1,0.2,0.3) = up(p) % up(p O @) A up(q) = (0.2,0.3,0.4),
(0.15,0.25,0.3) = np(p) # Np(p O @) A Mp(q) = (0.25,0.35,0.45)
and (0.4,0.3,0.2) = vp(p) £ vp(p O q) V vp(q) = (0.3,0.2,0.1). So,
P is not a 3-polar PFI of A although it is a 3-polar PFSA.

Proposition 6. Let P = (up, 1)p, vp) be an m-polar PFSA of a BCK
algebra (A, ), 0). Then P is an m-polar PFI of A if for all a, b, c € A,
aQb < ¢ = proppa > proppb) Apropp(c), pronpa) >
P10 np(b) A pyonp(c) and py o vp(a) < pyovp(b) V p; o vp(c) for
[=1,2,...,m.

Proof. By given conditions, for all a,b,c € A,a0b < ¢ = p,o
up(a) Z pro up(b) Apro up(c), pronp(a) = pronp(b) Apronp(c) and
provp(a) < provp(b) V pyevp(c). Since A is a BCK algebra therefore
by Proposition 1, a { (a O b) < b. So, it is obtained that

propp(a) = proup(adb) Ap;oup(b)

pronp(a) = propup(ab) Ap;o pup(b)

and p; o vp(a) < pyovp(aOb)V p;ovp(b)
forl=1,2,..,m

Thus, P is an m-polar PFI of A.
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Proposition 7. Let (A, $,0) a BCK algebra and P = (Kps 1ps Vp),
Q = (uq, N, vq) be two m-polar PFIs of A. Then PN Q is an m-polar
PFI of A.

Proof. Let PN Q = R = (Ug, Mg, vg)- Then p; o up(a) = p;o up(a) A

Pi o pola), pr o mr(@) = pyonp(@) A p;ongla) and p; o vy(a) =
provp(@)Vpove(a),Va € Aandforl=1,2,..,m.

Now, p; o t1z(0)
= pro up(0) A py o pg(0)
Z pro up(a) Ap;o 1ola)
[as P, Q are m-polar PFIs of A]
= p; o up(a)

Pronr(0)
= p;o1p(0) A pron(0)
2 pronp(a) Apyenola)
[as P, Q are m-polar PFIs of A]
= p;onr(a)

and p; o vx(0)

= provp(0) V p;ovy(0)

S provp(@) Vv provg(a)

[as P, Q are m-polar PFIs of A]
=povg(a),Va€Aandl=1,2,...,m.

Also, p; o pig(a)

= pyo up(a) A ppo pgla)

2 (proup(a®b) Apoup(b)) A (prougladb) Ap;o ug(b))
[as P, Q are m-polar PFIs of A]

= (pro up(ad b) Apyo ug(ad b)) A(pro up(b) A p;o fqgb)
= pjo ur(@a® b) A p;o pup(b),

pronr(a)
= pronp(a) A pyongla)
= (pronp@a b) Ap;onp(b)) A (prong(adb) Ap;ong(b))
[as P, Q are m-polar PFIs of A]
= (pronp@Qb) Aprong(ad b)) A (pronpb) A p;ong(b))
= pronr(ad b) A p;onr(b)

and p; o vg(a)

=provp(a) V provo(a)

S (provp(@Qb)Vprovp(b) V (provgladb)V provy(d)
[as P, Q are m-polar PFIs of A]

= Provp@Qb)Vpove(a®b) Vv (povp(b)V povyd)
=povp(@adb)Vpovp(h),Va,b€eAandl=1,2,..,m.

Thus, p; o ur(a) = p;o ur(@a® b) A p; o ur(b), p; o nr(a) = p;o
Nr(@ O b) A pyongr(b) and p; o vr(a O b) V p; o vg(b),VYa,b € A and
forI =1,2,...,m. Consequently, R = PN Q is an m-polar PFI of A.

Proposition 8. Let P = (up,np, vp) and Q = (iq,Nq, Vo) be two
m-polar PFIs of a BCK algebra (A, $,0). Then P X Q is an m-polar
PFIof AX A.

Proof. Proof is same as Proposition 7. So, it is omitted.

Proposition 9. Let (A, O, 0) be a BCK algebra and P = (up, 1)p, Vp)
be an m-polar PFI of A. Then Cq g 1 (P) is a crisp ideal of A, provided
that Pyo up(0) > p;o 6, pyonp(0) > pyo ¢ and pyovp(0) < pyoy for
1=1,2,..,m.

Proof. Clearly, Cg 4 ,(P) contains at least one element. Let a Ob,
b € Cg4,y(P). Then pyo up(aQ b) 2 pyo 6, pronp(adb) = pro¢,
provp(a®b) < ¥ and pyoppb) = pyob,ponp(b) = po¢,
provp(b) <pjopforl=1,2,..,m.

Now, p; o fup(a)

= pyoup(ad b) Appo up(b)
[because P is an m-polar PFI of A]
Zpe@Ap el =pob,

pronp(a)
Z pronp(ad b) A pronp(b)
[because P is an m-polar PFI of A]

ZpopApop=pog¢

and p; o vp(a)

Sprovp(@a®b) Vv provp(b)

[because P is an m-polar PFI of A]
<popVpop=popforl=1,2,..m

Thus, aQ b, b € Co,p,p(P) = a € Cg g y(P). So, Cg g 4(P) is a
crisp ideal of A.

Proposition 10. Let (A, O, 0) be a BCK algebra and P = (tp, Np, Vp)
be an m-polar PFS in A. Then P is an m-polar PFI of A if all (6, ¢, 1)-
cuts of P are crisp ideals of A.

Proof. Leta,b € A. Let pyo up(aOb) Apyo up(b) = pjo6,p; o
np(a O b)Aprenp(b) = pjogpand pjovp(a O b)Vpjovp(b) = pop for
1=1,2,..,m.Clearly, p;o6 € [0, 1], p;o¢ € [0,1]and p;orp € [0, 1]
with0 < pjo8+pop+pop<lforl=1,2,.. ,m.

Now, p;o up(aQ b) = pyoup(adb) Ap;oup(b) =p;00,

pronp(@adb) = proup(a®b)Apoup(b)=po¢

and pyovp(a O b) < provp(adb)Vpovp(b) =pyot
forl=1,2,...,m.

Also, pjo up(b) = po up(adb) Apjo pup(b) =p;00,
pronp(b) = pyoup(adb) Apyoupb)=pog
and p; o vp(b) < provp(aQb)V povp(b) =poyp
forl=1,2,...,m.

Thus, a0 band b € Cg ¢ y(P). Since Cg g 4 (P) is a crisp ideal of A
therefore a O b € Cq g (P) and b € Co,p,p(P) = a € Cg 4 4(P).

Therefore, pjo up(a) = p;o8 = pyoup(ad b) Ap;oup(b), pronp(a) =
prod =pronpa®b) Apyonp(b)and pyovp(a) < poyp = pyo
vp(aQb)Vpovp(b)forl=1,2,.,m.

Since a, b are arbitrary elements of A therefore p; o up(a) > p; o
up(aQ b) A pypo up(b), pyonp(a) = pyonp(adb) Ap;onp(b) and
provp(a) < povp(adb)Vp ovp(b)foralla,b € Aandforl =
1,2,...,m. Hence, P is an m-polar PFI of A.

5. PRE-IMAGE AND IMAGE PFI UNDER
HOMOMORPHISM OF BCK ALGEBRA

In the current section, we explore some properties of m-polar PFI
of BCK algebra under homomorphism of BCK algebra.

Definition 17. Let (A1, $,0) and (A,, *,0) be two BCK algebras.
Then a mapping h : A} — A, is said to be homomorphism if
h(a® b) = h(a) = h(b) forall a,b € A;.
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It is observed that h(a) * h(a) = 0i.e. h(a O a) = O i.e. h(0) = 0.

Proposition 11. Let (A1, ,0) and (A,, *,0) be two BCK algebras
and Q = (Uq, Mg, Vq) be an m-polar PFI of A,. Then for a BCK alge-
bra homomorphism h : A} — Ay, h=1(Q) is an m-polar PFI of A;.

Proof. Let h™(Q) = (-1 M1 Vi-1())> Where fh-1) =
uo(h(@), my=1g)(@) = no(h(a)) and vj-1q,(a) = v(h(a)) for all
ae Al'

Now, p1 © f-1()(0)

= p1o U(h(0)

= p1 o Uo(0) [as h(0) = 0]

2 p; o ug(h(a)) [because Q is an m-polar PFI of A, ]
= p1 o M1 (@),

P10 M1 (0)
= prong(h(0))
= p1°1(0) [as h(0) = 0]
> p o nq(h(a)) [because Q is an m-polar PFI of A, ]
= proNy1(g)(a)

and p; o vj,-1(,(0)

= p; o vo(h(0))

= p; o v(0) [as h(0) = 0]

< pro vo(h(a)) [because Q is an m-polar PFI of A;]
= povy-1q(a) foralla € Ay andfor/ = 1,2,...,m.

Thus, pyo f,-1(g)(0) > pro py-1(g)(@); pro7y-1(g)(0) 2 pro7;-1(q)(@)
and p; o v-1)(0) < py o V-1 qy(a) foralla € Ay and for | =
1,2,..,m.

Also, py o wy-1g)(a)

= pi o ug(h(a))

2 pyo uqg(h(a) * h(b)) A p; o puo(h(b))
[because Q is an m-polar PFI of A,]
= pro po(h(ad b)) A pyo uo(h(b))
[because h is a homomorphism]

= p1° M-1q)(a O b) A pro -1y (b),

Pre 1)@
= pono(h(a))
2 pronqh(a) * h(b)) A p; o no(h(b))
[because Q is an m-polar PFI of A,]
= pre ngh(a$ b)) A prong(h(b))

[because h is a homomorphism]
=proM-1g)a Ob)Ap;o Uh—l(Q)(b)

and  pjo vy-1)(a)

= piovo(h(a)

< provo(h(a) * h(b)) V p; o vo(h(b))
[because Q is an m-polar PFI of A,]

= pro vo(h(@O b)) V pr o vo(h(h))

[because h is a homomorphism]

=provy-1@0b) VvV pov,-1(b)foralla,b € Ay
andforl=1,2,..,m.

Thus, p; o w-1)(@) 2 p1 o py=1 (@O b) A pr o fy=1()(b), py ©
N1 (@) Z prom,-1(a O b) Apron,-1q)(b) and pyovy-1)(a) < pro
V1)@ O b) Vp,ovh—l(Q)(b) foralla,b € Ajandforl=1,2,...,m.
Hence, h~1(Q) is an m-polar PFI of A;.

Proposition 12. Let (A, ) and (A,, *) be two BCK algebras and
P = (up,np, vp) be an m-polar PFI of A;. Then for a bijective homo-
morphism h : Ay — Ay, h(P) is an m-polar PFI of A,.

Proof. Let h(P) = (Upp), Mip)» Viep))- Now, let b € A,.
Then p;o ypy(b) = V. pro up(a),
aeh~1(b)
PioNppy(b) = A pre Np(a)
aeh™"(b)

andpjovyp(b) = A povp(a)forl=1,2,.,m.
ach™1(b)

Since h is bijective therefore h~1(b) must be a singleton set. So, for
b € A,, there exists an unique a € A; such that a = h~1(b) i.e.
h(a) = b. Thus, in this case, pjou;p)(b) = propup)(h(@)) = propp(a),
P10 Dy (B) = pr o Ny (M(@)) = p; o mp(a) and p; o vypy(b) = py o
Vipy(h(a)) = pyovp(a) for [ =1,2,...,m.

Now, p; o typ)(0)

= py © Hypy(h(0)) [as h(0) = 0]
= pro up(0)

2 py o up(a)

= Py © Unpy(h(@)

= pro typy(b),

D1 © Ny (0)
= Py ey (M(0)) [as h(0) = 0]
= p;o1p(0)
= pronp(a)
= p1 o Npep(h(a))
= P o Nyep)(b)

and p; o vyp)(0)

= p1 o Vp)(h(0)) [as h(0) = 0]
= provp(0)

< provp(a)

= py o Vpy(h(a))
=provyp(b)forl=1,2,..,m.

Since b is an arbitrary element of A, therefore p; o ) (0) > p; o

Hipy (D) pr o Ny (0) = pp o Mypy(b) and py o vy,p)(0) < py o vyyp)(b)
forallb € Ayandforl=1,2,..,m.

Also, p; o uyp)(b)

= p; © uppy(h(a)) [where b = h(a) for unique a € A, ]
= py o up(a)

2 proup(adc) Apyo up(c)

[as Pis an m-polar PFI of A;]

= pro pupy(h(@ § ©) A pp o pyepy (h(c))
= Py o Uy (h(@) * h(c)) A p; o fypy(h(c))

[as /1 is a homomorphism]

= p1 o Mypy (b * h(©)) A pr o fypy (h(c)),

Pro Nupy(b)
= p; o Npy(h(a)) [where b = h(a) for unique a € A,]
= pronp(a)
= pronp(adc) Apyonp(c)
[as P is an m-polar PFI of A4]
= p o ey (M@ ©) A py o Dypy(h(c))
= py o Npy(h(a) * h(c)) A p; o Nypy(h(c))
[as h is a homomorphism]

= pr o Nypy (b * h(0)) A py o Dy (h())
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and p; o vy,p)(b)

= py o vyp)(h(a)) [where b = h(a) for unique a € A;]
= provp(a)

<provp@ao)Vprovp(c)

[as P is an m-polar PFI of A;]

= pro Ve (W@ ©)) V py o vy (h(c))

= py o vypy(h(a) * h(c) V p; o vip (h(c))

[as h is a homomorphism]

= pro Vi (b h() V pr o vyp)(h(c)) forall ¢ € Ay
andforl=1,2,...,m.

Thus, p;o ) (b) 2 pro ) (b h(€)) Ap;o typy(B(C)), pronup) (b) =
D1y (bh()) Apronyp) (h(c)) and pjovyp) (b) < provyp) (b#h(c))V
provipy(h(c)) forallc € Ay and forl = 1,2, ..., m. Since h is bijective
therefore h(A;) = A,. So, for all ¢ € Ay, h(c) can capture all the
elements of A,. Letting d = h(c), it is observed that the inequalities
hold for all d € A,. Since b is arbitrary therefore we obtain that
pro Hupy(b) Z pro ppy(bOd) A pr oty () pro Nipy(b) 2 pro
Ny (b O d)AP1enp)(d) and proviyp)(b) < provie)(b O d)Vprovyp)(d)
forall b,d € A, and for I = 1,2,...,m. Hence, h(P) is an m-polar
PFI of A,.

6. m-POLAR PFII

The current section introduces the concept of implicative BCK alge-
bra, m-polar PFII of a BCK algebra and studies some properties
related to these. We also investigate a relationship between m-polar
PFI and m-polar PFII of a BCK algebra.

Definition 18. A BCK algebra (A, {,0) is said to be implicative if
a=@Ob)Qaforalla,b e A.

Proposition 13. An m-polar PFS P = (up, np, vp) in a BCK algebra
(A, ©,0) is said to be m-polar PFII of A if the below stated conditions
are meet.

i propup(0) = pyoup(a), pronp(0) = pyonp(a) and pyo vp(0) <
provp(a)

ii.  proup(a) = proupi(@ad (b a))dctApyoupc), pyonpla) =
pronpf@O (O a)Oct A pyonplc) and py o vp(a) < pyo
vpi(aO b O a)Oct V po vp(c) for all a,b,c € A and for
1=1,2,....,m

Example 3. Let us consider the BCK algebra (A, ¢ ) as follows:

» IR T O
“ T OO
NN oo
2 O o
T oococo
eoNeNeNeNoelld

Let us consider a 3-polar PES P = (up, Hp, vp) as follows:

(0.39,0.41, 0.42),
(0.25,0.27,0.3),

_ ifa=0,p,q
prla) = ifa=r,s

(0.37,0.39,04), ifa=0,p,q
np(a) = .
(0.29,0.33,0.35), ifa=r,s
and
(0.14,0.17,0.18), ifa=0,p,q
vp(a) = .
(0.3,0.32,0.35), ifa=r,s

It can be easily shown that P is a 3-polar PFII of A.

Proposition 14. Every m-polar PFII of a BCK algebra (A, §,0) is an
m-polar PFI of A.

Proof. Let P = (up,7p, vp) be an m-polar PFII of A.

Then p; o up(a) = pro upf(@ O (b O a)) O ¢t A p;o up(c),
pronp@) = pronp{ad (b0 a) et Ap;onp(c)
and pyovp(a) < provpi(@aQ (b a) OtV povp(c)
foralla,b,c€e Aandforl=1,2,...,m.

Setting b = a, it is obtained that

promp(a) = proupi(ad(ada))OctApoupc)
= proup{(a0)Oct Ap;oup(c)
= proup(adc) Ap;o pup(c)
[by Proposition 1 ]

prenp(@ = pronpi(@ad (@ada) O ctApronpc)
= pronp{(@a®0)Oct Aponp(c)
= pronp@adc) Ap;onp(c)
[by Proposition 1 ]

and p; o vp(a) < provpi(ad(a®a)OctV p;ovp(c)
= provp{(@®0)OctVpovp(c)
= provp(@a®c)V p;ovp(c)
[by Proposition 1 ]
foralla,c€ Aandforl=1,2,..,m.

Therefore, P is an m-polar PFI of A.

The above proposition does not hold in reverse direction i.e. an
m-polar PFI of a BCK algebra is not necessarily m-polar PFII which
is clear from the following example. It is necessary to mention that
in an implicative BCK algebra, the converse of the above proposi-
tion holds which is shown through Proposition 15.

Example 4. Now, let us consider a 3-polar PFS P = (up, p, vp) in
BCK algebra A given in Example 3 as follows:

(0.42,0.43,0.45), ifa=0,q
Hp(a) = .

(0.25,0.27,0.3), ifa=p,r,s

(0.3,0.33,0.35), ifa=0,q
np(a) = .

(0.15,0.18,0.2), ifa=p,r,s

and

(0.14,0.16,0.2), ifa=0,q
vp(a) = .

(0.45,0.48,0.5), ifa=p,r,s
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It is clear that (0.25,0.27,0.3) = up(p) 2 upi(p OO p) O qt A
up(q) = (0.42,0.43,0.45) A (0.42,0.43,0.45) = (0.42,0.43,0.45),
(0.15,0.18,0.2) = 7p(p) £ 7MplpOrOPNOG A Mp(9) =
(0.3,0.33,0.35) A (0.3,0.33,0.35) = (0.3,0.33,0.35) and
(0.45,048,0.5) = vp(p) £ vp{(pOQ@OPNOG A V(g =
(0.14,0.16,0.2) v (0.14,0.16,0.2) = (0.14,0.16, 0.2). Thus, P is not
3-polar PFII although it is a 3-polar PFI of A.

Proposition 15. In an implicative BCK algebra, every m-polar PFI
is m-polar PFIIL.

Proof. Let (A, O, 0) be an implicative BCK algebra. Therefore, a =
(@aOb)Qaforalla,b e A Let P = (up, np, vp) be an m-polar PFI
of A. Then

proup(a) = proup(adc) Apro up(c)
= proupi((@aQ b) O a)Oct A pyo up(c),
prenp(@) Z prenpadc) Ap;enp(c)
= pronp{((@Qb) O a) Ot Apyonp(c)
and p; o vp(a) < pyovp(ac)V povp(c)
= povp{i((aQ®b)Oa)dctVpovp(c)
foralla,b,c € Aandforl=1,2,..,m.

Thus, P is an m-polar PFII of A.

Proposition 16. Let (A, O, 0) be a BCK algebra and P = (up, 1)p, vp)
be an m-polar PFII of A. Then Cq g y(P) is an implicative ideal of A,
provided that pjopp(0) 2 p;o6, p1onp(0) 2 pro¢ and pjovp(0) < proy
forl=1,2,..m.

Proof. Clearly, Cg 4 ,(P) contains at least one element. Let
(@Ob)Oa)Qc, c € Cggyp(P). Then pyo pp{((@aQb)Oa)Oct >
2196, pronp{((a O b) O a) O ¢} = pod, provp{((a O b) O a) O ¢t < proyp
and pjo up(c) Z pyo 6, pronp(c) = pro ¢, provp(c) < pyop for
1=1,2,..,m.

Now, p; o up(@) 2 pro up{((aQ b) O a) O ct A pyo pp(c)
[because P is an m-polar PFII of A]
2 poOApob=p o0,

pronp(a) = pronp{(ad b)da)dct A pronpe)
[because P is an m-polar PFII of A]

ZpopApop=pog

and p; o vp(a) < provp{((@Qb)Qa) OtV provp(c)
[because P is an m-polar PFII of A]
SpepVpep=poy

forl=1,2,..,m.

Thus, it is observed that {(a 0 b) 0 a) O ¢}, c € Co g y(P) = a €
Co,4,5(P). So, Cg ¢ 4 (P) is an implicative ideal of A.

Proposition 17. Let (A, O, 0) be a BCK algebra and P = (lup, 1)p, Vp)
be an m-polar PFS in A. Then P is an m-polar PFII of A ifall (6, ¢, )-
cuts of P are implicative ideals of A.

Proof. Let a,b € A. Let pyo up{((a®b)Oa)dct A pyo upc) =
Pro6,ponp{((@0b)Oa)Oct Apy o nplc) = ppo pandp; o
vpi(@Ob)Oa)Ochvp, o vp(c) =pyopforl=1,2,..,m. Clearly,

pro0el01]lpo¢el0,1]andp oy € [0,1] with0 <
prob+pop+pop<L<lforl=1,2,..,m.

Now, pjo up{((a0b)Oa)Oct = proup{((@db)a)dc}
A pro pup(c)
= pl o 6,
pronp{(@0b)Oa)Oct = pronp{((@db)Oa)ct
A pronp(c)
=po¢
and p; o vp{((@ QO b) O a) O ¢} < provp{((@a®b) O a)d c}
vV provp(c)
=popforl=1,2,..,m.

Also, pyo up(c) = proup{((@Q b) O a)dct
A proup(c) =pjob,
pronp(c) = pronpi((a®b)Oa)dct
A pionp(c) =pjo¢
and p;ovp(c) < provp{((a® b) G a) O c}
V provp(c) =popforl=1,2,...,m.

Thus, (a0 b)Oa)Ocand ¢ € Cg g y(P). Since Cg 4 (P) is an
implicative ideal of A therefore a € Cg 4 (P).

Therefore, p;o up(a) = p;o6 = pro up{((a O b) O a) O e Ap; o up(c),
pionp(a) = pieg = pronp{((a O b) G a) O cjApenp(c) and pjovp(a) <
prop =povp{((@aOb)Oa)dctVpovplc)forl=1,2,..,m.

Since a, b, ¢ are arbitrary elements of A therefore p; o up(a) > p; o
upi((a$ b) O a) O Apop(c), pronp(a) 2 prenpi((a$ b) O a) O A
promp(c)and pyovp(a) < provp{((a® b) O a) O etV provp(c) for all
a,b,c € Aandforl=1,2,...,m. Hence, P is an m-polar PFII of A.

Proposition 18. Let S; and S, be two ideals of a BCK algebra
(A, ©,0) such that S; C S,. If Sy is implicative then S, also.

Proposition 19. Let Py and P, be two m-polar PFIs of a BCK algebra
(A, O,0) with Py C P,. If Py is m-polar PFII of A then P, also.

Proof. Leta € Cg 4 4 (P1). Then pyo up (a) = pyo 6, pyonp (a) 2
progandpiovp (a) < poypforl=1,2,..,m Now, P, C P, =
pro pp (@) < pro pp, (@), pronp (a) < promp,(a)and pyovp (a) 2
pro vpz(a) for | = 1,2,...,m. It follows that p; o upz(a) > pob,
prenp,(a) = pjo¢andpovp (a) < poyforl=1,2,..,m. Thus,
a € Cgp,p(P2). Asa result, Co,p,p(P1) C Cg ¢,y (P2). Since Py isan
m-polar PFII of A therefore Cq ¢ 1 (P) is implicative ideal of A by
Proposition 16. By Proposition 18, Cg 4 1 (P,) is implicative ideal of
A. Therefore, by Proposition 17, P, is an m-polar PFII of A.

Proposition 20. Let P = (up, np, vp) be an m-polar PFI of a BCK
algebra A. Then the below stated statements are equivalent.

i.  Pis m-polar PFII.

ii.  proup(a) = proup(a (b a)), pronp(a) = pronp@ad (b a)
and p; o vp(a) < pyovp(aQ (bOa)) forall a,b € A and for
[=1,2,...,m.

iii.  proup(a) = proup(ad (b a)), pronp(a) = pronp(ad (b0 a))
and p; o vp(a) = pyovp(a® (b a)) forall a,b € A and for
1=1,2,...,m.



S. Dogra and M. Pal / International Journal of Computational Intelligence Systems 13(1) 409-420 417

Proof. (i) = (ii): Since P is an m-polar PFII of A, therefore,

propp(@) 2 pro up{(ad (b a)) O 0} A pyo up(0)
= proup@a® (b0 a) Ap;o up(0)
[by Proposition 1 ]
= proup(ad (b9 a)

pronp(a) = pronp{(ad (b0 a) 0} A p;onp0)
= pronp(ad (b a)) Ap onp(0)
[by Proposition 1 ]
= pronpa® (b a)
and pyovp(a) < pyovpi(ad (b O a)) O 0}V pyovp(0)
= povp(a® (b a)Vpovp(0)
[by Proposition 1 ]
= provp(aQ(bOa)) foralla,be A
andfor/=1,2,...,m.

(i1) = (iii): It is known by Proposition 1 that a { (b ¢ a) < a. Then
by Proposition 3, p; o up(a) < py o pp(a O (b O a)), pronp(a) < pyo
Np(a O (b O a)) and pjovp(a) = provp(a (b a))foralla, b € Aand
forl = 1,2, ..., m. By (i), propp(@) 2 propp(a© (b0 @), prop(a) >
propp(a$ (b a))and pjovp(a) < pjovp(a O (bOa))foralla,b e A
and [ = 1,2,...,m. As a result, p; o up(a) = p; o up(a$ (b a)),
promp(@) = pro pp(a O (b0 @) and py o vp(a) = pyo vp(a O (b0 )
foralla,b € Aandforl=1,2,..,m.

(iii) = (i): Since P is an m-polar PFI of A therefore p, o
up(@Q®Oa) = pro upla®®Ga)Oct A ppo up(c), pr o
7p@Q Q) = ponpla®®Qa)dct A pponple) and p; o
vp(aQ (bOa) < provplad (bOa)dctVprovp(c)foralla,b,c €
A and for I = 1,2,..,m. By (iii), we have, p; o up(a) > p; o
upta O (b O a) O cy Apyo up(c), pronp(a) = pronpta O (b O a)d kA
promp(c)and py o vp(a) < provp{ad (b0 a) OtV pyo vp(c) for all
a,b,ce Aandforl=1,2,...,m. Thus, P is an m-polar PFII of A.

Definition 19. Let P = (up,np, vp) be an m-polar PFS in a BCK
algebra (A, ¢, 0). Then P is said to be an m-polar picture fuzzy
positive implicative ideal (PFPII) if the below stated conditions are
meet.

i. pronp(0) = p;onp(a)and p; o vp(0) < p;o vp(a)

ii. pronp@de) = ponp((adb)de) Apyonpbdce)andp; o
vp(aQc) <K provp((adb)Oc) Aprovp(bOe), Va,b € A and
1=1,2,....m

Proposition 21. An m-polar PFI P = (up, np, vp) of a BCK algebra
(A, 0, 0) is an m-polar PFPIL iff p; o up(a G b) = pyo up((a b) O b),
prompa®b) = pronp((@Qb)Ob) and pyovp@aQb) < po
vp((@Q b)Ob), Ya,b € Aand forl =1,2,...,m.

Proof. The proof is easy. So, it is omitted here.

Since @O b)Ob < addb, it follows from Proposition 3 that p; o
Hp(a$b) < pro up((a$ b) O b), pronp(ad b) < prenp((adb)Ob)
and pjovp(a® b) = provp((aOb)Ob),Va,b € Aandl =1,2,...,m.
So, the above Proposition can be modified in the following way:

Proposition 22. An m-polar PFI P = (up, np, vp) of a BCK algebra
(A, 0,0) is a m-polar PFPIL iff p; o up(a G b) = p;o up((a b) O b),
promp@Ob) = p o np(@aOb)Ob) and py o vp@Ob) = py o
vp((aQb)Ob),Va,be Aandl=1,2,...,m.

7. m-POLAR PFCI

Definition 20. Let (A4, {,0) be a BCK algebra and P = (up, 1p, vp)
be an m-polar PFS in A. Then P is said to be m-polar PFCI of A if
the following conditions are met:

i proup(0) = pyo up(a), pronp(0) = p;onp(a) and p; o vp(0) <
prevp(a)

il poup(@a O (bda))=proup((adb)de)Apoupc),po
Np@O OO a)) = pronp((@adb)de)Apyenp(c)and p;o

vp(@aQ b OB Oa) < provp((adb)c)V pyo vp(c) for all
a,be Aandforl=1,2,..,m

Example 5. Let us consider the BCK algebra (A, ¢ ) as follows:

RN~ (SIS
~wT oo
T oo
il eNeNelN
ot o

Now, let us suppose a 3-polar PFS P = (up, np, vp) defined by

(0.34,0.36,0.37), ifa=0
up(a) = 1(0.28,0.3,0.32), ifa=p

(0.17,0.18,0.18), ifa=gq,r

(0.35,0.36,0.39), ifa=0
np(a) = 1(0.25,0.27,0.3), ifa=p

(0.2,0.23,0.27), ifa=gq,r

and

(0.1,0.15,0.17), ifa=0
ne(a) = {(0.2,027,031), ifa=p

(0.55,0.57,0.58), ifa=gq,r

Clearly, P is a 3-polar PFCI of A.

Definition 21. A BCK algebra (4, ¢, 0) is said to be commutative
ifbObOa)=ad(adb)foralla,be A.

Proposition 23. Every m-polar PFCI of a BCK algebra is an m-polar
PFIL.

Proof. Let P = (up,np, vp) is an m-polar PFCI of a BCK algebra
(4,0,0).

Now, (a0 (00 (00 a)))
= (a0 0) [by Proposition 1]
= a [by Proposition 1]

Now, p; o up(a) = pyo up(a® (0O 00 a) = proup((@d®0)de) A
proup(c) = proup@ade) Appo pup(c), pponpl@a = po
7p(@0 00 00a)) = peonp((a®0)Oc) Apronplc) = pro
7p(@0 &) A pr o mp(c) and pr o vp(@) = pyo vp(@® (00 (00 ) <
provp((a® 0) O o) Vprovp(c) = provp(ad c)Vpovp(c) foralla,c € A
and for [ = 1,2, ..., m. Consequently, P is an m-polar PFI of A.
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The above proposition is not true in reverse direction which is clear
from following example. But the converse of the above proposition
holds in commutative BCK algebra which is highlighted through
Proposition 24.

Example 6. Let us consider a BCK algebra (A, O ) as follows:

DO WS S
» ST oo
“w S oo
©“ N O o
il eNeNeNol
[eNeNeoNeNalid

Now, let us suppose a 3-polar PFS P = (up, np, vp) defined by

(0.4,0.41,0.43), ifa=0
pp(a) = 1(0.3,0.32,0.33), ifa=p
(0.2,0.24,0.27), ifa=gq,r,s
(0.43,0.45,0.47), ifa=0
np(@) = {(0.35,0.36,0.37), ifa=p
(0.21,0.22,0.23), ifa=gq,r,s
(0.08,0.09,0.1), ifa=0
vp(a) = 1(0.27,0.28,0.3), ifa=p
(0.45,0.47,0.5), ifa=q,r,s

Clearly, P is a 3-polar PFI of A.

It is observed that

Mp((g O (rO (O @) = up(q) = (0.2,0.24,0.27),
up((q O 1) O 0) A up(0) = (0.4,0.41,0.43)

np((q O (r O (r O ) = np(q) = (0.21,0.22,0.23),
7p((g O 1) O 0) Ap(0) = (0.43,0.45,0.47)

vp((q O (rO (rO ) = vp(q) = (0.45,0.47,0.5),
vp((q O 1) O 0) V vp(0) = (0.08,0.09,0.1).

Here, up((qQ (rO (r0q)) 2 up((qO 1) 00) A up(0), np((gOrd
09 £ 1p((@000) A 1np(0) and vp((qO (rO(rO Q) £
vp((g O 1) O 0) V vp(0). Clearly, P is not a 3-polar PFCI of A.

Proposition 24. In a commutative BCK algebra, every m-polar PFI
is an m-polar PFCL

Proof. Let P = (up,”p, vp) be an m-polar PFI of a commutative
BCK algebra (A,0,0). We have, [((a0(bO(b0a))0((adb)
0O = ((adbO(B0a)))0e)0((adb)Oc) [by Proposition 1]

< @O OO a)) O (adb) [by Proposition 1]

= @0wW@dO@Ob))O@Ob) [as A is commutative therefore
@0@dOb) =BOMBOa) forallabe Al

= (aQ b)) (a b) [by Proposition 1]
=0
ie. (a0 ®OBOa)0adb) o) <

Thus, by Proposition 4, it is obtained that p; o
pp@OBOBO@)) = pro mp(@O)O) A pr o up(o),
Pronp(@O®OBOa)) = pronp((adb)O o) A pronp(c) and
Proevp((aQ (b0 (b0 a)) < provp(((adb)de))V povp(c)forall
a,b,c € Aand forl = 1,2, ..., m. Consequently, P is an m-polar
PECI of A.

Now, we are interested to develop a relationship between m-polar
PFII and m-polar PFCI. Before that we state some propositions
which are necessary in this regard.

Meng et al. [10] stated the following proposition:
Proposition 25. The followings hold in a BCK algebra (A, ¢, 0).

i (@000 @dbdec.
ii. @00 @d@de)=@@dc)dc.
iii. @OBOBOa))OBO@OBO(BNa))<adhb.

Proposition 26. An m-polar PFI P = (up,np, vp) of a BCK alge-
bra (A, ,0) is an m-polar PFCI iff p; o up(aQ (b O (b O a)) =
propup@Qb), pronp@d®O®Oa)) = ponp(adb)andp, o
vp(@Q (OO a)) <povp(alb),Va,be Aandl=1,2,...,m.

Proof. The proof is easy. So, it is omitted here.

It is observed that a0 b < a{ (b (b a)) and using Proposi-
tion 3 we get, py o up@O(bO (B0 < pr o up@Ob), py o
76(a O (b0 (b0 @) < pronp(ad b)and provp(ad (b0 (b0 ) >
provp(aQb),Va,b € Aand [ = 1,2, ..., m. So, above Proposition
can be modified in the following way:

Proposition 27. An m-polar PFI P = (up,np, vp) of a BCK alge-
bra (A, 0,0) is an m-polar PFCI iff p; o up(aO (O (b a)) =
proup(@aQb), pronp@ad® O (bda)) = ponp(adb)andp; o
vp(aQ OB a)) =povp(adb),Va,beAandl=1,2,...,m.

Proposition 28. An m-polar PFI P = (up, 1)p, vp) is an m-polar PFII
iff P is both m-polar PFCI and m-polar PFPII.

Proof. Suppose that P is m-polar PFIL Then by Proposition 25 (i)
and Proposition 4,

proup((@a®b)oc) Apoup(bOoe)

<proup((@a®e)Qo

=proup((@®c) O @ (adc))) [by Proposition 25 (ii)]
= p; o up(a  ¢) [by Proposition 20 (iii)],
Pronp((@Qb)Oc) AponpbOo)

<pronp((@a®e)Oo)

=ponp((adc) (@ (adc))) [by Proposition 25 (ii)]
= p;onp(a ¢) [by Proposition 20 (iii)]

and povp((aOb)Oc) Apovp(bOc)
Zprovp((@a®e)Oo)

=provp((ac) O ad(adc))) [by Proposition 25 (ii)]
= p; o vp(a O c) [by Proposition 20 (iii)]

Therefore, P is an m-polar PFPIL
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By Proposition 25 (iii) and Proposition 3 we get,

pro pp(adb)
<popp@QbOBOa))0BO@d O (b a)))
= pro up((a (b (b a))) [by Proposition 20 (iii)],
pronp(adb)
<pronp(@adbOBOa)) O MO @O ®okboa)))
= p1omp((a O (b0 (b0 @) [by Proposition 20 (iii)]
and p; o vp(a O b)

2 povp@Q O BOa)) OO @O ®bOa)))
=provp((ad (b (b a))) [by Proposition 20 (iii)].

Therefore, P is an m-polar PFCI of A.

Conversely, let P be both m-polar PFPII and m-polar PFCI of A.

Since (b0 (b0 a)) O (b a) < ad (b a), by Proposition 3,

proup(a$ (b0 a)
<proup((bO O a) O (b0 a),
prenp@ad (b a)
<pronp((bO (b0 a) Qb a)
and py o vp(a O (b a))

2 provp((bO (O a) O (b0 a)

By Proposition 22,

propp((bO (0 a) O (bOa) = proupbO(bOa),
promp((bO B Oa) O (bOa) = pronpbO (b0 a)
and p; o vp((b O (b0 ) O (b O a)) = provp(bO (b a)

therefore it is obtained that

proup@ (b0 a) < propup(bO (b a), (1)
prenp@Q (b0 a) < pronpbO (b0 a) )
and pyovp(aQ (bOa)) 2 provp(b (b0 a) ®3)

Also, a0 b < a(b< a). Therefore, by Proposition 3,
proup(ad (b a) < pyoupadb),

Pionp@d (O a) < pronp(adb)

and pjovp(aQ (b0 a)) = provp(adb)

Since P is an m-polar PFCI therefore by Proposition 27,

proup@®b) = proup(ad o (bOa)),
pionp@Qb) = ponpad (b (b a))
and pjovp(a O b) = pyovp(ad (b O (b a))

Hence it is obtained that

proup(ad (O a) < proupad o (boa)), (4)
prenp@Q(bOa) < pronp@ad(bO (0 a)) (5)

and pjovp(aQ (b0 a)) 2 provp(ad (b (b9 a)) (6)

Combining (1) and (4), (2) and (5), (3) and (6) it is obtained that

proup@a® (boa)

K proup@Q b bOa))Apoup(bO O a)
< pro pp(a),

pronp(ad (b a)

<pronp@O O (b a)) Aponpbd(bOa)
< pronp(a)

and p; o vp(a O (b a))

Zpovp(@aQ b (b a))Vpovp(b(b$a))

= pro vp(a).

So, by Proposition 20 (ii), P is an m-polar PFII of A.

8. CONCLUSION

In this paper, we have initiated the notion of m-polar PFI and m-
polar PFII of BCK algebra. We have studied some basic results
related to them. We have established a relationship between m-polar
PFI and m-polar PFII of a BCK algebra. We have also investigated
a relationship between m-polar PFI and m-polar PFCI. We have
studied some properties of m-polar PFI under homomorphism of
BCK algebra. It is our hope that our works will help the researchers
to study some other types of algebraic structures in context of
m-polar PFES.
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