
International Journal of Computational Intelligence Systems
Vol. 13(1), 2020, pp. 409–420

DOI: https://doi.org/10.2991/ijcis.d.200330.001; ISSN: 1875-6891; eISSN: 1875-6883
https://www.atlantis-press.com/journals/ijcis/

m-Polar Picture Fuzzy Ideal of a BCK Algebra

Shovan Dogra, Madhumangal Pal*

Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore 721102, India

ART I C L E I N FO
Article History

Received 17 Dec 2019
Accepted 26 Mar 2020

Keywords

m-polar picture fuzzy ideal
Homomorphism ofm-polar picture
fuzzy ideal

m-polar picture fuzzy implicative
ideal

m-polar picture fuzzy commutative
ideal

ABSTRACT
In this paper, the notions of m-polar picture fuzzy subalgebra (PFSA), m-polar picture fuzzy ideal (PFI) and m-polar picture
fuzzy implicative ideal (PFII) of BCK algebra are introduced and some related basic results are presented. A relation betweenm-
polar PFI andm-polar PFII is established. It is shown that anm-polar PFII of a BCK algebra is anm-polar PFI. But the converse
of the proposition is not necessarily true. Converse is true only in implicative BCK algebra. The concept ofm-polar picture fuzzy
commutative ideal (PFCI) is also explored here and some related results are investigated.
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1. INTRODUCTION

After the initiation of fuzzy set (FS) by Zadeh [1] in 1965, the notion
of intuitionistic fuzzy set (IFS) was propounded by Atanassov [2] in
1986. IFS includes both the degree of membership (DMS) and the
degree of non-membership (DNonMS), whereas fuzzy set includes
only the DMS. The concept of BCI/BCK algebra was presented by
Iseki and co-workers [3–5]. Merging the concepts of FS and BCK
algebra, fuzzy BCK algebra was initiated by Xi [6]. In 1993, the idea
of FS was connected with BCI algebra by Ahmad [7]. Later on a
lot of works on BCK/BCI algebra and ideals in fuzzy set environ-
ment were done by several researchers [8–12]. Intuitionistic fuzzy
subalgebra and intuitionistic fuzzy ideal (IFI) in BCK algebra were
presented by Jun and Kim [13] in 2000 as an extension of FS con-
cept in BCK algebra. As the time goes, BCK/BCI algebra and ideals
were studied by Senapati et al. [14,15] in context of intuitionistic in
various directions. Bipolar fuzzy set (BFS) [16] is the generalization
of FS which involves the degree of positive membership (DPMS)
and the degree of negative membership (DNegMS) of an element.
Bipolar fuzzy environment can be realized by an example. The seri-
als broadcasted in Television have both good effect and bad effect
on young generation. Good effect can be treated as positive effect
and bad effect can be treated as negative effect. Extension work on
BFSwas given by Chen [17] in the form of m-polar FS. In 2013,
including the measure of neutral membership and generalizing the
notion of IFS, the concept of picture fuzzy set (PFS) was initiated by
Cuong [18]. After the initiation of PFS, different types of research
works in context of PFS were performed by several researchers
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[19–21]. In this paper, we introduce the concept of m-polar pic-
ture fuzzy subalgebra (PFSA),m-polar picture fuzzy ideal (PFI) and
m-polar picture fuzzy implicative ideal (PFII), m-polar picture
fuzzy commutative ideal (PFII) of BCK algebra and explore some
results related to these. Also, we develop relationships of m-polar
PFI withm-polar PFII and m-polar PFCI of BCK algebra.

2. LIST OF ABBREVIATIONS

FS - Fuzzy set

IFS - Intuitionistic fuzzy set

BFS - Bipolar fuzzy Set

PFS - Picture fuzzy set

DMS - Degree of membership

DNonMS - Degree of non-membership

DPMS - Degree of positive membership

DNegMS - Degree of negative membership

DNeuMS - Degree of neutral membership-

FI - Fuzzy ideal

IFI - Intuitionistic fuzzy ideal

PFSA - Picture fuzzy subalgebra

PFI - Picture fuzzy ideal
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PFII - Picture fuzzy implicative ideal

PFPII - Picture fuzzy positive implicative ideal

PFCI - Picture fuzzy commutative ideal

3. PRELIMINARIES

Here, we recapitulate some basic concepts of FS, IFS, BCK/BCI alge-
bra, FI, IFI, BFS,m-polar FS and PFS.We definem-polar PFS, some
basic operations on m-polar PFSs, (𝜃, 𝜙, 𝜓)-cut of m-polar PFS,
image and inverse ofm-polar PFS.

Definition 1. Let A be the set of universe. Then a FS [1] P over A is
defined as P = {(a, 𝜇P(a)) ∶ a ∈ A}, where 𝜇P ∶ A → [0, 1]. Here,
𝜇P(a) is DMS of a in P.

The DNonMSwasmissing in FS. Including this type of uncertainty,
Atanassov defined IFS in 1986.

Definition 2. Let A be the set of universe. An IFS [2] P over A is
defined as P = {(a, 𝜇P(a), vP(a)) ∶ a ∈ A}, where 𝜇P(a) ∈ [0, 1] is
the DMS of a in P and vP(a) ∈ [0, 1] is the DNonMS of a in P with
the condition 0 ⩽ 𝜇P(a) + vP(a) ⩽ 1 for all a ∈ A.

Here, sP(a)= 1 − (𝜇P(a)+ vP(a)) is the measure of suspicion of a in
P, which excludes the DMS and the DNonMS.

Iseki introduced a special type of algebra namely BCI algebra in
1980.
Definition 3. An algebra (A,♢, 0) is said to be BCI algebra [4] if
for any a, b, c ∈ A, the below stated conditions are meet.

i. [(a♢ b)♢ (a♢ c)]♢ (c♢ b) = 0
ii. [a♢ (a♢ b)]♢ b = 0
iii. a♢ a = 0
iv. a♢ b = 0 and b♢ a = 0 ⇒ a = b

A BCI algebra with the condition 0♢ a = 0 for all a ∈ A is called
BCK algebra.

A relation “⩽” on A is defined as a ⩽ b iff a♢ b = 0.
Proposition 1. In a BCK algebra (A,♢, 0) the followings hold.

i. 0♢ a = 0
ii. a♢ 0 = a

iii. a♢ (a♢ b) ⩽ b

iv. a♢ b ⩽ a

v. (a♢ b)♢ c = (a♢ c)♢ b

vi. (a♢ (a♢ (a♢ b))) = a♢ b for all a, b, c ∈ A

Definition 4. Let (A,♢, 0) be a BCK algebra and P = (𝜇P, 𝜂P, vP)
be a FS in A. Then P is said to be FI [6] of A if

i. 𝜇P(0) ⩾ 𝜇P(a)
ii. 𝜇P(a) ⩾ 𝜇P(a♢ b)∧𝜇P(b) for all a, b ∈ A and for l = 1, 2, … ,m

Definition 5. Let (A,♢, 0) be a BCK algebra and P = (𝜇P, 𝜂P, vP)
be an IFS in A. Then P is said to IFI [13] of A if

i. 𝜇P(0) ⩾ 𝜇P(a) and vP(0) ⩽ vP(a)

ii. 𝜇P(a) ⩾ 𝜇P(a♢ b) ∧ 𝜇P(b) and vP(a) ⩽ vP(a♢ b) ∨ vP(b) for all
a, b ∈ A

Definition 6. ABFS [16] P is defined as P = (a, 𝜇P(a), vP(a)) ∶ a ∈
A, where𝜇P(a) ∈ (0, 1]measures howmuch a particular property is
satisfied by an element and vP(a) ∈ [−1, 0)measures how much its
anti property is satisfied by that element. DMS 0means the element
has no relevancy to the property.

Definition 7. An m-polar FS [17] P over the set of universe A is
an object of the form P = {(a, 𝜇P(a)) ∶ a ∈ A}, where 𝜇P ∶
A → [0, 1]m (m is a natural number). Here, [0, 1]m is the poset with
respect to partial order relation “⩽” which is defined as: a ⩽ b iff
pl(a) ⩽ pl(b) for l = 1, 2, … ,m; where pl ∶ [0, 1]m → [0, 1] is called
l-th projection mapping.

Including more possible types of uncertainity, Cuong defined PFS
in 2013 generalizing the concepts of FS and IFS.

Definition 8. Let A be the set of universe. Then a PFS [18] P over
the universe A is defined as P = {(a, 𝜇P(a), 𝜂P(a), vP(a)) ∶ a ∈ A},
where 𝜇P(a) ∈ [0, 1] is the DPMS of a in P, 𝜂P(a) ∈ [0, 1] is the
degree of neutral membership (DNeuMS) of a in P and vP(a) ∈
[0, 1] is the DNegMS of a in P with the condition 0 ⩽ 𝜇P(a) +
𝜂P(a) + vP(a) ⩽ 1 for all a ∈ A. For all a ∈ A, 1 − (𝜇P(a) +
𝜂P(a) + vP(a)) is the measure of denial membership a in P. Some-
times, (𝜇P(a), 𝜂P(a), vP(a)) is called picture fuzzy value for a ∈ A.

Motivated by this definition, below we definem-polar PFS.

Definition 9. An m-polar PFS P over the set of universe A is an
object of the form P = {(a, 𝜇P(a), 𝜂P(a), vP(a)) ∶ a ∈ A}, where
𝜇P ∶ A → [0, 1]m, 𝜂P ∶ A → [0, 1]m and vP ∶ A → [0, 1]m (m is
a natural number) with the condition 0 ⩽ pl ∘ 𝜇P(a) + pl ∘ 𝜂P(a) +
pl ∘ vP(a) ⩽ 1 for all a ∈ A and for l = 1, 2, … ,m. For a ∈ A, each
of 𝜇P(a), 𝜂P(a) and vP(a) is anm-tuple fuzzy value. Here, pl ∘ 𝜇P(a),
pl ∘ 𝜂P(a) and pl ∘ vP(a) represent l-th components of 𝜇P(a), 𝜂P(a)
and vP(a) respectively for l = 1, 2, … ,m.

The basic operations onm-polar PFSs consisting of equality, union
and intersection are defined below.

Definition 10. Let P = {(a, 𝜇P(a), 𝜂P(a), vP(a)) ∶ a ∈ A} and Q =
{(a, 𝜇Q(a), 𝜂Q(a), vQ(a)) ∶ a ∈ A} be two m-polar PFSs over the
universe A. Then

i. P ⊆ Q iff pl ∘ 𝜇P(a) ⩽ pl ∘ 𝜇Q(a), pl ∘ 𝜂P(a) ⩽ pl ∘ 𝜂Q(a) and
pl ∘ vP(a) ⩾ pl ∘ vQ(a) for all a ∈ A and for l = 1, 2, … ,m.

ii. P = Q iff pl ∘ 𝜇P(a) = pl ∘ 𝜇Q(a), pl ∘ 𝜂P(a) = pl ∘ 𝜂Q(a) and
pl ∘ vP(a) = pl ∘ vQ(a) for all a ∈ A and for l = 1, 2, … ,m.

iii. pl ∘(P∪Q) = {(a,max(pl ∘𝜇P(a), pl ∘𝜇Q(a)),min(pl ∘𝜂P(a), pl ∘
𝜂Q(a)),min(pl ∘ vP(a), pl ∘ vQ(a))) ∶ a ∈ A} for l = 1, 2, … ,m.

iv. pl ∘ (P∩Q) = {(a,min(pl ∘𝜇P(a), pl ∘𝜇Q(a)),min(pl ∘𝜂P(a), pl ∘
𝜂Q(a)),max(pl ∘ vP(a), pl ∘ vQ(a))) ∶ a ∈ A} for l = 1, 2, … ,m.

Definition 11. Let P = {(a, 𝜇P, 𝜂P, vP) ∶ a ∈ A} be an m-polar
PFS over the universe A. Then (𝜃, 𝜙, 𝜓)-cut of P is the crisp set in
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A denoted by C𝜃,𝜙,𝜓(P) and is defined as C𝜃,𝜙,𝜓(P) = {a ∈ A ∶
pl ∘ 𝜇P(a) ⩾ pl ∘ 𝜃, pl ∘ 𝜂P(a) ⩾ pl ∘ 𝜙, pl ∘ vP(a) ⩽ pl ∘ 𝜓 for
l = 1, 2, … ,m}, where pl ∘ 𝜃 ∈ [0, 1], pl ∘ 𝜙 ∈ [0, 1], pl ∘ 𝜓 ∈ [0, 1]
with the condition 0 ⩽ pl ∘ 𝜃 + pl ∘ 𝜙+ pl ∘𝜓 ⩽ 1 for l = 1, 2, … ,m.
The mentionable fact is that each of 𝜃, 𝜙 and 𝜓 is anm-polar fuzzy
value. Here, pl ∘ 𝜃, pl ∘𝜙 and pl ∘𝜓 represent l-th components of the
m-polar fuzzy values 𝜃, 𝜙 and 𝜓 for l = 1, 2, … ,m
Definition 12. Let A1 and A2 be two sets of universe. Let
h ∶ A1 → A2 be a surjective mapping and P =
{(a1, 𝜇P(a1), 𝜂P(a1), vP(a1)) ∶ a1 ∈ A1} be an m-polar PFS in
A1. Then the image of P under the map h is the m-polar PFS
h(P) = {(a2, 𝜇h(P)(a2), 𝜂h(P)(a2), vh(P)(a2)) ∶ a2 ∈ A2}, where pl ∘
𝜇h(P)(a2) = ∨

a1∈h−1(a2)
pl ∘ 𝜇P(a1), pl ∘ 𝜂h(P)(a2) = ∧

a1∈h−1(a2)
pl ∘ 𝜂P(a1)

and pl ∘ vh(P)(a2) = ∧
a1∈h−1(a2)

pl ∘ vP(a1) for all a2 ∈ A2 and for

l = 1, 2, … ,m.

Definition 13. Let A1 and A2 be two sets of universe. Let h ∶
A1 → A2 be a mapping and Q = {(a2, 𝜇Q(a2), 𝜂Q(a2), vQ(a2)) ∶
a2 ∈ A2} be an m-polar PFS in A2. Then the inverse
image of Q under the map h is the m-polar PFS h−1(Q) =
{(a1, 𝜇h−1(Q)(a1), 𝜂h−1(Q)(a1), vh−1(Q)(a1)) ∶ a1 ∈ A1}, where pl ∘
𝜇h−1(Q)(a1) = pl ∘ 𝜇Q(h(a1)), pl ∘ 𝜂h−1(Q)(a1) = pl ∘ 𝜂Q(h(a1)) and
pl ∘vh−1(Q)(a1) = pl ∘vQ(h(a1)) for all a1 ∈ A1 and for l = 1, 2, ..,m.

Definition 14. Let P = {(a1, 𝜇P(a1), 𝜂P(a1), vP(a1)) ∶ a1 ∈ A1}
and Q = {(a2, 𝜇Q(a2), 𝜂Q(a2), vQ(a2)) ∶ a2 ∈ A2} be two m-
polar PFSs over the sets of universe A1 and A2 respectively. Then
the Cartesian product of P and Q is the m-polar PFS P × Q=
{((a, b), 𝜇P×Q((a, b)), 𝜂P×Q((a, b)), vP×Q((a, b))) ∶ (a, b) ∈ A1 × A2},
where pl ∘ 𝜇P×Q((a, b)) = pl ∘ 𝜇P(a) ∧ pl ∘ 𝜇Q(b), pl ∘ 𝜂P×Q((a, b)) =
pl ∘ 𝜂P(a) ∧ pl ∘ 𝜂Q(b) and pl ∘ vP×Q((a, b)) = pl ∘ vP(a) ∨ pl ∘ vQ(b)
for all (a, b) ∈ A1 × A2 and for l = 1, 2, … ,m.

4. m-POLAR PFI

Let us first definem-polar PFSA of a BCK algebra.

Definition 15. Let (A,♢, 0) be a BCK algebra and P = (𝜇P, 𝜂P, vP)
be an m-polar PFS in A. Then P is said to be m-polar PFSA of A if
pl ∘ 𝜇P(a♢ b) ⩾ pl ∘ 𝜇P(a) ∧ pl ∘ 𝜇P(b), pl ∘ 𝜂P(a♢ b) ⩾ pl ∘ 𝜂P(a) ∧
pl ∘ 𝜂P(b) and pl ∘ vP(a♢ b) ⩽ pl ∘ vP(a) ∨ pl ∘ vP(b) for all a, b ∈ A
and for l = 1, 2, … ,m.

Example 1. Consider a BCK algebra (A,♢, 0) defined in the follow-
ing tabular form:

♢ 0 p q r
0 0 0 0 0
p p 0 0 p
q q p 0 q
r r r r 0

Now, let us consider a 3-polar PFS P as follows:

𝜇P(a) =
⎧⎪
⎨⎪
⎩

(0.25, 0.35, 0.4), if a = 0
(0.15, 0.25, 0.35), if a = p
(0.1, 0.15, 0.25), if a = q
(0.15, 0.25, 0.4), if a = r

𝜂P(a) =
⎧⎪
⎨⎪
⎩

(0.2, 0.3, 0.4), if a = 0
(0.1, 0.2, 0.3), if a = p
(0.05, 0.1, 0.2), if a = q
(0.1, 0.2, 0.35), if a = r

and

vP(a) =
⎧⎪
⎨⎪
⎩

(0.1, 0.15, 0.2), if a = 0
(0.15, 0.2, 0.3), if a = p
(0.2, 0.3, 0.4), if a = q
(0.15, 0.2, 0.25), if a = r

It is easy to show that P is a 3-polar PFSA of A.

Proposition 2. Let P = (𝜇P, 𝜂P, vP) be an m-polar PFSA of a BCK
algebra A. Then pl ∘ 𝜇P(0) ⩾ pl ∘ 𝜇P(a), pl ∘ 𝜂P(0) ⩾ pl ∘ 𝜂P(a) and
pl ∘ vP(0) ⩽ pl ∘ vP(a) for all a ∈ A and for l = 1, 2, … ,m.

Proof. It is observed that

pl ∘ 𝜇P(0) = pl ∘ 𝜇P(a♢ a)
⩾ pl ∘ 𝜇P(a) ∧ pl ∘ 𝜇P(a)

[because P is anm-polar PFSA of A]
= pl ∘ 𝜇P(a),

pl ∘ 𝜂P(0) = pl ∘ 𝜂P(a♢ a)
⩾ pl ∘ 𝜂P(a) ∧ pl ∘ 𝜂P(a)

[because P is anm-polar PFSA of A]
= pl ∘ 𝜂P(a)

and pl ∘ vP(0) = pl ∘ vP(a♢ a)
⩽ pl ∘ vP(a) ∨ pl ∘ vP(a)

[because P is anm-polar PFSA of A]
= pl ∘ vP(a) for all a ∈ A

and for l = 1, 2, … ,m.

Thus, pl ∘ 𝜇P(0) ⩾ pl ∘ 𝜇P(a), pl ∘ 𝜂P(0) ⩾ pl ∘ 𝜂P(a) and pl ∘ vP(0) ⩽
pl ∘ vP(a) for all a ∈ A and for l = 1, 2, … ,m.

Now, let us definem-polar PFI of a BCK algebra.

Definition 16. Let (A,♢, 0) be a BCK algebra and P = (𝜇P, 𝜂P, vP)
be anm-polar PFS in A. Then P is said tom-polar PFI of A if

i. pl ∘ 𝜇P(0) ⩾ pl ∘ 𝜇P(a), pl ∘ 𝜂P(0) ⩾ pl ∘ 𝜂P(a) and pl ∘ vP(0) ⩽
pl ∘ vP(a)

ii. pl∘𝜇P(a) ⩾ pl∘𝜇P(a♢ b)∧pl∘𝜇P(b), pl∘𝜂P(a) ⩾ pl∘𝜂P(a♢ b)∧
pl∘𝜂P(b) and pl∘vP(a) ⩽ pl∘vP(a♢ b)∨pl∘vP(b) for all a, b ∈ A
and for l = 1, 2, … ,m

Now, we are going to investigate some important results onm-polar
PFI of a BCK algebra.

Proposition 3. Let P = (𝜇P, 𝜂P, vP) be an m-polar PFI of a BCK
algebra (A,♢, 0). Then pl ∘ 𝜇P(a) ⩾ pl ∘ 𝜇P(b), pl ∘ 𝜂P(a) ⩾ pl ∘ 𝜂P(b)
and pl ∘ vP(a) ⩽ pl ∘ vP(b) for a, b ∈ A with a ⩽ b and for l =
1, 2, … ,m.
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Proof. Let a, b ∈ A such that a ⩽ b. Then a♢ b = 0.

Now, pl ∘ 𝜇P(a)
⩾ pl ∘ 𝜇P(a♢ b) ∧ pl ∘ 𝜇P(b) [as P is anm-polar PFI of A]
= pl ∘ 𝜇P(0) ∧ pl ∘ 𝜇P(b)
= pl ∘ 𝜇P(b) [as P is anm-polar PFI of A],
pl ∘ 𝜂P(a)
⩾ pl ∘ 𝜂P(a♢ b) ∧ pl ∘ 𝜂P(b) [as P is anm-polar PFI of A]
= pl ∘ 𝜂P(0) ∧ pl ∘ 𝜂P(b)
= pl ∘ 𝜂P(b) [as P is anm-polar PFI of A]
and pl ∘ vP(a)
⩽ pl ∘ vP(a♢ b) ∨ pl ∘ vP(b) [as P is anm-polar PFI of A]
= pl ∘ vP(0) ∨ pl ∘ vP(b)
= pl ∘ vP(b) [as P is anm-polar PFI of A]
for l = 1, 2, … ,m.

Thus, pl ∘ 𝜇P(a) ⩾ pl ∘ 𝜇P(b), pl ∘ 𝜂P(a) ⩾ pl ∘ 𝜂P(b) and pl ∘ vP(a) ⩽
pl ∘ vP(b) for a, b ∈ A with a ⩽ b and for l = 1, 2, … ,m.

Proposition 4. Let (A,♢, 0) be a BCK algebra and P = (𝜇P, 𝜂P, vP)
be an m-polar PFI of A. Then pl ∘ 𝜇P(a) ⩾ pl ∘ 𝜇P(b) ∧ pl ∘ 𝜇P(c),
pl ∘𝜂P(a) ⩾ pl ∘𝜂P(b)∧pl ∘𝜂P(c) and pl ∘vP(a) ⩽ pl ∘vP(b)∨pl ∘vP(c)
for a, b, c ∈ A with a♢ b ⩽ c.

Proof. Let a, b, c ∈ A with a♢ b ⩽ c. Then (a♢ b)♢ c = 0.

Now, pl ∘ 𝜇P(a)
⩾ pl ∘ 𝜇P(a♢ b) ∧ pl ∘ 𝜇P(b)
[because P is anm-polar PFI of A]
⩾ pl ∘ 𝜇P((a♢ b)♢ c) ∧ pl ∘ 𝜇P(c) ∧ pl ∘ 𝜇P(b)
[because P is anm-polar PFI of A]
= pl ∘ 𝜇P(0) ∧ pl ∘ 𝜇P(c) ∧ pl ∘ 𝜇P(b)
= pl ∘ 𝜇P(b) ∧ pl ∘ 𝜇P(c)
[because P is anm-polar PFI of A],
pl ∘ 𝜂P(a)

⩾ pl ∘ 𝜂P(a♢ b) ∧ pl ∘ 𝜂P(b)
[because P is anm-polar PFI of A]
⩾ pl ∘ 𝜂P((a♢ b)♢ c) ∧ pl ∘ 𝜂P(c) ∧ pl ∘ 𝜂P(b)
[because P is anm-polar PFI of A]
= pl ∘ 𝜂P(0) ∧ pl ∘ 𝜂P(c) ∧ pl ∘ 𝜂P(b)
= pl ∘ 𝜂P(b) ∧ pl ∘ 𝜂P(c)
[because P is anm-polar PFI of A]

and pl ∘ vP(a)
⩽ pl ∘ vP(a♢ b) ∨ pl ∘ vP(b)
[because P is anm-polar PFI of A]
⩽ pl ∘ vP((a♢ b)♢ c) ∨ pl ∘ vP(c) ∨ pl ∘ vP(b)
[because P is anm-polar PFI of A]
= pl ∘ vP(0) ∨ pl ∘ vP(c) ∨ pl ∘ vP(b)
= pl ∘ vP(b) ∨ pl ∘ vP(c)
[because P is anm-polar PFI of A]
for l = 1, 2, … ,m.

Thus, it is obtained that pl∘𝜇P(a) ⩾ pl∘𝜇P(b)∧pl∘𝜇P(c), pl∘𝜂P(a) ⩾
pl ∘ 𝜂P(b) ∧ pl ∘ 𝜂P(c) and pl ∘ vP(a) ⩽ pl ∘ vP(b) ∨ pl ∘ vP(c) for
a, b, c ∈ A with a♢ b ⩽ c.

Proposition 5. Every m-polar PFI of a BCK algebra is an m-polar
PFSA.
Proof. Let (A,♢, 0) be a BCK algebra and A is anm-PFI of A. Since
P is anm-polar PFI, therefore,

pl ∘ 𝜇P(a♢ b)
⩾ pl ∘ 𝜇P((a♢ b)♢ a) ∧ pl ∘ 𝜇P(a)
= pl ∘ 𝜇P((a♢ a)♢ b) ∧ pl ∘ 𝜇P(a) [by Proposition 1 ]
= pl ∘ 𝜇P(0♢ b) ∧ pl ∘ 𝜇P(a)
= pl ∘ 𝜇P(0)♢ pl ∘ 𝜇P(a) [by Proposition 1 ]
⩾ pl ∘ 𝜇P(a)♢ pl ∘ 𝜇P(b),

pl ∘ 𝜂P(a♢ b)
⩾ pl ∘ 𝜂P((a♢ b)♢ a) ∧ pl ∘ 𝜂P(a)
= pl ∘ 𝜂P((a♢ a)♢ b) ∧ pl ∘ 𝜂P(a) [by Proposition 1 ]
= pl ∘ 𝜂P(0♢ b) ∧ pl ∘ 𝜂P(a)
= pl ∘ 𝜂P(0) ∧ pl ∘ 𝜂P(a) [by Proposition 1 ]
⩾ pl ∘ 𝜂P(a) ∧ pl ∘ 𝜂P(b)

and pl ∘ vP(a♢ b)
⩽ pl ∘ vP((a♢ b)♢ a) ∨ pl ∘ vP(a)
= pl ∘ vP((a♢ a)♢ b) ∨ pl ∘ vP(a) [by Proposition 1 ]
= pl ∘ vP(0♢ b) ∨ pl ∘ vP(a)
= pl ∘ vP(0) ∨ pl ∘ vP(a) [by Proposition 1 ]
⩽ pl ∘ vP(a) ∨ pl ∘ vP(b),
for all a, b ∈ A and for l = 1, 2, … ,m.

Hence, P is anm-polar PFSA of A.

But, the converse of the above proposition is not true in general
which is shown in following example. Proposition 6 states under
which condition anm-polar PFSA is anm-polar PFI.

Example 2. Let us suppose the BCK algebra given in Example 1 and
a 3-polar PFS P as follows:

𝜇P(a) = {(0.2, 0.3, 0.4), if a = 0, q
(0.1, 0.2, 0.3), if a = p, r

𝜂P(a) = {(0.25, 0.35, 0.45), if a = 0, q
(0.15, 0.25, 0.3), if a = p, r

and

vP(a) = {(0.3, 0.2, 0.1), if a = 0, q
(0.4, 0.3, 0.2), if a = p, r

Here, (0.1, 0.2, 0.3) = 𝜇P(p) ≱ 𝜇P(p♢ q) ∧ 𝜇P(q) = (0.2, 0.3, 0.4),
(0.15, 0.25, 0.3) = 𝜂P(p) ≱ 𝜂P(p♢ q) ∧ 𝜂P(q) = (0.25, 0.35, 0.45)
and (0.4, 0.3, 0.2) = vP(p) ≰ vP(p♢ q) ∨ vP(q) = (0.3, 0.2, 0.1). So,
P is not a 3-polar PFI of A although it is a 3-polar PFSA.
Proposition 6. Let P = (𝜇P, 𝜂P, vP) be an m-polar PFSA of a BCK
algebra (A,♢, 0). Then P is an m-polar PFI of A if for all a, b, c ∈ A,
a♢ b ⩽ c ⇒ pl ∘ 𝜇P(a) ⩾ pl ∘ 𝜇P(b) ∧ pl ∘ 𝜇P(c), pl ∘ 𝜂P(a) ⩾
pl ∘ 𝜂P(b) ∧ pl ∘ 𝜂P(c) and pl ∘ vP(a) ⩽ pl ∘ vP(b) ∨ pl ∘ vP(c) for
l = 1, 2, … ,m.

Proof. By given conditions, for all a, b, c ∈ A, a♢ b ⩽ c ⇒ pl ∘
𝜇P(a) ⩾ pl ∘ 𝜇P(b)∧ pl ∘ 𝜇P(c), pl ∘ 𝜂P(a) ⩾ pl ∘ 𝜂P(b)∧ pl ∘ 𝜂P(c) and
pl ∘ vP(a) ⩽ pl ∘ vP(b)∨ pl ∘ vP(c). Since A is a BCK algebra therefore
by Proposition 1, a♢ (a♢ b) ⩽ b. So, it is obtained that

pl ∘ 𝜇P(a) ⩾ pl ∘ 𝜇P(a♢ b) ∧ pl ∘ 𝜇P(b)
pl ∘ 𝜂P(a) ⩾ pl ∘ 𝜇P(a♢ b) ∧ pl ∘ 𝜇P(b)

and pl ∘ vP(a) ⩽ pl ∘ vP(a♢ b) ∨ pl ∘ vP(b)
for l = 1, 2, … ,m

Thus, P is anm-polar PFI of A.
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Proposition 7. Let (A,♢, 0) a BCK algebra and P = (𝜇p, 𝜂P, vP),
Q = (𝜇Q, 𝜂Q, vQ) be twom-polar PFIs of A. Then P∩Q is anm-polar
PFI of A.

Proof. Let P∩Q = R = (𝜇R, 𝜂R, vR). Then pl ∘𝜇R(a) = pl ∘𝜇P(a)∧
pl ∘ 𝜇Q(a), pl ∘ 𝜂R(a) = pl ∘ 𝜂P(a) ∧ pl ∘ 𝜂Q(a) and pl ∘ vR(a) =
pl ∘ vP(a) ∨ pl ∘ vQ(a), ∀a ∈ A and for l = 1, 2, … ,m.

Now, pl ∘ 𝜇R(0)
= pl ∘ 𝜇P(0) ∧ pl ∘ 𝜇Q(0)
⩾ pl ∘ 𝜇P(a) ∧ pl ∘ 𝜇Q(a)
[as P,Q arem-polar PFIs of A]
= pl ∘ 𝜇R(a)

pl ∘ 𝜂R(0)
= pl ∘ 𝜂P(0) ∧ pl ∘ 𝜂Q(0)
⩾ pl ∘ 𝜂P(a) ∧ pl ∘ 𝜂Q(a)
[as P,Q arem-polar PFIs of A]
= pl ∘ 𝜂R(a)

and pl ∘ vR(0)
= pl ∘ vP(0) ∨ pl ∘ vQ(0)
⩽ pl ∘ vP(a) ∨ pl ∘ vQ(a)
[as P,Q arem-polar PFIs of A]
= pl ∘ vR(a), ∀a ∈ A and l = 1, 2, … ,m.

Also, pl ∘ 𝜇R(a)
= pl ∘ 𝜇P(a) ∧ pl ∘ 𝜇Q(a)
⩾ (pl ∘ 𝜇P(a♢ b) ∧ pl ∘ 𝜇P(b)) ∧ (pl ∘ 𝜇Q(a♢ b) ∧ pl ∘ 𝜇Q(b))
[as P,Q arem-polar PFIs of A]
= (pl ∘ 𝜇P(a♢ b) ∧ pl ∘ 𝜇Q(a♢ b)) ∧ (pl ∘ 𝜇P(b) ∧ pl ∘ 𝜇Q(b))
= pl ∘ 𝜇R(a♢ b) ∧ pl ∘ 𝜇R(b),

pl ∘ 𝜂R(a)
= pl ∘ 𝜂P(a) ∧ pl ∘ 𝜂Q(a)
⩾ (pl ∘ 𝜂P(a♢ b) ∧ pl ∘ 𝜂P(b)) ∧ (pl ∘ 𝜂Q(a♢ b) ∧ pl ∘ 𝜂Q(b))
[as P,Q arem-polar PFIs of A]
= (pl ∘ 𝜂P(a♢ b) ∧ pl ∘ 𝜂Q(a♢ b)) ∧ (pl ∘ 𝜂P(b) ∧ pl ∘ 𝜂Q(b))
= pl ∘ 𝜂R(a♢ b) ∧ pl ∘ 𝜂R(b)

and pl ∘ vR(a)
= pl ∘ vP(a) ∨ pl ∘ vQ(a)
⩽ (pl ∘ vP(a♢ b) ∨ pl ∘ vP(b)) ∨ (pl ∘ vQ(a♢ b) ∨ pl ∘ vQ(b))
[as P,Q arem-polar PFIs of A]
= (pl ∘ vP(a♢ b) ∨ pl ∘ vQ(a♢ b)) ∨ (pl ∘ vP(b) ∨ pl ∘ vQ(b))
= pl ∘ vR(a♢ b) ∨ pl ∘ vR(b), ∀a, b ∈ A and l = 1, 2, … ,m.

Thus, pl ∘ 𝜇R(a) ⩾ pl ∘ 𝜇R(a♢ b) ∧ pl ∘ 𝜇R(b), pl ∘ 𝜂R(a) ⩾ pl ∘
𝜂R(a♢ b) ∧ pl ∘ 𝜂R(b) and pl ∘ vR(a♢ b) ∨ pl ∘ vR(b), ∀a, b ∈ A and
for l = 1, 2, … ,m. Consequently, R = P∩Q is anm-polar PFI of A.

Proposition 8. Let P = (𝜇P, 𝜂P, vP) and Q = (𝜇Q, 𝜂Q, vQ) be two
m-polar PFIs of a BCK algebra (A,♢, 0). Then P × Q is an m-polar
PFI of A × A.

Proof. Proof is same as Proposition 7. So, it is omitted.

Proposition 9. Let (A,♢, 0) be a BCK algebra and P = (𝜇P, 𝜂P, vP)
be anm-polar PFI of A. Then C𝜃,𝜙,𝜓(P) is a crisp ideal of A, provided
that Pl ∘ 𝜇P(0) ⩾ pl ∘ 𝜃, pl ∘ 𝜂P(0) ⩾ pl ∘ 𝜙 and pl ∘ vP(0) ⩽ pl ∘ 𝜓 for
l = 1, 2, … ,m.

Proof. Clearly, C𝜃,𝜙,𝜓(P) contains at least one element. Let a♢ b,
b ∈ C𝜃,𝜙,𝜓(P). Then pl ∘ 𝜇P(a♢ b) ⩾ pl ∘ 𝜃, pl ∘ 𝜂P(a♢ b) ⩾ pl ∘ 𝜙,
pl ∘ vP(a♢ b) ⩽ 𝜓 and pl ∘ 𝜇P(b) ⩾ pl ∘ 𝜃, pl ∘ 𝜂P(b) ⩾ pl ∘ 𝜙,
pl ∘ vP(b) ⩽ pl ∘ 𝜓 for l = 1, 2, … ,m.

Now, pl ∘ 𝜇P(a)
⩾ pl ∘ 𝜇P(a♢ b) ∧ pl ∘ 𝜇P(b)
[because P is anm-polar PFI of A]
⩾ pl ∘ 𝜃 ∧ pl ∘ 𝜃 = pl ∘ 𝜃,

pl ∘ 𝜂P(a)
⩾ pl ∘ 𝜂P(a♢ b) ∧ pl ∘ 𝜂P(b)
[because P is anm-polar PFI of A]
⩾ pl ∘ 𝜙 ∧ pl ∘ 𝜙 = pl ∘ 𝜙

and pl ∘ vP(a)
⩽ pl ∘ vP(a♢ b) ∨ pl ∘ vP(b)
[because P is anm-polar PFI of A]
⩽ pl ∘ 𝜓 ∨ pl ∘ 𝜓 = pl ∘ 𝜓 for l = 1, 2, ....m

Thus, a♢ b, b ∈ C𝜃,𝜙,𝜓(P) ⇒ a ∈ C𝜃,𝜙,𝜓(P). So, C𝜃,𝜙,𝜓(P) is a
crisp ideal of A.

Proposition 10. Let (A,♢, 0) be a BCK algebra and P = (𝜇P, 𝜂P, vP)
be anm-polar PFS in A. Then P is anm-polar PFI of A if all (𝜃, 𝜙, 𝜓)-
cuts of P are crisp ideals of A.

Proof. Let a, b ∈ A. Let pl ∘ 𝜇P(a♢ b) ∧ pl ∘ 𝜇P(b) = pl ∘ 𝜃, pl ∘
𝜂P(a♢ b)∧pl ∘𝜂P(b) = pl ∘𝜙 and pl ∘vP(a♢ b)∨pl ∘vP(b) = pl ∘𝜓 for
l = 1, 2, … ,m. Clearly, pl∘𝜃 ∈ [0, 1], pl∘𝜙 ∈ [0, 1] and pl∘𝜓 ∈ [0, 1]
with 0 ⩽ pl ∘ 𝜃 + pl ∘ 𝜙 + pl ∘ 𝜓 ⩽ 1 for l = 1, 2, … ,m.

Now, pl ∘ 𝜇P(a♢ b) ⩾ pl ∘ 𝜇P(a♢ b) ∧ pl ∘ 𝜇P(b) = pl ∘ 𝜃,
pl ∘ 𝜂P(a♢ b) ⩾ pl ∘ 𝜇P(a♢ b) ∧ pl ∘ 𝜇P(b) = pl ∘ 𝜙

and pl ∘ vP(a♢ b) ⩽ pl ∘ vP(a♢ b) ∨ pl ∘ vP(b) = pl ∘ 𝜓
for l = 1, 2, … ,m.

Also, pl ∘ 𝜇P(b) ⩾ pl ∘ 𝜇P(a♢ b) ∧ pl ∘ 𝜇P(b) = pl ∘ 𝜃,
pl ∘ 𝜂P(b) ⩾ pl ∘ 𝜇P(a♢ b) ∧ pl ∘ 𝜇P(b) = pl ∘ 𝜙

and pl ∘ vP(b) ⩽ pl ∘ vP(a♢ b) ∨ pl ∘ vP(b) = pl ∘ 𝜓
for l = 1, 2, … ,m.

Thus, a♢ b and b ∈ C𝜃,𝜙,𝜓(P). Since C𝜃,𝜙,𝜓(P) is a crisp ideal of A
therefore a♢ b ∈ C𝜃,𝜙,𝜓(P) and b ∈ C𝜃,𝜙,𝜓(P) ⇒ a ∈ C𝜃,𝜙,𝜓(P).

Therefore, pl ∘𝜇P(a) ⩾ pl ∘𝜃 = pl ∘𝜇P(a♢ b)∧pl ∘𝜇P(b), pl ∘𝜂P(a) ⩾
pl ∘ 𝜙 = pl ∘ 𝜂P(a♢ b) ∧ pl ∘ 𝜂P(b) and pl ∘ vP(a) ⩽ pl ∘ 𝜓 = pl ∘
vP(a♢ b) ∨ pl ∘ vP(b) for l = 1, 2, ..,m.

Since a, b are arbitrary elements of A therefore pl ∘ 𝜇P(a) ⩾ pl ∘
𝜇P(a♢ b) ∧ pl ∘ 𝜇P(b), pl ∘ 𝜂P(a) ⩾ pl ∘ 𝜂P(a♢ b) ∧ pl ∘ 𝜂P(b) and
pl ∘ vP(a) ⩽ pl ∘ vP(a♢ b) ∨ pl ∘ vP(b) for all a, b ∈ A and for l =
1, 2, … ,m. Hence, P is anm-polar PFI of A.

5. PRE-IMAGE AND IMAGE PFI UNDER
HOMOMORPHISM OF BCK ALGEBRA

In the current section, we explore some properties of m-polar PFI
of BCK algebra under homomorphism of BCK algebra.

Definition 17. Let (A1,♢, 0) and (A2, ∗, 0) be two BCK algebras.
Then a mapping h ∶ A1 → A2 is said to be homomorphism if
h(a♢ b) = h(a) ∗ h(b) for all a, b ∈ A1.
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It is observed that h(a) ∗ h(a) = 0 i.e. h(a♢ a) = 0 i.e. h(0) = 0.
Proposition 11. Let (A1,♢, 0) and (A2, ∗, 0) be two BCK algebras
and Q = (𝜇Q, 𝜂Q, vQ) be an m-polar PFI of A2. Then for a BCK alge-
bra homomorphism h ∶ A1 → A2, h−1(Q) is an m-polar PFI of A1.

Proof. Let h−1(Q) = (𝜇h−1(Q), 𝜂h−1(Q), vh−1(Q)), where 𝜇h−1(Q) =
𝜇Q(h(a)), 𝜂h−1(Q)(a) = 𝜂Q(h(a)) and vh−1(Q)(a) = vQ(h(a)) for all
a ∈ A1.

Now, pl ∘ 𝜇h−1(Q)(0)
= pl ∘ 𝜇Q(h(0))
= pl ∘ 𝜇Q(0) [as h(0) = 0]
⩾ pl ∘ 𝜇Q(h(a)) [because Q is anm-polar PFI of A2]
= pl ∘ 𝜇h−1(Q)(a),

pl ∘ 𝜂h−1(Q)(0)
= pl ∘ 𝜂Q(h(0))
= pl ∘ 𝜂Q(0) [as h(0) = 0]
⩾ pl ∘ 𝜂Q(h(a)) [because Q is anm-polar PFI of A2]
= pl ∘ 𝜂h−1(Q)(a)

and pl ∘ vh−1(Q)(0)
= pl ∘ vQ(h(0))
= pl ∘ vQ(0) [as h(0) = 0]
⩽ pl ∘ vQ(h(a)) [because Q is anm-polar PFI of A2]
= pl ∘ vh−1(Q)(a) for all a ∈ A1 and for l = 1, 2, … ,m.

Thus, pl ∘𝜇h−1(Q)(0) ⩾ pl ∘𝜇h−1(Q)(a), pl ∘𝜂h−1(Q)(0) ⩾ pl ∘𝜂h−1(Q)(a)
and pl ∘ vh−1(Q)(0) ⩽ pl ∘ vh−1(Q)(a) for all a ∈ A1 and for l =
1, 2, … ,m.

Also, pl ∘ 𝜇h−1(Q)(a)
= pl ∘ 𝜇Q(h(a))
⩾ pl ∘ 𝜇Q(h(a) ∗ h(b)) ∧ pl ∘ 𝜇Q(h(b))
[because Q is anm-polar PFI of A2]
= pl ∘ 𝜇Q(h(a♢ b)) ∧ pl ∘ 𝜇Q(h(b))
[because h is a homomorphism]
= pl ∘ 𝜇h−1(Q)(a♢ b) ∧ pl ∘ 𝜇h−1(Q)(b),

pl ∘ 𝜂h−1(Q)(a)
= pl ∘ 𝜂Q(h(a))
⩾ pl ∘ 𝜂Q(h(a) ∗ h(b)) ∧ pl ∘ 𝜂Q(h(b))
[because Q is anm-polar PFI of A2]
= pl ∘ 𝜂Q(h(a♢ b)) ∧ pl ∘ 𝜂Q(h(b))
[because h is a homomorphism]
= pl ∘ 𝜂h−1(Q)(a♢ b) ∧ pl ∘ 𝜂h−1(Q)(b)

and pl ∘ vh−1(Q)(a)
= pl ∘ vQ(h(a))
⩽ pl ∘ vQ(h(a) ∗ h(b)) ∨ pl ∘ vQ(h(b))
[because Q is anm-polar PFI of A2]
= pl ∘ vQ(h(a♢ b)) ∨ pl ∘ vQ(h(b))
[because h is a homomorphism]
= pl ∘ vh−1(Q)(a♢ b) ∨ pl ∘ vh−1(Q)(b) for all a, b ∈ A1
and for l = 1, 2, … ,m.

Thus, pl ∘ 𝜇h−1(Q)(a) ⩾ pl ∘ 𝜇h−1(Q)(a♢ b) ∧ pl ∘ 𝜇h−1(Q)(b), pl ∘
𝜂h−1(Q)(a) ⩾ pl ∘𝜂h−1 (a♢ b)∧pl ∘𝜂h−1(Q)(b) and pl ∘vh−1(Q)(a) ⩽ pl ∘
vh−1(Q)(a♢ b)∨pl ∘vh−1(Q)(b) for all a, b ∈ A1 and for l = 1, 2, … ,m.
Hence, h−1(Q) is anm-polar PFI of A1.

Proposition 12. Let (A1, ♢ ) and (A2, ∗) be two BCK algebras and
P = (𝜇P, 𝜂P, vP) be an m-polar PFI of A1. Then for a bijective homo-
morphism h ∶ A1 → A2, h(P) is an m-polar PFI of A2.

Proof. Let h(P) = (𝜇h(P), 𝜂h(P), vh(P)). Now, let b ∈ A2.

Then pl ∘ 𝜇h(P)(b) = ∨
a∈h−1(b)

pl ∘ 𝜇P(a),

pl ∘ 𝜂h(P)(b) = ∧
a∈h−1(b)

pl ∘ 𝜂P(a)

and pl ∘ vh(P)(b) = ∧
a∈h−1(b)

pl ∘ vP(a) for l = 1, 2, ..,m.

Since h is bijective therefore h−1(b)must be a singleton set. So, for
b ∈ A2, there exists an unique a ∈ A1 such that a = h−1(b) i.e.
h(a) = b. Thus, in this case, pl∘𝜇h(P)(b) = pl∘𝜇h(P)(h(a)) = pl∘𝜇P(a),
pl ∘ 𝜂h(P)(b) = pl ∘ 𝜂h(P)(h(a)) = pl ∘ 𝜂P(a) and pl ∘ vh(P)(b) = pl ∘
vh(P)(h(a)) = pl ∘ vP(a) for l = 1, 2, … ,m.

Now, pl ∘ 𝜇h(P)(0)
= pl ∘ 𝜇h(P)(h(0)) [as h(0) = 0]
= pl ∘ 𝜇P(0)
⩾ pl ∘ 𝜇P(a)
= pl ∘ 𝜇h(P)(h(a))
= pl ∘ 𝜇h(P)(b),

pl ∘ 𝜂h(P)(0)
= pl ∘ 𝜂h(P)(h(0)) [as h(0) = 0]
= pl ∘ 𝜂P(0)
⩾ pl ∘ 𝜂P(a)
= pl ∘ 𝜂h(P)(h(a))
= pl ∘ 𝜂h(P)(b)

and pl ∘ vh(P)(0)
= pl ∘ vh(P)(h(0)) [as h(0) = 0]
= pl ∘ vP(0)
⩽ pl ∘ vP(a)
= pl ∘ vh(P)(h(a))
= pl ∘ vh(P)(b) for l = 1, 2, … ,m.

Since b is an arbitrary element of A2 therefore pl ∘ 𝜇h(P)(0) ⩾ pl ∘
𝜇h(P)(b), pl ∘ 𝜂h(P)(0) ⩾ pl ∘ 𝜂h(P)(b) and pl ∘ vh(P)(0) ⩽ pl ∘ vh(P)(b)
for all b ∈ A2 and for l = 1, 2, … ,m.

Also, pl ∘ 𝜇h(P)(b)
= pl ∘ 𝜇h(P)(h(a)) [where b = h(a) for unique a ∈ A1]
= pl ∘ 𝜇P(a)
⩾ pl ∘ 𝜇P(a♢ c) ∧ pl ∘ 𝜇P(c)
[as P is anm-polar PFI of A1]
= pl ∘ 𝜇h(P)(h(a♢ c)) ∧ pl ∘ 𝜇h(P)(h(c))
= pl ∘ 𝜇h(P)(h(a) ∗ h(c)) ∧ pl ∘ 𝜇h(P)(h(c))
[as h is a homomorphism]
= pl ∘ 𝜇h(P)(b ∗ h(c)) ∧ pl ∘ 𝜇h(P)(h(c)),

pl ∘ 𝜂h(P)(b)
= pl ∘ 𝜂h(P)(h(a)) [where b = h(a) for unique a ∈ A1]
= pl ∘ 𝜂P(a)
⩾ pl ∘ 𝜂P(a♢ c) ∧ pl ∘ 𝜂P(c)
[as P is anm-polar PFI of A1]
= pl ∘ 𝜂h(P)(h(a♢ c)) ∧ pl ∘ 𝜂h(P)(h(c))
= pl ∘ 𝜂h(P)(h(a) ∗ h(c)) ∧ pl ∘ 𝜂h(P)(h(c))
[as h is a homomorphism]
= pl ∘ 𝜂h(P)(b ∗ h(c)) ∧ pl ∘ 𝜂h(P)(h(c))
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and pl ∘ vh(P)(b)
= pl ∘ vh(P)(h(a)) [where b = h(a) for unique a ∈ A1]
= pl ∘ vP(a)
⩽ pl ∘ vP(a♢ c) ∨ pl ∘ vP(c)
[as P is anm-polar PFI of A1]
= pl ∘ vh(P)(h(a♢ c)) ∨ pl ∘ vh(P)(h(c))
= pl ∘ vh(P)(h(a) ∗ h(c)) ∨ pl ∘ vh(P)(h(c))
[as h is a homomorphism]
= pl ∘ vh(P)(b ∗ h(c)) ∨ pl ∘ vh(P)(h(c)) for all c ∈ A1
and for l = 1, 2, … ,m.

Thus, pl ∘𝜇h(P)(b) ⩾ pl ∘𝜇h(P)(b∗h(c))∧pl ∘𝜇h(P)(h(c)), pl ∘𝜂h(P)(b) ⩾
pl∘𝜂h(P)(b∗h(c))∧pl∘𝜂h(P)(h(c)) and pl∘vh(P)(b) ⩽ pl∘vh(P)(b∗h(c))∨
pl∘vh(P)(h(c)) for all c ∈ A1 and for l = 1, 2, … ,m. Since h is bijective
therefore h(A1) = A2. So, for all c ∈ A1, h(c) can capture all the
elements of A2. Letting d = h(c), it is observed that the inequalities
hold for all d ∈ A2. Since b is arbitrary therefore we obtain that
pl ∘ 𝜇h(P)(b) ⩾ pl ∘ 𝜇h(P)(b♢ d) ∧ pl ∘ 𝜇h(P)(d), pl ∘ 𝜂h(P)(b) ⩾ pl ∘
𝜂h(P)(b♢ d)∧pl∘𝜂h(P)(d) and pl∘vh(P)(b) ⩽ pl∘vh(P)(b♢ d)∨pl∘vh(P)(d)
for all b, d ∈ A2 and for l = 1, 2, … ,m. Hence, h(P) is an m-polar
PFI of A2.

6. m-POLAR PFII

The current section introduces the concept of implicative BCKalge-
bra, m-polar PFII of a BCK algebra and studies some properties
related to these. We also investigate a relationship betweenm-polar
PFI andm-polar PFII of a BCK algebra.

Definition 18. A BCK algebra (A,♢, 0) is said to be implicative if
a = (a♢ b)♢ a for all a, b ∈ A.

Proposition 13. An m-polar PFS P = (𝜇P, 𝜂P, vP) in a BCK algebra
(A,♢, 0) is said to be m-polar PFII of A if the below stated conditions
are meet.

i. pl ∘ 𝜇P(0) ⩾ pl ∘ 𝜇P(a), pl ∘ 𝜂P(0) ⩾ pl ∘ 𝜂P(a) and pl ∘ vP(0) ⩽
pl ∘ vP(a)

ii. pl ∘ 𝜇P(a) ⩾ pl ∘ 𝜇P{(a♢ (b♢ a))♢ c} ∧ pl ∘ 𝜇P(c), pl ∘ 𝜂P(a) ⩾
pl ∘ 𝜂P{(a♢ (b♢ a))♢ c} ∧ pl ∘ 𝜂P(c) and pl ∘ vP(a) ⩽ pl ∘
vP{(a♢ (b♢ a))♢ c} ∨ pl ∘ vP(c) for all a, b, c ∈ A and for
l = 1, 2, … ,m

Example 3. Let us consider the BCK algebra (A, ♢ ) as follows:

♢ 0 p q r s
0 0 0 0 0 0
p p 0 p 0 0
q q q 0 0 0
r r r r 0 0
s s r s p 0

Let us consider a 3-polar PFS P = (𝜇P, 𝜂P, vP) as follows:

𝜇P(a) = {(0.39, 0.41, 0.42), if a = 0, p, q
(0.25, 0.27, 0.3), if a = r, s

𝜂P(a) = {(0.37, 0.39, 0.4), if a = 0, p, q
(0.29, 0.33, 0.35), if a = r, s

and

vP(a) = {(0.14, 0.17, 0.18), if a = 0, p, q
(0.3, 0.32, 0.35), if a = r, s

It can be easily shown that P is a 3-polar PFII of A.
Proposition 14. Every m-polar PFII of a BCK algebra (A,♢, 0) is an
m-polar PFI of A.

Proof. Let P = (𝜇P, 𝜂P, vP) be anm-polar PFII of A.

Then pl ∘ 𝜇P(a) ⩾ pl ∘ 𝜇P{(a♢ (b♢ a))♢ c} ∧ pl ∘ 𝜇P(c),
pl ∘ 𝜂P(a) ⩾ pl ∘ 𝜂P{(a♢ (b♢ a))♢ c} ∧ pl ∘ 𝜂P(c)

and pl ∘ vP(a) ⩽ pl ∘ vP{(a♢ (b♢ a))♢ c} ∨ pl ∘ vP(c)
for all a, b, c ∈ A and for l = 1, 2, … ,m.

Setting b = a, it is obtained that

pl ∘ 𝜇P(a) ⩾ pl ∘ 𝜇P{(a♢ (a♢ a))♢ c} ∧ pl ∘ 𝜇P(c)
= pl ∘ 𝜇P{(a♢ 0)♢ c} ∧ pl ∘ 𝜇P(c)
= pl ∘ 𝜇P(a♢ c) ∧ pl ∘ 𝜇P(c)

[by Proposition 1 ]

pl ∘ 𝜂P(a) ⩾ pl ∘ 𝜂P{(a♢ (a♢ a))♢ c} ∧ pl ∘ 𝜂P(c)
= pl ∘ 𝜂P{(a♢ 0)♢ c} ∧ pl ∘ 𝜂P(c)
= pl ∘ 𝜂P(a♢ c) ∧ pl ∘ 𝜂P(c)

[by Proposition 1 ]

and pl ∘ vP(a) ⩽ pl ∘ vP{(a♢ (a♢ a))♢ c} ∨ pl ∘ vP(c)
= pl ∘ vP{(a♢ 0)♢ c} ∨ pl ∘ vP(c)
= pl ∘ vP(a♢ c) ∨ pl ∘ vP(c)

[by Proposition 1 ]
for all a, c ∈ A and for l = 1, 2, … ,m.

Therefore, P is anm-polar PFI of A.

The above proposition does not hold in reverse direction i.e. an
m-polar PFI of a BCK algebra is not necessarilym-polar PFII which
is clear from the following example. It is necessary to mention that
in an implicative BCK algebra, the converse of the above proposi-
tion holds which is shown through Proposition 15.

Example 4. Now, let us consider a 3-polar PFS P = (𝜇P, 𝜂P, vP) in
BCK algebra A given in Example 3 as follows:

𝜇P(a) = {(0.42, 0.43, 0.45), if a = 0, q
(0.25, 0.27, 0.3), if a = p, r, s

𝜂P(a) = {(0.3, 0.33, 0.35), if a = 0, q
(0.15, 0.18, 0.2), if a = p, r, s

and

vP(a) = {(0.14, 0.16, 0.2), if a = 0, q
(0.45, 0.48, 0.5), if a = p, r, s
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It is clear that (0.25, 0.27, 0.3) = 𝜇P(p) ≱ 𝜇P{(p♢ (r♢ p))♢ q} ∧
𝜇P(q) = (0.42, 0.43, 0.45) ∧ (0.42, 0.43, 0.45) = (0.42, 0.43, 0.45),
(0.15, 0.18, 0.2) = 𝜂P(p) ≱ 𝜂P{(p♢ (r♢ p))♢ q} ∧ 𝜂P(q) =
(0.3, 0.33, 0.35) ∧ (0.3, 0.33, 0.35) = (0.3, 0.33, 0.35) and
(0.45, 0.48, 0.5) = vP(p) ≰ vP{(p♢ (q♢ p))♢ q} ∧ vP(q) =
(0.14, 0.16, 0.2)∨ (0.14, 0.16, 0.2) = (0.14, 0.16, 0.2). Thus, P is not
3-polar PFII although it is a 3-polar PFI of A.
Proposition 15. In an implicative BCK algebra, every m-polar PFI
is m-polar PFII.

Proof. Let (A,♢, 0) be an implicative BCK algebra. Therefore, a =
(a♢ b)♢ a for all a, b ∈ A. Let P = (𝜇P, 𝜂P, vP) be an m-polar PFI
of A. Then

pl ∘ 𝜇P(a) ⩾ pl ∘ 𝜇P(a♢ c) ∧ pl ∘ 𝜇P(c)
= pl ∘ 𝜇P{((a♢ b)♢ a)♢ c} ∧ pl ∘ 𝜇P(c),

pl ∘ 𝜂P(a) ⩾ pl ∘ 𝜂P(a♢ c) ∧ pl ∘ 𝜂P(c)
= pl ∘ 𝜂P{((a♢ b)♢ a)♢ c} ∧ pl ∘ 𝜂P(c)

and pl ∘ vP(a) ⩽ pl ∘ vP(a♢ c) ∨ pl ∘ vP(c)
= pl ∘ vP{((a♢ b)♢ a)♢ c} ∨ pl ∘ vP(c)

for all a, b, c ∈ A and for l = 1, 2, … ,m.

Thus, P is anm-polar PFII of A.

Proposition 16. Let (A,♢, 0) be a BCK algebra and P = (𝜇P, 𝜂P, vP)
be an m-polar PFII of A. Then C𝜃,𝜙,𝜓(P) is an implicative ideal of A,
provided that pl∘𝜇P(0) ⩾ pl∘𝜃, pl∘𝜂P(0) ⩾ pl∘𝜙 and pl∘vP(0) ⩽ pl∘𝜓
for l = 1, 2, ....m.

Proof. Clearly, C𝜃,𝜙,𝜓(P) contains at least one element. Let
((a♢ b)♢ a)♢ c, c ∈ C𝜃,𝜙,𝜓(P). Then pl ∘ 𝜇P{((a♢ b)♢ a)♢ c} ⩾
pl∘𝜃, pl∘𝜂P{((a♢ b)♢ a)♢ c} ⩾ pl∘𝜙, pl∘vP{((a♢ b)♢ a)♢ c} ⩽ pl∘𝜓
and pl ∘ 𝜇P(c) ⩾ pl ∘ 𝜃, pl ∘ 𝜂P(c) ⩾ pl ∘ 𝜙, pl ∘ vP(c) ⩽ pl ∘ 𝜓 for
l = 1, 2, … ,m.

Now, pl ∘ 𝜇P(a) ⩾ pl ∘ 𝜇P{((a♢ b)♢ a)♢ c} ∧ pl ∘ 𝜇P(c)
[because P is anm-polar PFII of A]

⩾ pl ∘ 𝜃 ∧ pl ∘ 𝜃 = pl ∘ 𝜃,

pl ∘ 𝜂P(a) ⩾ pl ∘ 𝜂P{((a♢ b)♢ a)♢ c} ∧ pl ∘ 𝜂P(c)
[because P is anm-polar PFII of A]

⩾ pl ∘ 𝜙 ∧ pl ∘ 𝜙 = pl ∘ 𝜙

and pl ∘ vP(a) ⩽ pl ∘ vP{((a♢ b)♢ a)♢ c} ∨ pl ∘ vP(c)
[because P is anm-polar PFII of A]

⩽ pl ∘ 𝜓 ∨ pl ∘ 𝜓 = pl ∘ 𝜓
for l = 1, 2, … ,m.

Thus, it is observed that {((a♢ b)♢ a)♢ c}, c ∈ C𝜃,𝜙,𝜓(P) ⇒ a ∈
C𝜃,𝜙,𝜓(P). So, C𝜃,𝜙,𝜓(P) is an implicative ideal of A.

Proposition 17. Let (A,♢, 0) be a BCK algebra and P = (𝜇P, 𝜂P, vP)
be anm-polar PFS inA. Then P is anm-polar PFII of A if all (𝜃, 𝜙, 𝜓)-
cuts of P are implicative ideals of A.

Proof. Let a, b ∈ A. Let pl ∘ 𝜇P{((a♢ b)♢ a)♢ c} ∧ pl ∘ 𝜇P(c) =
pl ∘ 𝜃, pl ∘ 𝜂P{((a♢ b)♢ a)♢ c} ∧ pl ∘ 𝜂P(c) = pl ∘ 𝜙 and pl ∘
vP{((a♢ b)♢ a)♢ c} ∨ pl ∘ vP(c) = pl ∘ 𝜓 for l = 1, 2, … ,m. Clearly,

pl ∘ 𝜃 ∈ [0, 1], pl ∘ 𝜙 ∈ [0, 1] and pl ∘ 𝜓 ∈ [0, 1] with 0 ⩽
pl ∘ 𝜃 + pl ∘ 𝜙 + pl ∘ 𝜓 ⩽ 1 for l = 1, 2, … ,m.

Now, pl ∘ 𝜇P{((a♢ b)♢ a)♢ c} ⩾ pl ∘ 𝜇P{((a♢ b)♢ a)♢ c}
∧ pl ∘ 𝜇P(c)
= pl ∘ 𝜃,

pl ∘ 𝜂P{((a♢ b)♢ a)♢ c} ⩾ pl ∘ 𝜂P{((a♢ b)♢ a)♢ c}
∧ pl ∘ 𝜂P(c)
= pl ∘ 𝜙

and pl ∘ vP{((a♢ b)♢ a)♢ c} ⩽ pl ∘ vP{((a♢ b)♢ a)♢ c}
∨ pl ∘ vP(c)
= pl ∘ 𝜓 for l = 1, 2, … ,m.

Also, pl ∘ 𝜇P(c) ⩾ pl ∘ 𝜇P{((a♢ b)♢ a)♢ c}
∧ pl ∘ 𝜇P(c) = pl ∘ 𝜃,

pl ∘ 𝜂P(c) ⩾ pl ∘ 𝜂P{((a♢ b)♢ a)♢ c}
∧ pl ∘ 𝜂P(c) = pl ∘ 𝜙

and pl ∘ vP(c) ⩽ pl ∘ vP{((a♢ b)♢ a)♢ c}
∨ pl ∘ vP(c) = pl ∘ 𝜓 for l = 1, 2, … ,m.

Thus, ((a♢ b)♢ a)♢ c and c ∈ C𝜃,𝜙,𝜓(P). Since C𝜃,𝜙,𝜓(P) is an
implicative ideal of A therefore a ∈ C𝜃,𝜙,𝜓(P).

Therefore, pl ∘𝜇P(a) ⩾ pl ∘ 𝜃 = pl ∘𝜇P{((a♢ b)♢ a)♢ c} ∧ pl ∘𝜇P(c),
pl∘𝜂P(a) ⩾ pl∘𝜙 = pl∘𝜂P{((a♢ b)♢ a)♢ c}∧pl∘𝜂P(c) and pl∘vP(a) ⩽
pl ∘ 𝜓 = pl ∘ vP{((a♢ b)♢ a)♢ c} ∨ pl ∘ vP(c) for l = 1, 2, … ,m.

Since a, b, c are arbitrary elements of A therefore pl ∘ 𝜇P(a) ⩾ pl ∘
𝜇P{((a♢ b)♢ a)♢ c}∧pl∘𝜇P(c), pl∘𝜂P(a) ⩾ pl∘𝜂P{((a♢ b)♢ a)♢ c}∧
pl ∘ 𝜂P(c) and pl ∘ vP(a) ⩽ pl ∘ vP{((a♢ b)♢ a)♢ c} ∨ pl ∘ vP(c) for all
a, b, c ∈ A and for l = 1, 2, … ,m. Hence, P is anm-polar PFII of A.

Proposition 18. Let S1 and S2 be two ideals of a BCK algebra
(A,♢, 0) such that S1 ⊆ S2. If S1 is implicative then S2 also.

Proposition 19. Let P1 and P2 be twom-polar PFIs of a BCK algebra
(A,♢, 0) with P1 ⊆ P2. If P1 is m-polar PFII of A then P2 also.

Proof. Let a ∈ C𝜃,𝜙,𝜓(P1). Then pl ∘ 𝜇P1 (a) ⩾ pl ∘ 𝜃, pl ∘ 𝜂P1 (a) ⩾
pl ∘ 𝜙 and pl ∘ vP1 (a) ⩽ pl ∘ 𝜓 for l = 1, 2, … ,m. Now, P1 ⊆ P2 ⇒
pl ∘ 𝜇P1 (a) ⩽ pl ∘ 𝜇P2 (a), pl ∘ 𝜂P1 (a) ⩽ pl ∘ 𝜂P2 (a) and pl ∘ vP1 (a) ⩾
pl ∘ vP2 (a) for l = 1, 2, … ,m. It follows that pl ∘ 𝜇P2 (a) ⩾ pl ∘ 𝜃,
pl ∘ 𝜂P2 (a) ⩾ pl ∘ 𝜙 and pl ∘ vP2 (a) ⩽ pl ∘ 𝜓 for l = 1, 2, … ,m. Thus,
a ∈ C𝜃,𝜙,𝜓(P2). As a result,C𝜃,𝜙,𝜓(P1) ⊆ C𝜃,𝜙,𝜓(P2). Since P1 is an
m-polar PFII of A therefore C𝜃,𝜙,𝜓(P1) is implicative ideal of A by
Proposition 16. By Proposition 18,C𝜃,𝜙,𝜓(P2) is implicative ideal of
A. Therefore, by Proposition 17, P2 is anm-polar PFII of A.

Proposition 20. Let P = (𝜇P, 𝜂P, vP) be an m-polar PFI of a BCK
algebra A. Then the below stated statements are equivalent.

i. P is m-polar PFII.

ii. pl ∘𝜇P(a) ⩾ pl ∘𝜇P(a♢ (b♢ a)), pl ∘𝜂P(a) ⩾ pl ∘𝜂P(a♢ (b♢ a))
and pl ∘ vP(a) ⩽ pl ∘ vP(a♢ (b♢ a)) for all a, b ∈ A and for
l = 1, 2, … ,m.

iii. pl ∘𝜇P(a) = pl ∘𝜇P(a♢ (b♢ a)), pl ∘𝜂P(a) = pl ∘𝜂P(a♢ (b♢ a))
and pl ∘ vP(a) = pl ∘ vP(a♢ (b♢ a)) for all a, b ∈ A and for
l = 1, 2, … ,m.
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Proof. (i) ⇒ (ii): Since P is anm-polar PFII of A, therefore,

pl ∘ 𝜇P(a) ⩾ pl ∘ 𝜇P{(a♢ (b♢ a))♢ 0} ∧ pl ∘ 𝜇P(0)
= pl ∘ 𝜇P(a♢ (b♢ a)) ∧ pl ∘ 𝜇P(0)

[by Proposition 1 ]
= pl ∘ 𝜇P(a♢ (b♢ a))

pl ∘ 𝜂P(a) ⩾ pl ∘ 𝜂P{(a♢ (b♢ a))♢ 0} ∧ pl ∘ 𝜂P(0)
= pl ∘ 𝜂P(a♢ (b♢ a)) ∧ pl ∘ 𝜂P(0)

[by Proposition 1 ]
= pl ∘ 𝜂P(a♢ (b♢ a))

and pl ∘ vP(a) ⩽ pl ∘ vP{(a♢ (b♢ a))♢ 0} ∨ pl ∘ vP(0)
= pl ∘ vP(a♢ (b♢ a)) ∨ pl ∘ vP(0)

[by Proposition 1 ]
= pl ∘ vP(a♢ (b♢ a)) for all a, b ∈ A

and for l = 1, 2, … ,m.

(ii) ⇒ (iii): It is known by Proposition 1 that a♢ (b♢ a) ⩽ a. Then
by Proposition 3, pl ∘ 𝜇P(a) ⩽ pl ∘ 𝜇P(a♢ (b♢ a)), pl ∘ 𝜂P(a) ⩽ pl ∘
𝜂P(a♢ (b♢ a)) and pl∘vP(a) ⩾ pl∘vP(a♢ (b♢ a)) for all a, b ∈ A and
for l = 1, 2, … ,m. By (ii), pl∘𝜇P(a) ⩾ pl∘𝜇P(a♢ (b♢ a)), pl∘𝜂P(a) ⩾
pl∘𝜇P(a♢ (b♢ a)) and pl∘vP(a) ⩽ pl∘vP(a♢ (b♢ a)) for all a, b ∈ A
and l = 1, 2, … ,m. As a result, pl ∘ 𝜇P(a) = pl ∘ 𝜇P(a♢ (b♢ a)),
pl ∘ 𝜂P(a) = pl ∘ 𝜇P(a♢ (b♢ a)) and pl ∘ vP(a) = pl ∘ vP(a♢ (b♢ a))
for all a, b ∈ A and for l = 1, 2, … ,m.

(iii) ⇒ (i): Since P is an m-polar PFI of A therefore pl ∘
𝜇P(a♢ (b♢ a)) ⩾ pl ∘ 𝜇P{a♢ (b♢ a)♢ c} ∧ pl ∘ 𝜇P(c), pl ∘
𝜂P(a♢ (b♢ a)) ⩾ pl ∘ 𝜂P{a♢ (b♢ a)♢ c} ∧ pl ∘ 𝜂P(c) and pl ∘
vP(a♢ (b♢ a)) ⩽ pl ∘ vP{a♢ (b♢ a)♢ c} ∨ pl ∘ vP(c) for all a, b, c ∈
A and for l = 1, 2, … ,m. By (iii), we have, pl ∘ 𝜇P(a) ⩾ pl ∘
𝜇P{a♢ (b♢ a)♢ c} ∧ pl ∘ 𝜇P(c), pl ∘ 𝜂P(a) ⩾ pl ∘ 𝜂P{a♢ (b♢ a)♢ c} ∧
pl ∘ 𝜂P(c) and pl ∘ vP(a) ⩽ pl ∘ vP{a♢ (b♢ a)♢ c} ∨ pl ∘ vP(c) for all
a, b, c ∈ A and for l = 1, 2, … ,m. Thus, P is anm-polar PFII of A.

Definition 19. Let P = (𝜇P, 𝜂P, vP) be an m-polar PFS in a BCK
algebra (A,♢, 0). Then P is said to be an m-polar picture fuzzy
positive implicative ideal (PFPII) if the below stated conditions are
meet.

i. pl ∘ 𝜂P(0) ⩾ pl ∘ 𝜂P(a) and pl ∘ vP(0) ⩽ pl ∘ vP(a)
ii. pl ∘ 𝜂P(a♢ c) ⩾ pl ∘ 𝜂P((a♢ b)♢ c) ∧ pl ∘ 𝜂P(b♢ c) and pl ∘

vP(a♢ c) ⩽ pl ∘ vP((a♢ b)♢ c) ∧ pl ∘ vP(b♢ c), ∀a, b ∈ A and
l = 1, 2, … ,m

Proposition 21. An m-polar PFI P = (𝜇P, 𝜂P, vP) of a BCK algebra
(A,♢, 0) is an m-polar PFPII iff pl ∘ 𝜇P(a♢ b) ⩾ pl ∘ 𝜇P((a♢ b)♢ b),
pl ∘ 𝜂P(a♢ b) ⩾ pl ∘ 𝜂P((a♢ b)♢ b) and pl ∘ vP(a♢ b) ⩽ pl ∘
vP((a♢ b)♢ b), ∀a, b ∈ A and for l = 1, 2, … ,m.

Proof. The proof is easy. So, it is omitted here.

Since (a♢ b)♢ b ⩽ a♢ b, it follows from Proposition 3 that pl ∘
𝜇P(a♢ b) ⩽ pl ∘ 𝜇P((a♢ b)♢ b), pl ∘ 𝜂P(a♢ b) ⩽ pl ∘ 𝜂P((a♢ b)♢ b)
and pl∘vP(a♢ b) ⩾ pl∘vP((a♢ b)♢ b), ∀a, b ∈ A and l = 1, 2, … ,m.
So, the above Proposition can be modified in the following way:

Proposition 22. An m-polar PFI P = (𝜇P, 𝜂P, vP) of a BCK algebra
(A,♢, 0) is a m-polar PFPII iff pl ∘ 𝜇P(a♢ b) = pl ∘ 𝜇P((a♢ b)♢ b),
pl ∘ 𝜂P(a♢ b) = pl ∘ 𝜂P((a♢ b)♢ b) and pl ∘ vP(a♢ b) = pl ∘
vP((a♢ b)♢ b), ∀a, b ∈ A and l = 1, 2, … ,m.

7. m-POLAR PFCI

Definition 20. Let (A,♢, 0) be a BCK algebra and P = (𝜇P, 𝜂P, vP)
be an m-polar PFS in A. Then P is said to be m-polar PFCI of A if
the following conditions are met:

i. pl ∘ 𝜇P(0) ⩾ pl ∘ 𝜇P(a), pl ∘ 𝜂P(0) ⩾ pl ∘ 𝜂P(a) and pl ∘ vP(0) ⩽
pl ∘ vP(a)

ii. pl ∘ 𝜇P(a♢ (b♢ (b♢ a))) ⩾ pl ∘ 𝜇P((a♢ b)♢ c) ∧ pl ∘ 𝜇P(c), pl ∘
𝜂P(a♢ (b♢ (b♢ a))) ⩾ pl ∘ 𝜂P((a♢ b)♢ c) ∧ pl ∘ 𝜂P(c) and pl ∘
vP(a♢ (b♢ (b♢ a))) ⩽ pl ∘ vP((a♢ b)♢ c) ∨ pl ∘ vP(c) for all
a, b ∈ A and for l = 1, 2, … ,m

Example 5. Let us consider the BCK algebra (A, ♢ ) as follows:

♢ 0 p q r
0 0 0 0 0
p p 0 0 p
q q p 0 q
r r r r 0

Now, let us suppose a 3-polar PFS P = (𝜇P, 𝜂P, vP) defined by

𝜇P(a) =
⎧
⎨
⎩

(0.34, 0.36, 0.37), if a = 0
(0.28, 0.3, 0.32), if a = p
(0.17, 0.18, 0.18), if a = q, r

𝜂P(a) =
⎧
⎨
⎩

(0.35, 0.36, 0.39), if a = 0
(0.25, 0.27, 0.3), if a = p
(0.2, 0.23, 0.27), if a = q, r

and

𝜂P(a) =
⎧
⎨
⎩

(0.1, 0.15, 0.17), if a = 0
(0.2, 0.27, 0.31), if a = p
(0.55, 0.57, 0.58), if a = q, r

Clearly, P is a 3-polar PFCI of A.
Definition 21. A BCK algebra (A,♢, 0) is said to be commutative
if b♢ (b♢ a) = a♢ (a♢ b) for all a, b ∈ A.

Proposition 23. Every m-polar PFCI of a BCK algebra is anm-polar
PFI.

Proof. Let P = (𝜇P, 𝜂P, vP) is an m-polar PFCI of a BCK algebra
(A,♢, 0).
Now, (a♢ (0♢ (0♢ a)))

= (a♢ 0) [by Proposition 1]

= a [by Proposition 1]

Now, pl ∘ 𝜇P(a) = pl ∘ 𝜇P(a♢ (0♢ (0♢ a))) ⩾ pl ∘ 𝜇P((a♢ 0)♢ c) ∧
pl ∘ 𝜇P(c) = pl ∘ 𝜇P(a♢ c) ∧ pl ∘ 𝜇P(c), pl ∘ 𝜂P(a) = pl ∘
𝜂P(a♢ (0♢ (0♢ a))) ⩾ pl ∘ 𝜂P((a♢ 0)♢ c) ∧ pl ∘ 𝜂P(c) = pl ∘
𝜂P(a♢ c) ∧ pl ∘ 𝜂P(c) and pl ∘ vP(a) = pl ∘ vP(a♢ (0♢ (0♢ a))) ⩽
pl∘vP((a♢ 0)♢ c)∨pl∘vP(c) = pl∘vP(a♢ c)∨pl∘vP(c) for all a, c ∈ A
and for l = 1, 2, … ,m. Consequently, P is anm-polar PFI of A.
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The above proposition is not true in reverse direction which is clear
from following example. But the converse of the above proposition
holds in commutative BCK algebra which is highlighted through
Proposition 24.

Example 6. Let us consider a BCK algebra (A, ♢ ) as follows:

♢ 0 p q r s
0 0 0 0 0 0
p p 0 p 0 0
q q q 0 0 0
r r r r 0 0
s s s s r 0

Now, let us suppose a 3-polar PFS P = (𝜇P, 𝜂P, vP) defined by

𝜇P(a) =
⎧
⎨
⎩

(0.4, 0.41, 0.43), if a = 0
(0.3, 0.32, 0.33), if a = p
(0.2, 0.24, 0.27), if a = q, r, s

𝜂P(a) =
⎧
⎨
⎩

(0.43, 0.45, 0.47), if a = 0
(0.35, 0.36, 0.37), if a = p
(0.21, 0.22, 0.23), if a = q, r, s

vP(a) =
⎧
⎨
⎩

(0.08, 0.09, 0.1), if a = 0
(0.27, 0.28, 0.3), if a = p
(0.45, 0.47, 0.5), if a = q, r, s

Clearly, P is a 3-polar PFI of A.
It is observed that

𝜇P((q♢ (r♢ (r♢ q)))) = 𝜇P(q) = (0.2, 0.24, 0.27),
𝜇P((q♢ r)♢ 0) ∧ 𝜇P(0) = (0.4, 0.41, 0.43)
𝜂P((q♢ (r♢ (r♢ q)))) = 𝜂P(q) = (0.21, 0.22, 0.23),
𝜂P((q♢ r)♢ 0) ∧ 𝜂P(0) = (0.43, 0.45, 0.47)
vP((q♢ (r♢ (r♢ q)))) = vP(q) = (0.45, 0.47, 0.5),
vP((q♢ r)♢ 0) ∨ vP(0) = (0.08, 0.09, 0.1).
Here, 𝜇P((q♢ (r♢ (r♢ q)))) ≱ 𝜇P((q♢ r)♢ 0) ∧ 𝜇P(0), 𝜂P((q♢(r♢
(r♢q)))) ≱ 𝜂P((q♢r)♢0) ∧ 𝜂P(0) and vP((q♢ (r♢ (r♢ q)))) ≰
vP((q♢ r)♢ 0) ∨ vP(0). Clearly, P is not a 3-polar PFCI of A.
Proposition 24. In a commutative BCK algebra, every m-polar PFI
is an m-polar PFCI.

Proof. Let P = (𝜇P, 𝜂P, vP) be an m-polar PFI of a commutative
BCK algebra (A,♢, 0). We have, [((a♢(b♢(b♢a)))♢((a♢b)
♢c))]♢c = ((a♢(b♢(b♢a)))♢c)♢((a♢b)♢c) [by Proposition 1]

⩽ (a♢ (b♢ (b♢ a)))♢ (a♢ b) [by Proposition 1]

= (a♢ (a♢ (a♢ b)))♢ (a♢ b) [as A is commutative therefore
(a♢ (a♢ b)) = (b♢ (b♢ a)) for all a, b ∈ A]

= (a♢ b)♢ (a♢ b) [by Proposition 1]

= 0
i.e. (a♢ (b♢ (b♢ a)))♢ ((a♢ b)♢ c) ⩽ c.

Thus, by Proposition 4, it is obtained that pl ∘
𝜇P((a♢ (b♢ (b♢ a)))) ⩾ pl ∘ 𝜇P(((a♢ b)♢ c)) ∧ pl ∘ 𝜇P(c),
pl ∘ 𝜂P((a♢ (b♢ (b♢ a)))) ⩾ pl ∘ 𝜂P(((a♢ b)♢ c)) ∧ pl ∘ 𝜂P(c) and
pl ∘ vP((a♢ (b♢ (b♢ a)))) ⩽ pl ∘ vP(((a♢ b)♢ c)) ∨ pl ∘ vP(c) for all
a, b, c ∈ A and for l = 1, 2, … ,m. Consequently, P is an m-polar
PFCI of A.

Now, we are interested to develop a relationship between m-polar
PFII and m-polar PFCI. Before that we state some propositions
which are necessary in this regard.

Meng et al. [10] stated the following proposition:

Proposition 25. The followings hold in a BCK algebra (A,♢, 0).

i. ((a♢ c)♢ c)♢ (b♢ c) ⩽ (a♢ b)♢ c.

ii. (a♢ c)♢ (a♢ (a♢ c)) = (a♢ c)♢ c.

iii. (a♢ (b♢ (b♢ a)))♢ (b♢ (a♢ (b♢ (b♢ a)))) ⩽ a♢ b.

Proposition 26. An m-polar PFI P = (𝜇P, 𝜂P, vP) of a BCK alge-
bra (A,♢, 0) is an m-polar PFCI iff pl ∘ 𝜇P(a♢ (b♢ (b♢ a))) ⩾
pl ∘ 𝜇P(a♢ b), pl ∘ 𝜂P(a♢ (b♢ (b♢ a))) ⩾ pl ∘ 𝜂P(a♢ b) and pl ∘
vP(a♢ (b♢ (b♢ a))) ⩽ pl ∘ vP(a♢ b), ∀a, b ∈ A and l = 1, 2, … ,m.

Proof. The proof is easy. So, it is omitted here.

It is observed that a♢ b ⩽ a♢ (b♢ (b♢ a)) and using Proposi-
tion 3 we get, pl ∘ 𝜇P(a♢ (b♢ (b♢ a))) ⩽ pl ∘ 𝜇P(a♢ b), pl ∘
𝜂P(a♢ (b♢ (b♢ a))) ⩽ pl ∘ 𝜂P(a♢ b) and pl ∘ vP(a♢ (b♢ (b♢ a))) ⩾
pl ∘ vP(a♢ b), ∀a, b ∈ A and l = 1, 2, … ,m. So, above Proposition
can be modified in the following way:

Proposition 27. An m-polar PFI P = (𝜇P, 𝜂P, vP) of a BCK alge-
bra (A,♢, 0) is an m-polar PFCI iff pl ∘ 𝜇P(a♢ (b♢ (b♢ a))) =
pl ∘ 𝜇P(a♢ b), pl ∘ 𝜂P(a♢ (b♢ (b♢ a))) = pl ∘ 𝜂P(a♢ b) and pl ∘
vP(a♢ (b♢ (b♢ a))) = pl ∘ vP(a♢ b), ∀a, b ∈ A and l = 1, 2, … ,m.

Proposition 28. Anm-polar PFI P = (𝜇P, 𝜂P, vP) is anm-polar PFII
iff P is both m-polar PFCI and m-polar PFPII.

Proof. Suppose that P is m-polar PFII. Then by Proposition 25 (i)
and Proposition 4,

pl ∘ 𝜇P((a♢ b)♢ c) ∧ pl ∘ 𝜇P(b♢ c)
⩽ pl ∘ 𝜇P((a♢ c)♢ c)
= pl ∘ 𝜇P((a♢ c)♢ (a♢ (a♢ c))) [by Proposition 25 (ii)]
= pl ∘ 𝜇P(a♢ c) [by Proposition 20 (iii)],
pl ∘ 𝜂P((a♢ b)♢ c) ∧ pl ∘ 𝜂P(b♢ c)
⩽ pl ∘ 𝜂P((a♢ c)♢ c)
= pl ∘ 𝜂P((a♢ c)♢ (a♢ (a♢ c))) [by Proposition 25 (ii)]
= pl ∘ 𝜂P(a♢ c) [by Proposition 20 (iii)]
and pl ∘ vP((a♢ b)♢ c) ∧ pl ∘ vP(b♢ c)
⩾ pl ∘ vP((a♢ c)♢ c)
= pl ∘ vP((a♢ c)♢ (a♢ (a♢ c))) [by Proposition 25 (ii)]
= pl ∘ vP(a♢ c) [by Proposition 20 (iii)]

Therefore, P is anm-polar PFPII.
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By Proposition 25 (iii) and Proposition 3 we get,

pl ∘ 𝜇P(a♢ b)
⩽ pl ∘ 𝜇P(a♢ (b♢ (b♢ a)))♢ (b♢ (a♢ (b♢ (b♢ a)))))
= pl ∘ 𝜇P((a♢ (b♢ (b♢ a))) [by Proposition 20 (iii)],
pl ∘ 𝜂P(a♢ b)
⩽ pl ∘ 𝜂P(a♢ (b♢ (b♢ a)))♢ (b♢ (a♢ (b♢ (b♢ a)))))
= pl ∘ 𝜂P((a♢ (b♢ (b♢ a))) [by Proposition 20 (iii)]
and pl ∘ vP(a♢ b)
⩾ pl ∘ vP(a♢ (b♢ (b♢ a)))♢ (b♢ (a♢ (b♢ (b♢ a)))))
= pl ∘ vP((a♢ (b♢ (b♢ a))) [by Proposition 20 (iii)].

Therefore, P is anm-polar PFCI of A.

Conversely, let P be both m-polar PFPII and m-polar PFCI of A.
Since (b♢ (b♢ a))♢ (b♢ a) ⩽ a♢ (b♢ a), by Proposition 3,

pl ∘ 𝜇P(a♢ (b♢ a))
⩽ pl ∘ 𝜇P((b♢ (b♢ a))♢ (b♢ a)),
pl ∘ 𝜂P(a♢ (b♢ a))
⩽ pl ∘ 𝜂P((b♢ (b♢ a))♢ (b♢ a))
and pl ∘ vP(a♢ (b♢ a))
⩾ pl ∘ vP((b♢ (b♢ a))♢ (b♢ a))

By Proposition 22,

pl ∘ 𝜇P((b♢ (b♢ a))♢ (b♢ a)) = pl ∘ 𝜇P(b♢ (b♢ a)),
pl ∘ 𝜂P((b♢ (b♢ a))♢ (b♢ a)) = pl ∘ 𝜂P(b♢ (b♢ a))

and pl ∘ vP((b♢ (b♢ a))♢ (b♢ a)) = pl ∘ vP(b♢ (b♢ a))

therefore it is obtained that

pl ∘ 𝜇P(a♢ (b♢ a)) ⩽ pl ∘ 𝜇P(b♢ (b♢ a)), (1)

pl ∘ 𝜂P(a♢ (b♢ a)) ⩽ pl ∘ 𝜂P(b♢ (b♢ a)) (2)

and pl ∘ vP(a♢ (b♢ a)) ⩾ pl ∘ vP(b♢ (b♢ a)) (3)

Also, a♢ b ⩽ a♢ (b♢ a). Therefore, by Proposition 3,

pl ∘ 𝜇P(a♢ (b♢ a)) ⩽ pl ∘ 𝜇P(a♢ b),
pl ∘ 𝜂P(a♢ (b♢ a)) ⩽ pl ∘ 𝜂P(a♢ b)

and pl ∘ vP(a♢ (b♢ a)) ⩾ pl ∘ vP(a♢ b)

Since P is anm-polar PFCI therefore by Proposition 27,

pl ∘ 𝜇P(a♢ b) = pl ∘ 𝜇P(a♢ (b♢ (b♢ a))),
pl ∘ 𝜂P(a♢ b) = pl ∘ 𝜂P(a♢ (b♢ (b♢ a)))

and pl ∘ vP(a♢ b) = pl ∘ vP(a♢ (b♢ (b♢ a)))

Hence it is obtained that

pl ∘ 𝜇P(a♢ (b♢ a)) ⩽ pl ∘ 𝜇P(a♢ (b♢ (b♢ a))), (4)

pl ∘ 𝜂P(a♢ (b♢ a)) ⩽ pl ∘ 𝜂P(a♢ (b♢ (b♢ a))) (5)

and pl ∘ vP(a♢ (b♢ a)) ⩾ pl ∘ vP(a♢ (b♢ (b♢ a))) (6)

Combining (1) and (4), (2) and (5), (3) and (6) it is obtained that

pl ∘ 𝜇P(a♢ (b♢ a))
⩽ pl ∘ 𝜇P(a♢ (b♢ (b♢ a))) ∧ pl ∘ 𝜇P(b♢ (b♢ a))
⩽ pl ∘ 𝜇P(a),
pl ∘ 𝜂P(a♢ (b♢ a))
⩽ pl ∘ 𝜂P(a♢ (b♢ (b♢ a))) ∧ pl ∘ 𝜂P(b♢ (b♢ a))
⩽ pl ∘ 𝜂P(a)
and pl ∘ vP(a♢ (b♢ a))
⩾ pl ∘ vP(a♢ (b♢ (b♢ a))) ∨ pl ∘ vP(b♢ (b♢ a))
⩾ pl ∘ vP(a).

So, by Proposition 20 (ii), P is anm-polar PFII of A.

8. CONCLUSION

In this paper, we have initiated the notion of m-polar PFI and m-
polar PFII of BCK algebra. We have studied some basic results
related to them.Wehave established a relationship betweenm-polar
PFI and m-polar PFII of a BCK algebra. We have also investigated
a relationship between m-polar PFI and m-polar PFCI. We have
studied some properties of m-polar PFI under homomorphism of
BCK algebra. It is our hope that our works will help the researchers
to study some other types of algebraic structures in context of
m-polar PFS.
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