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ABSTRACT
Feature selection plays a significant role in the field of data mining andmachine learning to reduce the data dimension, speed up
themodel building process and improve algorithm performance. Tree growth algorithm (TGA) is a recent proposed population-
based metaheuristic, which shows great power of search ability in solving optimization of continuous problems. However, TGA
cannot be directly applied to feature selection problems. Also, we find that its efficiency still leave room for improvement. To
tackle this problem, in this study, a novel improved TGA (iTGA) is proposed, which can resolve the feature selection problem
efficiently. The main contribution includes, (1) a binary TGA is proposed to tackle the feature selection problems, (2) a linearly
increasing parameter tuning mechanism is proposed to tune the parameter in TGA, (3) the evolutionary population dynamics
(EPD) strategy is applied to improve the exploration and exploitation capabilities of TGA, (4) the efficiency of iTGA is evalu-
ated on fifteen UCI benchmark datasets, the comprehensive results indicate that iTGA can resolve feature selection problems
efficiently. Furthermore, the results of comparative experiments also verify the superiority of iTGA compared with other state-
of-the-art methods.

© 2020 The Authors. Published by Atlantis Press SARL.
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1. INTRODUCTION

In the last few decades, the amount of data generated from vari-
ous industries have had a dramatic increase. Efficient and practi-
cal technology is extremely needed to find useful information from
massive data and to turn such data into valuable knowledge, which
leads to the rise of machine learning and data mining. The goal
of data mining is to extract or generate well-organized knowledge
from huge amounts of data through a series of processes includ-
ing data cleaning, data integration, data reduction, data transforma-
tion [1]. In data mining, real-world applications usually contain a
great number of features, and not all features are useful since some
of them are redundant or irrelevant which will bring in poor per-
formance of an algorithm [2]. Feature Selection plays a substantial
role in data preprocessing that tries to select the most appropriate
feature subset from the feature space by excluding the redundant
and irrelevant features [3]. Feature selection can decrease the data
dimension by removing irrelevant features, thereby speeding up the
model building process and improving algorithm performance.

A few literature have discussed the topic of feature selection, and
manymethods have been proposed. These methods can be roughly
divided into two main categories from the aspect of evaluation:
the filter methods and the wrapper methods [4,5]. In filter-based
approach, some data-reliant criteria are used for estimating a fea-
ture or a feature subset, and the learning algorithm is not involved
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in the process of feature selection [2]. The classical filter-based
method includes correlation coefficient [6], information gain (IG)
[7], Fisher score (F-score) criterion [8], ReliefF [9], correlation-
based feature selection [10] and so on. In wrapper-based approach,
a specific learning algorithm is utilized to assess the merit of a fea-
ture subset. Examples of common wrapper-based methods include
sequential forward selection (SFS) [11], sequential backward selec-
tion (SBS) [12], sequential forward floating selection (SFFS) and
sequential backward floating selection (SBFS) [13]. In general, the
filtermethod usually requires less computational resources than the
wrapper method since it does not involve any learning algorithms.
However, it does not take into account the impact of each feature
on the performance of the final classifier. The wrappermethod fully
investigated the classification performance to generate the best fea-
ture subset that represents the original features.

Selecting the appropriate feature subset from a high-dimensional
feature space is a critical problem and it is very challenging. A few
methods have been applied to solve this problem. Complete search
method produces all feature subsets to choose the best one, which
is impracticable for the high-dimensional feature space since a
n-dimensional dataset has 2n feature subsets, generating and eval-
uating 2n feature subsets will bring in a high computational cost.
Random search is another way to solve this problem. Themain pro-
cess of thismethod is to randomly search for the next feature subset.
The drawback of this method is that it might execute as a complete
search. Furthermore, the random search ismore likely to be trapped
in the local optimal.
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Under this circumstances, the metaheuristics, which are well-
regarded for their powerful global search ability, provide a new way
to solve feature selection problems. In recent years, several nature-
inspired metaheuristic methods have been utilized to figure out
feature selection problems. Whale optimization algorithm (WOA)
[14] is a recent nature-inspired metaheuristic, which has been suc-
cessfully applied for tackling feature selection problems [15]. In
addition, a new wrapper feature selection method based on the
hybrid WOA embedded with simulation method was proposed
[16]. Crow search algorithm (CSA) [17], a recently proposed meta-
heuristic that has been utilized to tackle feature selection prob-
lems as a wrapper-based approach [18]. Furthermore, A new fusion
of grey wolf optimizer (GWO) [19] algorithm with a two-phase
mutation was proposed [20] and successfully utilized to solve fea-
ture selection problems. Ant lion optimizer (ALO) [21], a recent
population-based optimizer was applied as a searching approach in
a wrapper feature selectionmethod [22]. Besides, grasshopper opti-
mization approach (GOA) [23] was utilized to handle feature selec-
tion problems [24] as a wrapper-basedmethod.Moreover, a variant
of the GOA was proposed [25] to solve feature selection problems.
This approach has been enhanced by using evolutionary population
dynamics (EPD) and selection operators inmanipulating the whole
population that eliminates and reposition poor individuals in the
population to improve the whole population.

The majority of existing metaheuristics are modeled on direct
observation of the special behavior of species. For example, The
GOA inspired by the intelligent behaviors of grasshopper insects
in nature. The ant colony optimization (ACO) [26] mimics the
behavior of ants finding the shortest path between their colony
and a source of food. These algorithms employ some evolutionary
operators (pheromone accumulation mechanism in ACO) to each
individual of a population to generate the next generation. How-
ever, such operators only consider the evolution of good individu-
als rather than the entire population [25]. On the contrary, EPD is
another well-known evolutionary strategy, which aims to improve
the population by eliminating poor solutions rather than directly
improve good solutions [27]. Extremal optimization (EO) [28] is a
metaheuristic based on EPD that has been successfully applied in
many fields [29–31]. Furthermore, [25,27,32] show that EPD, as a
controlling metaheuristic, is also useful to a variety of population-
based algorithms to improve the algorithm performance.

Tree growth algorithm, TGA, is a recent nature-inspired
population-based metaheuristic which mimics the growing behav-
ior of tree in the jungle. The performance of TGA was evaluated on
several well-known benchmarks and engineering problems [33].
The results in the author’s reported show that the performance
of TGA was very excellent and impressive. This motivated us to
investigate the performance of TGA in the field of feature selection
problems. Therefore, we presents a novel improved TGA (iTGA)
for feature selection problem. In this work, we have made the
following key contributions:

• A binary TGA (BTGA) is proposed to tackle the feature
selection problems.

• A linearly increasing parameter tuning mechanism is proposed
to tune the parameter to improve the local searchability of TGA.

• The EPD strategy is applied to balance the exploration and
exploitation capabilities of TGA.

• The efficiency of iTGA has been evaluated and compared with
serveal metaheuristics on 15 UCI benchmark datasets, the
comprehensive results indicated that iTGA can resolve feature
selection problems efficiently.

The rest of this paper is organized as follows: Section 2 gives a
brief introduction of TGA. Section 3 presents the details of the
proposed iTGA, and its application to feature selection problems.
Section 4 describes and analyzes the performance of iTGA. Finally,
in Section 5, conclusions and future works are given.

2. TREE GROWTH ALGORITHM

TGA is a recent nature-inspired population-based metaheuristic
[33], which is inspired by the growing behavior of tree in the jun-
gle. In TGA, a set of candidate solutions are randomly generated
to construct the initial trees in the jungle. Next, the whole popula-
tion of trees are divided into four groups according to their fitness
value. Trees with better fitness will be assigned to the first group. In
the first group, trees will grow further. The second group is called
the competition for light group. In the second group, trees move to
the position between the close best trees under different angles in
order to reach the light. The third group is called the remove and
replace group, which aims to replace the weak trees with new trees.
The fourth group is the reproduction group, which are multiplied
and created by the best trees. The detailed of TGA include four steps
which is described below:

Step 1: the initial population of trees are randomly generated within
a specified interval. Then, the population of trees are sorted based
on their fitness value. The best N1 trees are allocated to the first
group, which trees will grow further according to Equation (1).

T j+1
i =

T j
i
𝜃 + rT j

i (1)

where T j
i is the tree (solution) at i order in the population, 𝜃 is trees

reduction rate of power, due to aging, high growth and reduce food
around. j is the current number of iterations, r is a random num-
ber in (0, 1). Because the trees need for light has been satisfied, its
roots are instructed to move to search food at a growth rate of rT j

i
units. The current tree will be replaced if the new tree attains better
fitness value. Otherwise, the current tree will be preserved to next
iteration. Note that 𝜃 is an important parameter in TGA that needs
to be tuned before the simulation. The setting of 𝜃 will be discussed
in Section 3.2.

Step 2: N2 trees are moved to distance between the close best trees
under different angles. For each tree in N2, the distance between
two trees is calculated according to Equations (2) and (3).
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where TN2 denotes the current tree, Ti represents the ith tree in the
population. Then choose two solutions x1 and x2 with minimal di
to get a linear combination using Equation (4).

y = 𝜆 x1 + (1 – 𝜆) x2 (4)

where 𝜆 = U(0, 1) is a parameter that is applied to adjust the influ-
ence of two nearest trees. Finally, to move the current tree between
two adjacent trees with an 𝛼i angles using Equation (5).

T j
N2
= T j

N2
+ 𝛼iy (5)

where 𝛼i represents the angle distributed in (0, 1).
Step 3:N3 worse trees are eliminated and randomly initialized. The
number of population size is calculated according to Equation (6).

N = N1 + N2 + N3 (6)

where N is the total number of trees, N1 is the number of trees in
the first group,N2 is the number of trees in the second group,N3 is
the number of trees in the third group.

Step 4: N4 new trees are generated, and then each new tree is
changed by using mask operator with best tree (of the popula-
tion of N1) randomly. Figure 1 illustrated an example of the mask
operation.

In Figure 1, solution A is a new tree in N4, solution B is the best
tree in N1. The mask operator is a randomly generated sequence
that containing only 0 and 1. The result of mask operation between
solution A and solution B is generated according to the mask oper-
ator, which 1 represents the corresponding position is taken from
solution B, 0 represents the corresponding position is taken fromA.

After that, the new trees inN4 are added to the population (N+N4).
Finally, the merged population is sorted according to their fitness
value, and the best N trees are chosen as the initial population for
the next iteration. The algorithm is repeated until any of the stop
criterion is satisfied.

3. THE IMPROVED TGA

As mentioned before, TGA has shown good performance in solv-
ing optimization of continuous problems. However, TGA cannot
be directly applied to discrete optimization problems, such as, fea-
ture selection problem. In order to resolve feature selection prob-
lems with TGA, we proposed a novel iTGA algorithm. In iTGA,
firstly, we proposed a BTGA to solve feature selection problems.
Secondly, since TGA is sensitive to the parameter 𝜃, and it is very
time-consuming that finding an appropriate 𝜃 for each particular

Figure 1 An example of mask operation.

problem, therefore, we proposed a linear increasing mechanism for
parameter tuning. Thirdly, we embeddedTGAwith EPD strategy to
improve the exploration and exploitation capabilities of TGA. The
detailed of iTGA is described in the following sections.

3.1. BTGA for Feature Selection

As described earlier, feature selection is an NP-hard problem when
N is relatively large especially in the wrapper-based feature selec-
tion methods. Therefore, a good search mechanism is pivotal to the
performance of the feature selection algorithm. TGA has achieved
superior efficacy in tacking the optimization of continuous prob-
lems. Themerits of TGAmotivates us to explore its search ability on
feature selection problems. However, TGA cannot be directly uti-
lized to the feature selection problem, because the solution space of
feature selection problem is represented as a d-dimensional boolean
space and the position of a solution only takes the values of 1 or 0.
To tackle this problem, we proposed a BTGA.

According to literature [34], one of the easiest ways to transform
an algorithm from continues to the binary version without chang-
ing its basic structure is to utilize a transfer function. Therefore,
we propose a new binarization method to transform the algorithm
from continuous to discrete version. For every bit in the solution,
we transform the continue value into discrete using Equation (7).

xi =
⎧⎪
⎨⎪
⎩

1 if
xi

∑n
i=1 xi

⩾ 1
n

0 if
xi

∑n
i=1 xi

< 1
n

(7)

where n is the dimension of the problem, which is the total number
of features. Each solution is represented as Equation (8).

X = (x1, x2, … , xn) , xi ∈ {0, 1} , i = 1, 2, … , n (8)

where xi = 1 represents the ith feature is selected, otherwise it
means the feature is not selected. For example, the solution X =
(1 , 0 , 1 , 1 , 0) represents the 1st, 3rd and 4th features are selected.

In feature selection, classification accuracy and number of selected
features are two important evaluation criteria that should be taken
into account in designing a fitness function. In this paper, the fitness
function in Equation (9) is utilized to evaluate the selected subset
which can well balance the classification accuracy and the number
of selected features.

Fitness = 𝛼𝛾R (D) + 𝛽 |R||N| (9)

where 𝛾R (D) represents the classification error rate of the learning
algorithm, |R| is the number of selected features and |N| is the total
number of features, 𝛼 and 𝛽 are two parameters to balance these
two evaluation criteria, 𝛼 ∈ [0, 1], 𝛽 = 1 – 𝛼 adopted from [22].

3.2. Linear Increasing Mechanism for
Parameter Tuning

As discussed in Section 2, the parameter 𝜃 is an important fac-
tor which should to be adjusted. In literature [33], the value of 𝜃
is tuned before the simulation and it does not change during the
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processing. We think this is seemed to unreasonable. As described
in TGA, the author present 𝜃 is trees reduction rate of power. How-
ever, through observing the growth of trees in real jungle, we found
that the growth rate of trees is not constant. With the evolution of
jungle, the consumption of soil nutrients, the growth rate of trees
will gradually slow down. In other words, the trees reduction rate
of power will gradually increase with the evolution of the jungle.

Therefore, in this paper, we proposed a linearly increasing adaptive
method to tune 𝜃 during the iteration. The value of 𝜃 will increase
from 0.5 to 2 according to Equation (10).

𝜃 = 0.5 ×
(
1 + 3t

Niter

)
(10)

where t is the current number of iterations, Niter is the total num-
ber of iterations. The proposed linearly increasing method simu-
lates that the tree’s reduction rate of power increases with the tree’s
ages and the reduction of food around. The results in our exper-
iment in Section 4 show that this method is feasible. The overall
pseudo-code of the BTGA is presented in Algorithm 1.

3.3. Embedded TGA with EPD Strategy

EPD, also known as an evolution strategy, indicates that the popula-
tion evolution can be achieved by eliminating the worst individuals
and repositioning them around the best ones. The basis of EPD is
established on the principle of self-organized criticality (SOC) [32],
which points that a small change in individuals can influence the
entire population and provide a delicate equilibrium without exter-
nal forces [31]. It is observed that in the process of species evolution,
evolution applies on the poor species as well [32]. In this case, the
entire population quality is affected by eliminating the poor indi-
viduals. Several metaheuristics methods have successfully applied
the strategy of EPD and SOC including EPD-based GOA algorithm
[25], a self-organizing multi-objective evolutionary algorithm [35].
The EPD could be utilized as a controllingmetaheuristic to improve
the algorithm performance. The reason why EPD can improve the
median of the entire population is that EPD strategy removes the
worst individuals by repositioning them around the best ones.

As described earlier, the efficiency of TGA still leave room for
improvement. Therefore, we introduce EPD into iTGA for improv-
ing the efficiency of TGA. In iTGA, the population was divided into
two parts according to their fitness value. Half of the worst popula-
tion is erased and repositioned around the best ones from the top
half of the population.

According to the results of Talbi [36], however, “it means that using
better solutions as initial solutions will not always lead to better
local optima.” Because the best solutions may be biased during the
search process, which leads to the imbalance statue of exploration
and exploitation. For this reason, we cannot simply choose the best
individual from the good half of the population, but apply a spe-
cial selection mechanism to choose the individual from the top half
of the population. For each individual in the poor half of the pop-
ulation, utilizing a selection operator to select an individual from
the top half, and then do mask operation with the poor individual.
Roulette wheel selection (RWS) [37] is a well-known selection tech-
nique that can be utilized in this work.

RWS, as well-known as fitness proportionate selection, which the
fitness value is used to associate a probability of selection with each

Algorithm 1: Pseudo-code of the BTGA.

individual. This can be formulated as a roulette wheel in casino,
the size of each segment in the wheel is proportional to individ-
ual fitness value, then a random selection is made similar to how
the roulette wheel is rotated. Although candidate individual whit a
higher fitness will be more likely to be selected than those who have
lower fitness value, it is still possible that someweaker solutionsmay
be selected in the selection process. This is an advantage for that it
takes into account all individuals in the population, which means
the diversity of the population is being preserved.

After selecting a solution from the first half of the population by
using the RWS operator, it is used to reposition a solution from the
second half by utilizing themask operator. The overall pseudo-code
of the iTGA is detailed in Algorithm 2.



C. Zhong et al. / International Journal of Computational Intelligence Systems 13(1) 247–258 251

Algorithm 2: Pseudo-code of the iTGA.

4. EXPERIMENTAL RESULTS AND
DISCUSSIONS

In this section, fifteen feature selection benchmark datasets from
the UCI [38] machine learning repository are selected to evaluate
the efficiency of the proposed BTGA and iTGA. Table 1 gives a brief
description of these datasets. These datasets are chosen to have var-
ious numbers of features, samples and classes as representatives of

Table 1 Used datasets.

No Dataset Features Instances Classes Data area

1 Breastcancer 9 699 2 Biology
2 HeartEW 13 270 2 Biology
3 WineEW 13 178 3 Chemistry
4 Zoo 16 101 7 Artificial
5 CongressEW 16 435 2 Politics
6 Lymphography 18 148 4 Biology
7 SpectEW 22 267 2 Biology
8 BreastEW 30 569 2 Biology
9 IonosphereEW 34 351 2 Electromagnetic
10 Waveform 40 5000 3 Physics
11 SonarEW 60 208 2 Biology
12 Clean1 166 476 2 Biology
13 Semeion 265 1593 10 Biology
14 Colon 2000 62 2 Biology
15 Leukemia 7129 72 2 Biology

different kinds of problems, that can well exam the searchability
of the algorithm in dealing with feature selection problems. For
each dataset, the instances are randomly divided into two parts
before each test, where 80% of the instances in the dataset is used
for training and the remaining instances is utilized for testing. The
commonly utilized K-nearest neighbor (KNN) learning algorithm
is employed in the experiment to assess the candidate feature sub-
sets. The experiment results in this research are conducted using
MATLAB R2016a on a personal computer with Intel Core i5-2320
3.00GHz and 6GB RAM.

In this paper, the number of search agents (N) is set to 10 and the
maximum iterations is set to 100. The value of k in KNN learning
algorithm is set as 5 [22]. The 𝛼 and 𝛽 parameters in the fitness
function are set to 0.99 and 0.01, respectively. In addition, there are
several parameters in the presented algorithm that need to be ini-
tialized. The number ofN1,N2 andN3 are set empirically as 6, 2 and
2, respectively. Besides, according to the author’s suggestion in liter-
ature [33], another important parameter 𝜆 in the algorithm is set as
0.5. Furthermore, the dimension of each problem is corresponding
to the number of features in each dataset, and all statistical results
are recorded from 30 separate runs.

4.1. Comparison between Proposed
Methods

In this part, convergence and the quality of the results of the
proposed approaches are thoroughly evaluated and compared to
investigate the influence of EPD strategy and RWS scheme on the
proposed variants. For the sake of comparison, the results obtained
from BTGA and iTGA are compared together in one table. Table 2
shows the attained fitness value, classification accuracy and the
number of selected features and standard deviation (Std) results for
BTGA approach versus iTGA.

It is obvious that in Table 2, iTGA can relatively outperform BTGA
in terms of fitness value and classification accuracy over almost all
datasets. The simple basic BTGA cannot expose higher accuracy
than iTGA over all fifteen datasets. However, it can be seen from
Table 2, either iTGA or BTGA have significantly improved the clas-
sification accuracy of using full feature set, especially in dealing
with the HeartEW, WineEW, Zoo, Lymphography, SpectEW and
Colon with an average increase of 16.5%. It is also can be revealed
that iTGA can obtain superior classification accuracy compared to
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Table 2 The fitness value, classification accuracy, number of selected features of proposed methods.

Fitness Value Classification Accuracy Selected Features Full
Datasets BTGA iTGA BTGA iTGA BTGA iTGA KNN

Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std

Breastcancer 0.022 0.010 0.020 0.010 0.982 0.010 0.984 0.010 4.166 1.116 4.3 0.876 0.9714
HeartEW 0.130 0.043 0.126 0.022 0.872 0.044 0.877 0.022 5.366 0.964 5.266 0.868 0.6704
WineEW 0.022 0.015 0.019 0.020 0.981 0.015 0.985 0.020 5.2 1.126 5.1 0.758 0.6910
Zoo 0.013 0.029 0.010 0.027 0.989 0.029 0.993 0.027 5.566 1.478 6.1 1.322 0.8812
CongressEW 0.021 0.011 0.020 0.014 0.982 0.011 0.983 0.014 6.3 1.600 6.733 1.460 0.9333
Lymphography 0.083 0.042 0.081 0.046 0.921 0.043 0.923 0.046 9.166 1.620 8.333 1.561 0.7703
SpectEW 0.106 0.032 0.100 0.041 0.897 0.039 0.903 0.041 10.833 1.795 10 1.485 0.7940
BreastEW 0.047 0.013 0.038 0.015 0.955 0.014 0.965 0.015 11.9 2.139 12.266 1..229 0.9279
IonosphereEW 0.092 0.027 0.083 0.034 0.910 0.024 0.920 0.034 15.166 2.865 15.633 1.884 0.8348
Waveform 0.170 0.007 0.167 0.008 0.834 0.007 0.838 0.007 29.133 3.936 28.2 3.977 0.8104
SonarEW 0.067 0.040 0.062 0.040 0.936 0.040 0.942 0.041 27.133 4.454 28.8 3.294 0.8125
Clean1 0.060 0.021 0.058 0.018 0.944 0.022 0.946 0.018 91.733 12.025 89.933 7.338 0.8782
Semeion 0.021 0.006 0.022 0.009 0.984 0.006 0.984 0.009 130.733 20.631 139.166 12.253 0.9724
Colon 0.095 0.070 0.083 0.070 0.907 0.071 0.920 0.071 753.733 122.733 973.033 15.437 0.7903
Leukemia 0.014 0.030 0.013 0.022 0.988 0.030 0.991 0.023 2493.133 254.568 3484.066 13.310 0.9306

BTGA, binary tree growth algorithm; iTGA, improved tree growth algorithm.

the basic optimizer in tacking the HeartEW,WineEW, Lymphogra-
phy, SpectEW, Waveform and Clean1 datasets with fewer features.
In tackling the Semeion, both BTGA and iTGA have obtained the
same accuracy rate of 98.4%,while regarding the number of selected
features in Table 2, BTGAwith 130.733 selected features has outper-
formed iTGA. However, in terms of the Std of the selected features,
iTGA is much lower than the basic optimizer.

It is obviously that the application of EPD strategy and RWS to the
basic optimizer can bring significant performance improvement.
The reason is that iTGA takes into account all individuals in the
population during the evolution process, which help the algorithm
to maintain the diversity of the population, and this make it has
the ability to avoid local optima and find better solutions. In addi-
tion, the mask operator is utilized to relocate a solution from the
poor half after selecting an individual with the RWS operator. The
use of mask operator enabled iTGA to explore more virginal areas
in the original feature space. The combination of these operators
also improves the power of iTGA in balancing the exploration and
exploitation as compared to the basic optimizer.

To expose the search process of BTGA and iTGA, Figures 2 and 3
show the iterative curves of the best solutions for all the datasets. As
can be seen from Figures 2 and 3, feature selection does not mean
that the fewer features the better. For example, in CongressEW of
Figure 2 when seven features are selected at the 33th–54st itera-
tions, the classification accuracy is 96.6%. However, the algorithm
gets a feature subset with best classification accuracy 97.7% when
eight features are selected. We can also see that feature selection is
the process of continuously removing irrelevant and redundant fea-
tures, and this can be well verified in the example of HeartEW in
Figure 2.

In dealing with HeartEW, the classification accuracy keeps rising,
while the number of selected features maintains a decreasing trend.
When seven features are selected at the 11th–20st iterations, the
classification accuracy reaches 85%. After that, the redundant fea-
tures are continuously removed, and the number of selected fea-
tures is continuously reduced, but the classification accuracy is
improved. Finally, the algorithm achieves 91% classification accu-
racy with only four features.

As can be seen from Figures 2 and 3, compared to iTGA, BTGA has
been trapped in local optima in early steps of the exploration phase,
for instance when tackling the Breastcancer, BreastEW, Clean1,
IonosphereEW, Leukemia tasks. This reveals that improving the
median of population using EPD strategy and RWS strategy may
decrease the chance of iTGA to stagnated to local optima when
searching the virginal regions of feature space. Therefore, it is
shown that iTGA could find better solutions than BTGA in almost
all instances. The trends of iTGA also show that the strategy ofmask
operator has enhanced the comprehensive learning of iTGA to bal-
ance the exploration and exploitation.

4.2. Compared with Other Metaheuristics

In this section, a comprehensive comparative experiment was
implemented between our proposed methods and several state-
of-the-art methods including the method based on binary grav-
ity search algorithm (BGSA) [39]; the method based on binary bat
algorithm (BBA) [40]; the method based on binary gray wolf opti-
mization (BGWO) [41] and the method based on binary grasshop-
per optimization (BGOA) [25]. Without loss of generality, we
used three general evaluation criteria to compare the performance
of these algorithms. The general evaluation measures are shown
below:

• Classification accuracy: The average classification accuracy
gained by using the selected features.

• Number of selected features is the second comparison
criterion.

• The fitness value obtained from each approach is reported.

Wilcoxon’s matched-pairs signed-ranks test [42] is used to detect
whether the improved algorithm is significantly different from
BTGA. Standard deviations of all proposed versions of measure-
ments, datasets and algorithms are also provided. The results are
presented in Tables 3–5. To evaluated the efficiency of these algo-
rithms objectively, all of the results of BGOA, BGWO, BGSA and
BBA were obtained directly from the reported literature [25].
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Figure 2 The iterative curves of solutions using binary tree growth algorithm (BTGA).

Table 3 presents the obtained average classification accuracy and
related standard deviation results for the proposed algorithms ver-
sus other methods. Tables 4 and 5 also reflect the average selected
features, fitness along with the related standard deviation for the
compared algorithms. Note that the best results are highlighted in

bold. In addition, Wilcoxon’s matched-pairs signed-ranks test was
applied to compare these algorithms over all the datasets. Tables 6
and 7 show the results of Wilcoxon’s matched-pairs signed-ranks
test for the classification accuracy and fitness value in Tables 3
and 5.
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Figure 3 The iterative curves of solutions using improved tree growth algorithm (iTGA).

Note that the computational complexity of GOA and bat algorithm
(BA) is of O(t × d × n), where t is the number of iterations, d is the
dimension of problem, n indicates the size of population. The com-
putational complexity of TGA is of O(t × d × n2), which is equal to
that of GOA and GSA. For the binary version of these algorithms,
the time complexity is same as the basic version due to the fact that

the use of binary transfer function does not change the time com-
plexity. Note that the time complexity of iTGA is n/2 unitsmore that
of other algorithms due to the need to re-evaluate the fitness value
of half of the population. Therefore the time complexity of iTGA is
O(t × d × n2 + n/2) ≈ O(t × d × n2). The time complexity of iTGA
is the same as that of the original TGA.
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Table 3 Classification accuracy results.

Dataset
BTGA iTGA BGSA BGOA BGWO BBA

Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev

Breastcancer 0.982 0.010 0.984 0.010 0.957 0.004 0.980 0.001 0.968 0.002 0.937 0.031
HeartEW 0.872 0.044 0.877 0.022 0.777 0.022 0.833 0.004 0.792 0.017 0.754 0.033
WineEW 0.981 0.015 0.985 0.020 0.951 0.015 0.989 0.000 0.960 0.012 0.919 0.052
Zoo 0.989 0.029 0.993 0.027 0.939 0.008 0.993 0.009 0.975 0.009 0.874 0.095
CongressEW 0.982 0.011 0.983 0.014 0.951 0.008 0.964 0.005 0.948 0.011 0.872 0.075
Lymphography 0.921 0.043 0.923 0.046 0.781 0.022 0.868 0.011 0.813 0.028 0.701 0.069
SpectEW 0.897 0.039 0.903 0.041 0.783 0.024 0.826 0.010 0.810 0.014 0.800 0.027
BreastEW 0.955 0.014 0.965 0.015 0.942 0.006 0.947 0.005 0.954 0.007 0.931 0.014
IonosphereEW 0.910 0.024 0.920 0.034 0.881 0.010 0.899 0.007 0.885 0.009 0.877 0.019
Waveform 0.834 0.007 0.838 0.007 0.695 0.014 0.737 0.003 0.723 0.007 0.669 0.033
SonarEW 0.936 0.040 0.942 0.041 0.888 0.015 0.912 0.009 0.836 0.016 0.844 0.036
Clean1 0.944 0.022 0.946 0.018 0.898 0.011 0.863 0.004 0.908 0.006 0.826 0.021
Semeion 0.983 0.006 0.983 0.009 0.971 0.002 0.976 0.002 0.972 0.003 0.962 0.006
Colon 0.907 0.071 0.920 0.071 0.766 0.015 0.870 0.006 0.661 0.022 0.682 0.038
Leukemia 0.988 0.030 0.991 0.023 0.844 0.014 0.931 0.014 0.884 0.016 0.877 0.029
BBA, binary bat algorithm; BGOA, binary grasshopper optimization; BGSA, binary gravity search algorithm; BGWO, binary gray wolf optimization; BTGA, binary tree growth algorithm;
iTGA, improved tree growth algorithm.

Table 4 Average number of selected features results.

Dataset
BTGA iTGA BGSA BGOA BGWO BBA

Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev

Breastcancer 4.166 1.116 4.3 0.876 6.067 1.143 5.000 0.000 7.100 1.447 3.667 1.373
HeartEW 5.366 0.964 5.266 0.868 6.833 1.315 8.400 1.037 8.167 2.001 5.900 1.647
WineEW 5.2 1.126 5.1 0.758 7.367 1.098 8.800 1.472 8.600 1.754 6.067 1.741
Zoo 5.566 1.478 6.1 1.322 8.167 1.177 9.167 1.967 10.367 2.484 6.567 2.501
CongressEW 6.3 1.600 6.733 1.460 6.767 2.402 5.767 2.012 7.300 2.136 6.233 2.063
Lymphography 9.166 1.620 8.333 1.561 9.167 1.895 10.633 1.217 11.100 1.971 7.800 2.203
SpectEW 10.833 1.795 10 1.485 9.533 2.300 11.100 3.044 12.633 2.442 7.967 2.282
BreastEW 11.9 2.139 12.266 1..229 16.567 2.979 17.333 2.440 19.000 4.307 12.400 2.762
IonosphereEW 15.166 2.865 15.633 1.884 15.400 2.513 16.400 3.701 19.233 5.015 13.400 2.594
Waveform 29.133 3.936 28.2 3.977 19.900 2.917 26.233 3.451 31.967 4.612 16.667 3.304
SonarEW 27.133 4.454 28.8 3.294 30.033 3.700 36.767 4.240 36.233 8.613 24.700 5.377
Clean1 91.733 12.025 89.933 7.338 83.700 5.421 92.600 7.802 121.267 20.691 64.767 10.016
Semeion 130.733 20.631 139.166 12.253 133.533 7.422 157.033 11.485 200.100 31.022 107.033 10.947
Colon 753.733 122.733 973.033 15.437 995.833 20.021 1063.667 64.618 1042.100 126.721 827.500 55.371
Leukemia 2493.133 254.568 3484.066 13.310 3555.133 39.713 3768.800 224.842 3663.767 294.872 2860.000 247.642
BBA, binary bat algorithm; BGOA, binary grasshopper optimization; BGSA, binary gravity search algorithm; BGWO, binary gray wolf optimization; BTGA, binary tree growth algorithm;
iTGA, improved tree growth algorithm.

FromTable 3, it can be observed that the good performance of iTGA
approach compared to othermethods. iTGA outperform all contes-
tants on fourteen datasets. BGOA also outperform others two prob-
lems: WineEW and Zoo. In tackling the Zoo dataset, both BGOA
and iTGA achieve the same classification accuracy 99.3%, while
based on the number of selected features in Table 4, iTGA with
6.1 selected features outperform BGOA. Compared with BGWO,
iTGA can provide better results on all issues. In tackling all fif-
teen datasets, the classification accuracy of iTGA have increased in
the range of 1.1% (Semeion) to 25.9% (Colon) in comparison with
BGWO. At the same time, iTGA outperformed BGSA and BBA
on all datasets as well. This results demonstrate that our proposed
method has the ability to explore the solution space and find the
best feature subset that produces higher classification accuracy.

The main reason for increased classification accuracy of the pro-
posed method is that iTGA using the EPD strategy to relocate the
poor solutions around the better ones. During this process, the RWS
mechanism help iTGA to keep the diversity of population by giv-
ing the poor solutions a chance to mutated and crossover with bet-
ter ones. After that, the population restores a stable balance state

between exploration and exploitation. In this way, they can escape
from the case of stagnation to local optima using the stochastic
nature behind the utilized strategy.

From the results in Table 4, it can be seen that BBA is superior to
other algorithms on eight datasets. BTGA and iTGA attained the
second and the third. ForHeartEWandWineEWdataset, it is found
that iTGA can provide the best results.

From the results in Table 5, it can be seen that the proposed
approach can outperform other methods and obtain the best fit-
ness value in tackling fourteen datasets. Furthermore, our proposed
approach attains better costs compared to BGOA on 86.6% of the
datasets, and outperforms other algorithms on all datasets. The rea-
son is that the EPD strategy and RWS mechanism assist the pro-
posed method to keep the diversity of population and the use of
mask operator also enhances the exploitative ability of the algo-
rithm. All of these make iTGA has the ability of keeping a stable
balance between the exploration and exploitation during the opti-
mization process.
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Table 5 Fitness value results.

Dataset
BTGA iTGA BGSA BGOA BGWO BBA

Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev

Breastcancer 0.022 0.010 0.020 0.010 0.049 0.003 0.026 0.001 0.039 0.003 0.044 0.005
HeartEW 0.130 0.043 0.126 0.022 0.226 0.021 0.171 0.004 0.213 0.017 0.208 0.015
WineEW 0.022 0.015 0.019 0.020 0.054 0.015 0.018 0.001 0.047 0.012 0.036 0.013
Zoo 0.013 0.029 0.010 0.027 0.065 0.008 0.012 0.008 0.032 0.009 0.042 0.015
CongressEW 0.021 0.011 0.020 0.014 0.053 0.008 0.039 0.005 0.056 0.011 0.064 0.015
Lymphography 0.083 0.042 0.081 0.046 0.222 0.022 0.137 0.011 0.191 0.028 0.226 0.024
SpectEW 0.106 0.032 0.100 0.041 0.220 0.024 0.177 0.010 0.194 0.014 0.172 0.012
BreastEW 0.047 0.013 0.038 0.015 0.063 0.006 0.058 0.004 0.051 0.007 0.056 0.006
IonosphereEW 0.092 0.027 0.083 0.034 0.122 0.012 0.105 0.007 0.120 0.009 0.108 0.012
Waveform 0.170 0.007 0.167 0.008 0.307 0.014 0.267 0.003 0.283 0.007 0.304 0.014
SonarEW 0.067 0.040 0.062 0.040 0.116 0.015 0.094 0.008 0.169 0.016 0.110 0.021
Clean1 0.060 0.021 0.058 0.018 0.106 0.010 0.141 0.004 0.099 0.006 0.156 0.013
Semeion 0.021 0.006 0.021 0.009 0.034 0.002 0.030 0.001 0.036 0.003 0.033 0.003
Colon 0.095 0.070 0.083 0.070 0.237 0.014 0.134 0.006 0.341 0.022 0.279 0.035
Leukemia 0.014 0.030 0.013 0.022 0.160 0.013 0.073 0.014 0.120 0.016 0.085 0.023
BBA, binary bat algorithm; BGOA, binary grasshopper optimization; BGSA, binary gravity search algorithm; BGWO, binary gray wolf optimization; BTGA, binary tree growth algorithm;
iTGA, improved tree growth algorithm.

Table 6 Wilcoxon’s matched-pairs test on classification
accuracy.

iTGA vs R+ R− P value

BTGA 120 0 1.2207e-04
BGSA 120 0 6.1035e-5
BGOA 117 3 0.0018
BGWO 120 0 6.1035e-5
BBA 120 0 6.1035e-5
BBA, binary bat algorithm; BGOA, binary grasshopper optimization;
BGSA, binary gravity search algorithm; BGWO, binary gray wolf opti-
mization; BTGA, binary tree growth algorithm; iTGA, improved tree
growth algorithm.

Table 7 Wilcoxon’s matched-pairs test on fitness value.

iTGA vs R+ R− P value

BTGA 111 9 1.2207e-04
BGSA 120 0 6.1035e-05
BGOA 119 1 9.7656e-04
BGWO 120 0 6.1035e-05
BBA 120 0 6.1035e-05
BBA, binary bat algorithm; BGOA, binary grasshopper optimization;
BGSA, binary gravity search algorithm; BGWO, binary gray wolf opti-
mization; BTGA, binary tree growth algorithm; iTGA, improved tree
growth algorithm.

Wilcoxon’s matched-pairs signed-ranks test [42] was applied to
compare these algorithms on all the datasets. This test calculates the
performance differences of two algorithms and ranks them based
on their magnitudes. Rankings are aggregated according to their
sign R+ for iTGA and R- for the other method. Finally, we calcu-
late the probability that supports the null-hypothesis, the p-value,
which assumes that the performance of these algorithms is equiva-
lent. Tables 6 and 7 present the results of theWilcoxon test for each
criterion.

From the results in Tables 6 and 7, it can be seen that none of the
contrast algorithmoutperforms iTGA.On the contrary, iTGAoften
provides statistically better results. Based on the results obtained,
we can conclude that the EPD strategy and RWS mechanism have

improved the balance between exploration and exploitation. There-
fore, iTGA can overcome the drawback of being trapped into local
optima.

4.3. Compared with Filter-Based Methods

In this section, the classification accuracy of iTGA is compared
with five well-known filter-based feature selection methods: fast
correlation-based filters (FCBF) [43], correlation-based feature
selection (CFS) [10], F-score [8], IG [7] and Spectrum [44]. These
methods are selected from two different categories: univariate and
multivariate methods. The F-Score, IG and Spectrum are from uni-
variate filter-based methods that do not consider the dependence
of features in the evaluation criterion. The CFS and FCBF come
from the multivariate filter-based categories, which the dependen-
cies between features is considered in the evaluation of the correla-
tion of features.

The reason why these methods are compared is that they have dif-
ferent strategies to utilize the class label of the training datasets to
accomplish the analysis of feature relevance. The supervised meth-
ods include FCBF, CFS, IG and F-score are able to use class tags,
while the unsupervised approaches such as Spectrum cannot utilize
class tags for analyzing the features. Table 8 illustrated the results of
average classification accuracy after 30 runs using these filter-based
methods and iTGA.

From the results in Table 8, it is clear that our proposed algorithm
can outperform other filter-based methods on fourteen datasets,
while the FCBF algorithm provided the best result for Breastcancer
dataset. iTGA outperform the supervised univariate feature selec-
tion methods include F-Score and IG, the supervised multivariate
feature selection method such as CFS and FCBF, and the unsu-
pervised Spectrum method. The experimental results show that
the proposed method can effectively mine the feature space, find
the optimal reduction, and improve the classification accuracy. The
results also prove that the wrapper-based feature selection methods
can provide better solutions than filter-based approaches because
they can use both class labels and correlations during the selection
of feature subsets.
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Table 8 Classification accuracy results of filter-based methods and iTGA.

Dataset CFS FCBF F-score IG Spectrum iTGA

Breastcancer 0.957 0.986 0.979 0.957 0.957 0.984
HeartEW 0.648 0.648 0.759 0.759 0.796 0.877
WineEW 0.778 0.889 0.861 0.889 0.889 0.985
Zoo 0.800 0.900 0.650 0.850 0.600 0.993
CongressEW 0.793 0.793 0.908 0.828 0.828 0.983
Lymphography 0.500 0.567 0.667 0.667 0.767 0.923
SpectEW 0.736 0.774 0.793 0.793 0.736 0.903
BreastEW 0.825 0.798 0.930 0.930 0.772 0.965
IonosphereEW 0.857 0.857 0.729 0.800 0.829 0.920
Waveform 0.620 0.710 0.662 0.662 0.292 0.838
SonarEW 0.310 0.214 0.048 0.191 0.048 0.942
Clean1 0.716 0.642 0.632 0.547 0.611 0.946
Semeion 0.875 0.875 0.875 0.868 0.875 0.983
Colon 0.750 0.667 0.667 0.667 0.500 0.920
Leukemia 0.929 0.857 0.980 0.980 0.357 0.991
CFS, correlation-based feature selection; FCBF, fast correlation-based filters; IG, informa-
tion gain; iTGA, improved tree growth algorithm.

5. CONCLUSIONS

Feature selection plays a substantial role in data preprocessing that
speeds up the model building process and improves algorithm per-
formance by excluding the redundant and irrelevant features. The
wrapper-based feature selection methods suffered from high com-
putational cost of selecting the appropriate feature subset from
a high-dimensional feature space. Therefore, the metaheuristics,
which are well-regarded for their powerful global search ability,
provide a new way to solve feature selection problems.

TGA is a recent proposed population-based metaheuristic, which
shows great power of search ability in solving optimization of con-
tinuous problems. However, TGA cannot be directly applied to fea-
ture selection problems. Also, we find that its efficiency still leave
room for improvement. For this reason, in this paper, a novel iTGA
is proposed to tackle the feature selection problems. First, we pre-
sented a new binarization method to transform the algorithm from
continuous to discrete version to solve the problem of feature selec-
tion. Second, a linearly increasing parameter tuning mechanism is
proposed to tune the parameter in TGA. Third, TGA was equipped
with EPD strategy to improve the search ability of TGA in solving
feature selection problems. Fourth, fifteenwell-knownUCIdatasets
were selected to asses and compare the performance of our method
with other metaheuristics and some filter-based feature selection
methods. Three criteria were reported to evaluate each approach:
classification accuracy, fitness value, number of selected features.

We believe that the use of linearly increasing parameter tuning
mechanism and EPD strategy improves the search ability of the
algorithm and prevent algorithm from stagnating into local optima,
so as to obtain better results. The result of comparative experiments
also verify the superiority of iTGA compared with other state-of-
the-art methods.
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