Urban Transportation: Performance and Problems
(Case Study: Route of ABG, CKL, and AT)

Septiana Hariyani
Urban and Regional Planning
Department
Brawijaya University
Malang, Indonesia
septianahariyani@ub.ac.id

Budi Sugianto Waloejo
Urban and Regional Planning
Department
Brawijaya University
Malang, Indonesia
budieswe@ub.ac.id

Mahasti Adityasari
Urban and Regional Planning
Department
Brawijaya University
Malang, Indonesia
adityasarimahasti@gmail.com

Abstract—ABG, CKL, and AT are public transportation (called angkot) with the longest route in Malang. The length of the routes of ABG, CKL, and AT is 26m, 22Km, and 18Km. This research aims to determine the performance of three public transportation and to provide a new route recommendation. The operational performance is assessed from headway, load factor, and travel time. The service performance is assessed from safety, comfort, affordability, and regularity. Result of the operational performance shows that the load factor of three public transportation has met the specified standard, the headway and the travel time of ABG and AT has met the standards, however, CKL’s headway and travel time have not met the standard. The Importance-Performance Analysis (IPA) shows that there are some service attributes which need to be improved. The recommendations that can be given are shortened the trajectory of ABG and extend the track for CKL and AT.

Keywords: Importance Performance Analysis, operational performance, public transportation, routes, service performance

I. INTRODUCTION

Transportation is a type of service that can be used to move goods from an area (origin) to another area (destination) [1], [2]. Transportation requests will arise if there is a purpose in the request, for example, the desire for recreation, the desire to work or go to school, the desire to shop and so on [3]. Transportation requests are inseparable from the needs and availability of transportation that serves the movement of people and goods.

One of the urban transportations that can be used by society is city transportation [4]. City transportation (angkot) is a facility that serves the movement of both passengers and goods in an urban area. Angkot is in the form of motorized vehicles and used by the community with certain fares collected directly or indirectly [5]. Angkot has a predetermined route and different travel times in serving community movements.

Malang has 25 public transportation routes with the number of vehicles in operation is 1153 vehicles [6]. Each angkot has different routes and destinations. The optimal city transportation route can be seen from the distance and travel time of a trip by paying attention to the density of the road at a certain time [7], [8]. The density of the road at a certain time can affect the travel time of an angkot from its origin to the destination. If the traffic volume exceeds the existing road capacity, it will cause transportation problems which are called congestion [9].

ABG, CKL, and AT are angkot with the longest routes compared to other angkot in Malang City. The length of the ABG route is 26 Km which stretches from the northern part of Malang City to the south. The length of the CKL route is 22 km that stretches from the east to the west of Malang City. Whereas AT has a route length of 18 Km that stretches from the north to the west of Malang City. The three angkot pass through the road sections which often experience congestion at certain times (peak time), namely Sunandar Priyo Sudarmo Street, Kol. Sugiono Street, Gatot Subroto Street, Ranu Grati Street, and Panji Suroso Street [6]. Those roads are not only passed by ABG, CKL, and AT but also by many other angkot with different routes so that overlapping routes occur. The overlapping route can affect service performance and operational performance of ABG, CKL, and AT.

The operational performance of ABG, CKL, and AT have not met the standards set by the Director-General of Land Transportation in 2002, i.e. the standard for load factor is 70% during peak hours and non-busy hours and the headway set is 2-5 minutes during peak hours and 5-10 minutes when the hours are not busy. The load factor for ABG routes is only 31% with 19 minutes of headway [10]. The CKL route load factor is 34% with 18 minutes headway while the load factor AT route is 43% with 27 minutes headway [6].

The objectives of this study are twofold. The first is to determine the performance of public transportation in Malang City, especially the ABG, CKL, and AT routes, by assessing the operational performance of public transportation and service performance. The second is to provide recommendations for optimal city transport route in Malang City based on the trip generation of Malang residents.

II. RESEARCH METHODOLOGY

Stratified Random Sampling is used to calculate the samples. The sample size is determined using the Slovin formula [11].

\[n = \frac{N(1+N(e)^2)}{(1+N(e)^2)} + \frac{77(1+77(10\%)^2)}{2} \]

Copyright © 2020 The Authors. Published by Atlantis Press SARL. This is an open access article distributed under the CC BY-NC 4.0 license -http://creativecommons.org/licenses/by-nc/4.0/.
where,
\(n = \) number of sample
\(N = \) population
\(e = \) significance level = 10%

Sample for each angkot can be calculated using (2).

\[
 n = (\text{angkot/population}) \times \text{Sample (2)}
\]

TABLE I. SUMMARY OF RESEARCH SAMPLE

<table>
<thead>
<tr>
<th>No.</th>
<th>Route</th>
<th>Angkot Sample</th>
<th>Passengers Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ABG</td>
<td>20</td>
<td>83</td>
</tr>
<tr>
<td>2</td>
<td>CKL</td>
<td>10</td>
<td>72</td>
</tr>
<tr>
<td>3</td>
<td>AT</td>
<td>14</td>
<td>77</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>44</td>
<td>232</td>
</tr>
</tbody>
</table>

Headway analysis is used to determine the difference in time needed between two city transports with the same route [4], [13].

\[
 \text{Headway (H)} = \frac{60}{\text{Frequency}} \quad (3)
\]

Load Factor Analysis is used to compare the number of passengers in city transportation with the transport capacity [4], [12].

\[
 \text{Load Factor (LF)} = \frac{\text{(No. of Passengers/Capacity)}}{100}\% \quad (4)
\]

Travel Time Analysis aims to determine the effectiveness of public transport by calculating the travel time of public transport trips from origin to destination [4], [13].

\[
 W = \frac{T}{J} \quad (5)
\]

Importance-Performance Analysis (IPA) used to measure the level of importance along with the satisfaction of angkot customers towards the services of security, safety, comfort, affordability, and regularity of angkot in Malang City [14]. The level of conformity is calculated using:

\[
 T_{ki} = \frac{(X_i/Y_i)}{100}\% \quad (6)
\]

where,
\(T_{ki} = \) Level of conformity
\(X_i = \) Performance score
\(Y_i = \) Importance score

The average score for each variable was plotted in the two-dimensional state space to create the IPA diagram. The vertical axis illustrates the importance score, while the performance score is labeled by the horizontal axis. The IPA diagram consists of four quadrants, i.e., concentrate here, keep up with the good work, low priority, and possibly overkill. The first-quadrant, i.e., concentrate here, which is located in the north-west corner is the one with low performance but importantly perceived by the customers, therefore the company should invest more to improve these attributes so the customers will be delighted. The second-quadrant is kept up with the good work. It is the one that is considered as important and the customers are fond of the performance of the service. The third-quadrant is a low priority. The attribute belongs here are performing well but customers perceive them as less important when compared with other attributes. The last or the fourth-quadrant is considered less important by the customers and felt too excessive so that need to be reduced due to the excessive investment. Trip Generation Analysis aims to estimate the amount of movement from the origin zone to the destination zone [3], [7]. Malang City is divided into 27 zones spread in each sub-district.

III. RESULT

A. Passenger Profile

The participants of this survey were required to have been experienced in doing transactions with the object of the study. The potential participants were first approached and asked if they agreed to participate in the survey. The profile of the passengers is shown in TABLE II.

TABLE II. SUMMARY OF PASSENGER PROFILE

<table>
<thead>
<tr>
<th>No.</th>
<th>Question Item</th>
<th>ABG</th>
<th>CKL</th>
<th>AT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Age in year</td>
<td>21-30</td>
<td>21-30</td>
<td>31-40</td>
</tr>
<tr>
<td>2</td>
<td>Sex</td>
<td>Female</td>
<td>Female</td>
<td>Female</td>
</tr>
<tr>
<td>3</td>
<td>Occupation</td>
<td>Employee</td>
<td>Student</td>
<td>Employee</td>
</tr>
<tr>
<td>4</td>
<td>Income level</td>
<td>Rp1.000.000 – Rp1.500.000</td>
<td>Rp1.000.000</td>
<td>Rp1.000.000 – Rp1.500.000</td>
</tr>
<tr>
<td>5</td>
<td>Intention</td>
<td>Transport to work</td>
<td>Transport to work</td>
<td>Transport to work</td>
</tr>
<tr>
<td>6</td>
<td>Travel time</td>
<td><30 minutes</td>
<td><30 minutes</td>
<td><30 minutes</td>
</tr>
<tr>
<td>7</td>
<td>Fare</td>
<td>< Rp10.000</td>
<td>< Rp10.000</td>
<td>< Rp10.000</td>
</tr>
</tbody>
</table>

B. Headway Analysis

The headway of ABG, CKL, and AT is declared correspond if it meets the standards set by the Director-General of Land Transportation in 2002 which are shown in TABLE III. TABLE III summarizes the headway of ABG, CKL, and AT.

TABLE III. SUMMARY OF HEADWAY OF ABG, CKL, AND AT

<table>
<thead>
<tr>
<th>Route</th>
<th>Operational Hour</th>
<th>Weekday (in minutes)</th>
<th>Weekend (in minutes)</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arjosari – Gadang</td>
<td>Busy</td>
<td>3.58</td>
<td>3.18</td>
<td>Met the standard</td>
</tr>
<tr>
<td></td>
<td>Non-busy</td>
<td>4.5</td>
<td>5.43</td>
<td>Met the standard</td>
</tr>
<tr>
<td>Gadang – Arjosari</td>
<td>Busy</td>
<td>3.66</td>
<td>4.1</td>
<td>Met the standard</td>
</tr>
<tr>
<td></td>
<td>Non-busy</td>
<td>4.84</td>
<td>5.16</td>
<td>Met the standard</td>
</tr>
<tr>
<td>Cemoro Kandang – Landungsari</td>
<td>Busy</td>
<td>11.68</td>
<td>8.81</td>
<td>Haven’t met the standard</td>
</tr>
<tr>
<td></td>
<td>Non-busy</td>
<td>20.15</td>
<td>22.70</td>
<td>Haven’t met the standard</td>
</tr>
</tbody>
</table>
C. Load Factor Analysis

The load factor of ABG, CKL, and AT is declared correspond if it meets the standards set by the Director-General of Land Transportation in 2002 which are shown in TABLE IV. TABLE IV summarizes the load factor of ABG, CKL, and AT.

<table>
<thead>
<tr>
<th>Route</th>
<th>Operational Hour</th>
<th>Weekday (in minutes)</th>
<th>Weekend (in minutes)</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arjosari – Gadang</td>
<td>Busy</td>
<td>11.28</td>
<td>13.18</td>
<td>Met the standard</td>
</tr>
<tr>
<td></td>
<td>Non-busy</td>
<td>16.62</td>
<td>18.96</td>
<td>Met the standard</td>
</tr>
<tr>
<td>Gadang – Arjosari</td>
<td>Busy</td>
<td>5</td>
<td>5.78</td>
<td>Met the standard</td>
</tr>
<tr>
<td></td>
<td>Non-busy</td>
<td>7.71</td>
<td>8.15</td>
<td>Met the standard</td>
</tr>
<tr>
<td>Arjosari – Tidar</td>
<td>Busy</td>
<td>5</td>
<td>5.48</td>
<td>Met the standard</td>
</tr>
<tr>
<td></td>
<td>Non-busy</td>
<td>8.21</td>
<td>7.91</td>
<td>Met the standard</td>
</tr>
<tr>
<td>Tidar – Arjosari</td>
<td>Non-busy</td>
<td>8.21</td>
<td>7.91</td>
<td>Met the standard</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Route</th>
<th>Operational Hour</th>
<th>Weekday (in minutes)</th>
<th>Weekend (in minutes)</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemoro – Landungsari</td>
<td>Busy</td>
<td>90</td>
<td>68.5</td>
<td>Met the standard</td>
</tr>
<tr>
<td></td>
<td>Non-busy</td>
<td>115</td>
<td>113</td>
<td>Met the standard</td>
</tr>
<tr>
<td>Gadang – Arjosari</td>
<td>Busy</td>
<td>90.5</td>
<td>109</td>
<td>Met the standard</td>
</tr>
<tr>
<td></td>
<td>Non-busy</td>
<td>106</td>
<td>120</td>
<td>Met the standard</td>
</tr>
<tr>
<td>Arjosari – Tidar</td>
<td>Busy</td>
<td>55</td>
<td>58</td>
<td>Met the standard</td>
</tr>
<tr>
<td></td>
<td>Non-busy</td>
<td>76</td>
<td>72</td>
<td>Met the standard</td>
</tr>
<tr>
<td>Tidar – Arjosari</td>
<td>Busy</td>
<td>59.5</td>
<td>64.5</td>
<td>Met the standard</td>
</tr>
<tr>
<td></td>
<td>Non-busy</td>
<td>70</td>
<td>75</td>
<td>Met the standard</td>
</tr>
</tbody>
</table>

D. Travel Time Analysis

The travel time of ABG, CKL, and AT is declared correspond if it meets the standards set by the Director-General of Land Transportation in 2002 which are shown in TABLE V. TABLE V summarizes the travel time of ABG, CKL, and AT.

<table>
<thead>
<tr>
<th>Route</th>
<th>Operational Hour</th>
<th>Weekday (in minutes)</th>
<th>Weekend (in minutes)</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arjosari – Gadang</td>
<td>Busy</td>
<td>55</td>
<td>52.5</td>
<td>Met the standard</td>
</tr>
<tr>
<td></td>
<td>Non-busy</td>
<td>73</td>
<td>70</td>
<td>Met the standard</td>
</tr>
<tr>
<td>Gadang – Arjosari</td>
<td>Busy</td>
<td>55.5</td>
<td>53</td>
<td>Met the standard</td>
</tr>
<tr>
<td></td>
<td>Non-busy</td>
<td>62</td>
<td>65</td>
<td>Met the standard</td>
</tr>
</tbody>
</table>

E. Service Performance of ABG, CKL, and AT

The IPA diagram of the result of the ABG study is shown in Fig. 1. The item statements belong to the first quadrant are smoking prohibition (6), waiting time (9), and route conformity (13). It means that the service provider (ABG) needs to pay attention to those item statements and invest more to gain satisfactory from the customers. The statements belong to the second quadrant are exit and entrance (3), load factor (4), windows (5), fares (7), and travel time (11). Since the second quadrant shows the attributes that have high performance and high importance values, the ABG needs to keep up its good work to maintain a satisfactory level from the customers. The statements belong to the third quadrant are lighting (1), window film usage (2), and headway (10). The ABG *angkot* does not need to invest more on those item statements because the customers do not consider them as important. The last, the statements that belong to the fourth quadrant are *angkot* availability (8) and arrival schedule (12). These attributes need to be reduced due to excessive investment.

The IPA diagram of the result of the CKL *angkot* study is shown in Fig. 1. The item statements belong to the first quadrant are waiting time (9), headway (10), travel time (11), and arrival schedule (12). It means that the service provider (CKL *angkot*) needs to pay attention to those item statements and increase more to gain satisfactory from the customers. The statements belong to the second quadrant are exit and entrance (3), load factor (4), windows (5), fares (7), *angkot* availability (8), and route conformity (13). Since the second quadrant shows the attributes that have high performance and high importance values, the CKL *angkot* needs to keep up its good work to maintain the satisfactory level from the customers. The statements belong to the third quadrant are smoking prohibition (6), waiting time (9), and route conformity (13). Since the second quadrant shows the attributes that have high performance and high importance values, the CKL *angkot* needs to keep up its...
good work to maintain the satisfactory level from the customers. The statements belong to the third quadrant are lighting (1), exit and entrance (3), windows (5), and smoking prohibition (6). The AT angkot does not need to invest more on those item statements because the customers do not consider them as important. The last, there are no statements that belong to the fourth quadrant.

![IPA Diagram of ABG, CKL, and AT.](image)

F. Trip Generation Analysis
- ABG passes through settlements and public facilities. Whereas public facilities that are passed are offices, educational facilities, trade and services, religious facilities, health facilities, and recreational facilities.
- CKL passes through settlements, public facilities, and agriculture that located on Cemoro Kandang Street. The public facilities that passed by CKL are in the form of offices, educational facilities, trade and services, health facilities, and recreational facilities.
- AT passes used lands in the form of settlements and public facilities. Whereas public facilities that are passed by AT angkot are in the form of offices, educational facilities, trade and services, religious facilities, and recreational facilities.

G. Route Recommendations
- **Route for ABG Angkot**

 The new route recommended for ABG angkot is from Arjosari Terminal to Martadinata Street. The length of the new ABG angkot route reaches 22 Km, while the route to Gadang Terminal reaches 26 Km. This is because customers who are driven to Kol. Sugiono Street and Raya Gadang Street declined. Here is the routes recommendation for ABG angkot:

 1. Departure Route

 2. Return Route

- **Route for CKL Angkot**

 The length of the new recommended route for CKL angkot is 22.3 Km which was previously only 22 Km. The route passes Candi Panggung Barat Street, which along the way there are housing, trade and services, government and public services, and educational facilities. The following is the recommended CKL angkot routes:
1. Departure Route

2. Return Route

The transfer of the route from Simpang Candi Panggung Barat Street to Candi Panggung Street increased the load factor of the CKL angkot from 35.71% to 59.74%. While the load factor of the CKL public transportation when passing Candi Panggung Street increased from 35.71% to 71.4%. On this road, the load factor of CKL angkot is under the standard set at 70%.

Fig. 2 shows the route recommendation for CKL angkot.

Route for AT Angkot

The recommendation of the new AT angkot route is the transfer of AT angkot routes from Gading Street and Sanggabuana Street to Dieng Highway and the transfer of routes from Bukit Barisan Street and Lokon Street to Galunggung Street. Land usage passed by CKL angkot is more varied including housing, trade and services, as well as government and public services. The recommendations for AT angkot routes are as follows:

1. Departure Route

The recommended route has a length of 18.5 Km which was previously only 18 Km. The transfer of the AT angkot route from Gading Street and Sanggabuana Street to Dieng Highway increased the load factor of the AT angkot from 28.57% to 57.13%. Whereas the transfer of routes from Bukit Barisan Street and Lokon Street to Galunggung Street increases the load factor from 28.57% to 41.06%. Fig. 2, Fig. 3 and Fig. 4 show the route recommendation.
IV. CONCLUSIONS

From the analysis of operational performance using headway, load factor, and travel time analysis, it is known that the ABG and AT headways are in line with service standards while the CKL headway still has not met headway standards. The load factor for this angkot is still below 70%, it means that the load factors are not under the standard. While the travel time for these three angkot has met the standard except for the travel time for CKL in the direction of Landungsari - Cemoro Kandang Terminal on weekends and weekdays. From the analysis of service performance using IPA, the attributes of ABG angkot services that need to be improved are smoking prohibition, waiting time, and route conformity. The attributes of CKL public transportation services that need to be updated are waiting time, the time between, travel time, and arrival schedule. While the attributes of AT angkot services that need to be improved are waiting time, the time between, arrival schedule, and route conformity. The route recommendations for the ABG is to shorten the route from a length of 26 Km to 22 Km. Where as the other two angkot routes are extended from 22 Km to 22.3 Km for CKL angkot and from 18 Km to 18.5 Km for AT angkot.

REFERENCES