P136 Determinants of Arterial Stiffness in Children Using Population-indexed Anthropometric and Hemodynamic Parameters

Tommy Cai¹,², Alice Meroni¹, Ahmad Qasem¹,⁴, Mark Butlin³, Julian Ayer¹,⁵, David Celermajer¹,², Alberto Avolio³, Michael Skilton¹

¹University of Sydney, Sydney, Australia
²Royal Prince Alfred Hospital, Sydney, Australia
³Macquarie University, Sydney, Australia
⁴AtCor Medical, Sydney, Australia
⁵The Children’s Hospital at Westmead, Sydney, Australia

ABSTRACT

Background: Arterial stiffness is a significant cardiovascular risk factor. Carotid-femoral pulse wave velocity (cfPWV) is the standard for measuring arterial stiffness, but indices such as central augmentation index (cAIx) and carotid artery elasticity (cE[p]) also correlate to arterial stiffness. Early-life determinants of arterial stiffening are not well understood. We assessed the relationship between population-indexed anthropometric and hemodynamic parameters, and arterial stiffness in healthy children.

Methods: 97 healthy children between 2 to 20 years old were recruited. Z-scores for height, BMI, and brachial systolic (bSBP) and diastolic (bDBP) blood pressure were calculated [1,2]. cfPWV and central arterial waveforms were measured using the Sphygmocor XCEL and CvMS devices (AtCor, Sydney) respectively. Carotid artery maximum and minimum diameters were measured by high-resolution ultrasonography. cfPWV, cE[p], and cAIx were calculated.

Results: In bivariate analysis, cfPWV was associated with age (b = 0.52, p < 0.01) and bSBP z-score (b = 0.24, p = 0.03). These associations were independent of sex, height z-score, BMI z-score, and bDBP z-score in a multivariable model (R² = 0.23). cE[p] was significantly associated with age (b = 0.42, p < 0.01), bSBP z-score (b = 0.45, p < 0.01), and height z-score (b = -0.33, p = 0.01), but only bSBP z-score remained statistically significant in the multivariable model (b = 0.45, p < 0.01; R² = 0.20). cAIx was not associated with anthropometric or hemodynamic z-scores.

Conclusion: cfPWV is associated with age and bSBP z-score, while cE[p] is associated with bSBP z-score only, suggesting a potentially key association between systolic blood pressure and indices of arterial stiffness independent of age and other parameters of growth during healthy early life.

REFERENCES


© 2019 Association for Research into Arterial Structure and Physiology. Publishing services by Atlantis Press International B.V. This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).