ABSTRACT

Purpose/Background/Objectives: Acute kidney injury (AKI) is a serious postoperative complication. Increased arterial stiffness has been shown to be an independent risk factor for cardiovascular events. Our aim was to investigate whether arterial stiffness is a predictor of AKI in patients following surgical aortic valve replacement (SAVR).

Methods: Eighty-four patients (mean age 72 ± 8 years, 34 females) with moderate to severe aortic stenosis undergoing SAVR were included. As indicators of arterial stiffness aortic hemodynamics, carotid-femoral pulse wave velocity (cfPWV) and brachial-ankle pulse wave velocity (baPWV) were assessed prior to surgery. Renal dysfunction was defined when eGFR was below 60 ml/min (n = 28, 33%). AKI was defined using KDIGO criteria.

Results: Twelve patients (14%) developed AKI. There was no significant difference in aortic hemodynamics and cfPWV between the two groups. baPWV significantly correlated with AKI (r = 0.313, p = 0.004). In logistic regression analysis, increase of baPWV per 1 Standard Deviation (Odds Ratio [OR] = 2.76, 95% Confidence intervals [CI]: 1.25–6.11, p = 0.012) and presence of renal dysfunction (OR = 14.93, 95% CI: 2.55–87.32, p = 0.003) were associated with higher risk for AKI even after adjustment for age, gender, systolic blood pressure and diabetes. baPWV was a stronger predictor of AKI than baseline creatinine (Area under the curve [AUC] 0.68, 95% CI: 0.52–0.84, p = 0.05 vs AUC 0.61, 95% CI: 0.46–0.77, p = 0.21; p < 0.05).

Conclusion: baPWV could be considered as a useful predictive biomarker for AKI after SAVR, especially in patients with renal dysfunction prior to surgery.

© 2019 Association for Research into Arterial Structure and Physiology. Publishing services by Atlantis Press International B.V. This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).