P4.1: ARTERIAL STIFFNESS IN INFLAMMATORY BOWEL DISEASE: A SYSTEMATIC REVIEW

Luca Zanoli*, Stefania Rastelli, Jean-Philippe Empana, Pierre Boutouyrie, Stephane Laurent, Pietro Castellino

To cite this article: Luca Zanoli*, Stefania Rastelli, Jean-Philippe Empana, Pierre Boutouyrie, Stephane Laurent, Pietro Castellino (2015) P4.1: ARTERIAL STIFFNESS IN INFLAMMATORY BOWEL DISEASE: A SYSTEMATIC REVIEW, Artery Research 12:C, 15–15, DOI: https://doi.org/10.1016/j.artres.2015.10.245

To link to this article: https://doi.org/10.1016/j.artres.2015.10.245

Published online: 7 December 2019
Methods: From the outpatient hypertensive cohort (N=773) two groups were chosen — (1) white coat effect patients “WCHT” with systolic office blood pressure (OSBP) > 140 mmHg, and 24-hour systolic blood pressure < 130 mmHg measured with normotensive 24-hour SBP > 130 mmHg “MHTN”. Anthropometric measurements, together with basic cardiovascular risk factors and target organ damage assessment were performed.

Results: In univariate analyses age, weight, BMI, waist circumference, as well as biochemical markers (total cholesterol, HDL, LDL-C, triglycerides, glucose levels) were comparable between the groups (P=NS, for all comparisons). MHTN patients presented with more pronounced target organ damage markers (eGFR, LVH, IMT) except for cfPWV (11.4 vs. 9.6 m/s for WCHT vs. MHTN, respectively; P=0.001). Nevertheless, the multivariate analysis adjusted to the levels of OSBP, HR and age showed marked attenuation of the observed PWV difference (P=0.84 for the model).

Conclusion: Single time office pulse wave velocity measurement in white coat effect presenting patients may not be a sufficient tool for the accurate assessment of subclinical damage. Thus sequential PWV measurement or other methods should be considered in this group of patients.

P3.21
ASSOCIATIONS OF INSULIN-LIKE GROWTH FACTOR AND ITS BINDING PROTEIN-2 AND 3 WITH BLOOD PRESSURE AND ARTERIAL STRUCTURE AND FUNCTION IN HYPERTENSIVE PERIMENOPAUSAL WOMEN

Agnieszka Olzanecka 1, Kalina Kawecka-Jaszcz, Danuta Czarnecka
Jagiellonian University Medical College, 1st Department of Cardiology, Interventional Electcardiology and Hypertension, Krakow, Poland

IGFs and their binding proteins are increasingly recognized as important in understanding the pathogenesis of cardiovascular disease. During the transition from premenopause to postmenopause, many women experience weight gain, hence we hypothesized that circulating growth hormones can play a role in the pathogenesis of hypertension and subclinical organ damage in perimenopausal women.

The study included 152 women with newly diagnosed, never treated hypertension and 40 normotensive age-matched controls (mean age 51.73±1.82 years). In all subjects 24-hr ABPM, carotid ultrasound with measurement of intima-media thickness (IMT), and carotid-femoral pulse wave velocity (PWV) measurement (Sphygmocor) were performed. Serum levels of IGF-I, IGFBP2 and IGFBP3 and were measured using an immunochimical assay.

Results: Postmenopausal women (n=91) did not differ from premeno-pausal (n=99) in respect to mean arterial pressure (normotensive 85.2±5.6 vs 84.4±4.9 mmHg; hypertensive 99.5±5.9 vs 98.8±5.3 mmHg). Hypertensive women had significantly lower IGFBP-2 level than normotensive (162.8±3 vs 273±101 µg/l, P=0.001); groups did not differ in IGF and IGFBP3 concentration. IGFBP2 was the independent predictor of blood pressure in the examined group. In multivariate regression analysis after adjustment at age and BMI — IGFBP2 remained significantly negatively correlated to BP (β=-0.33, P=0.001). Odds ratio for hypertension per SD decrease in IGFBP2 was 3.43 (95% CI 1.65-7.13). IGFBP2 was independently of BP related with PWV (β=-0.22, P=0.05) but not with IMT (β=-0.14, P=0.22).

Conclusions: In perimenopausal women decreased IGFBP2 level may play a role in the blood pressure regulation. Further longitudinal studies are needed to elucidate the cardioprotective role of IGFBP2.

P4.1
ARTERIAL STIFFNESS IN INFLAMMATORY BOWEL DISEASE: A SYSTEMATIC REVIEW

Luca Zanoli 1,*, Stefania Rastelli 1, Jean-Philippe Empana 2, Julia Dratva 2, Christine S. Autenrieth 2,3, Lorena Citterio 3, Yu-Mei Gu 1, Judita Knez 1, Nicholas Cauwenberghs 1, Robert Bettschart 8, Christian Schindler 2,3, Christine S. Autenrieth 2,3, Miriam Wanner 4, Lorena Citterio 3, Yu-Mei Gu 1, Judita Knez 1, Nicholas Cauwenberghs 1, Matteo Barcella 2, Cristina Barlassina 2, Paolo Manuta 1, Tatiana Kuznetsova 1,2, Daniele Cusi 2, Peter Verhamme 1, Aernout Luttun 1, Jan Staessen 1,4,1
1University of Leuven, Leuven, Belgium
2University of Milan, Milan, Italy
3University Vita-Salute Raffaele, Milan, Italy
4Maastriicht University, Maastriucht, The Netherlands

Aims: In mice, MEOX2/TCF15 heterodimers are highly expressed in heart endothelial cells and are involved in the transcriptional regulation of lipid transport. We investigated whether coronary heart disease (CHD) in humans is associated with variation in these genes.

Methods and results: In 2027 participants enrolled in the Flemish Study on Environment, Genes and Health Outcomes (51.0% women; mean age 43.6 years), we genotyped SNPs in MEOX2 and TCF15, measured baseline cardiovascular risk factors, and recorded CHD incidence. Over 15.2 years (median), CHD occurred in 106 participants. For SNPs, we contrasted minor-allele heterozygotes and homozygotes (variant) vs. major-allele homozygotes (reference) and for haplotype carriers vs. non-carriers. Sex- and age-standardised CHD rates were higher in MEOX2 rs10777, rs12056299, rs7787043, rs4532497, rs1050290 variants, in MEOX2 GTCGCC haplotype carriers (prevalence, 16.5%), but lower in MEOX2 rs6959056 variants (P<0.04, adjusted for multiple testing). In multivariable-adjusted analyses, the corresponding hazard ratios were ≥1.50 (P<0.049), 1.77 (P=0.049) and 0.62 (P=0.025), respectively. None of four TCF15 SNPs was associated with coronary risk (P>0.29). However, CHD risk associated with MEOX2 rs4532497 was confined to TCF15 rs12624577 variant allele carriers (P for interaction = 0.011). The MEOX2 GTCGCC haplotype significantly improved the prediction of CHD occurrence and beyond traditional risk factors and was associated with similar population-attributable risk as smoking (18.7% vs. 16.2%).

Conclusions: In randomly recruited Flemish, genetic variation in MEOX2, but not TCF15, is a strong predictor of CHD. Further experimental studies should elucidate the underlying molecular mechanisms.

P4.2
CORONARY RISK IN RELATION TO GENETIC VARIATION IN MEOX2 AND TCF15 IN A FLEMMISH POPULATION

Wen-Yi Yang 1, Thibault Pettet 1, Lutgard Thijss 1, Zhen-Yu Zhang 1, Lotte Jacobs 1, Azusa Hara 2, Fang-Fei Wei 3, Erika Salvi 2, Lorenzo Citterio 1, Yu-Mei Gu 1, Judita Knez 1, Nicholas Cauwenberghs 1, Matteo Barcella 2, Cristina Barlassina 2, Paolo Manuta 1, Tatiana Kuznetsova 1,2, Daniele Cusi 2, Peter Verhamme 1, Aernout Luttun 1, Jan Staessen 1,4,1
1University of Leuven, Leuven, Belgium
2University of Milan, Milan, Italy
3University Vita-Salute Raffaele, Milan, Italy
4Maastriicht University, Maastriucht, The Netherlands

Aims: In mice, MEOX2/TCF15 heterodimers are highly expressed in heart endothelial cells and are involved in the transcriptional regulation of lipid transport. We investigated whether coronary heart disease (CHD) in humans is associated with variation in these genes.

Methods and results: In 2027 participants enrolled in the Flemish Study on Environment, Genes and Health Outcomes (51.0% women; mean age 43.6 years), we genotyped SNPs in MEOX2 and TCF15, measured baseline cardiovascular risk factors, and recorded CHD incidence. Over 15.2 years (median), CHD occurred in 106 participants. For SNPs, we contrasted minor-allele heterozygotes and homozygotes (variant) vs. major-allele homozygotes (reference) and for haplotype carriers vs. non-carriers. Sex- and age-standardised CHD rates were higher in MEOX2 rs10777, rs12056299, rs7787043, rs4532497, rs1050290 variants, in MEOX2 GTCGCC haplotype carriers (prevalence, 16.5%), but lower in MEOX2 rs6959056 variants (P<0.04, adjusted for multiple testing). In multivariable-adjusted analyses, the corresponding hazard ratios were ≥1.50 (P<0.049), 1.77 (P=0.049) and 0.62 (P=0.025), respectively. None of four TCF15 SNPs was associated with coronary risk (P>0.29). However, CHD risk associated with MEOX2 rs4532497 was confined to TCF15 rs12624577 variant allele carriers (P for interaction = 0.011). The MEOX2 GTCGCC haplotype significantly improved the prediction of CHD occurrence and beyond traditional risk factors and was associated with similar population-attributable risk as smoking (18.7% vs. 16.2%).

Conclusions: In randomly recruited Flemish, genetic variation in MEOX2, but not TCF15, is a strong predictor of CHD. Further experimental studies should elucidate the underlying molecular mechanisms.

P4.3
PHYSICAL ACTIVITY IS ASSOCIATED WITH LOWER ARTERIAL STIFFNESS IN OLDER ADULTS: RESULTS OF THE SAPALDIA 3 COHORT STUDY

Simon Endes 1,*, Emmanuel Schaffner 1,*, Seraina Caviedez 2, Julia Dratva 2, Christine S. Autenrieth 2, Miriam Wanner 1, Brian Martin 1, Daiana Stoiz 1, Marco Pons 1, Alexander Turk 1, Robert Bettchart 5, Christian Schindler 2,3, Nina Kunzli 2,3, Nicole Probst-Hensch 1,2,1, Arno Schmidt-Trucksa¨ss
1Department of Sport, Exercise and Health, Div. Sports and Exercise Medicine, University of Basel, Basel, Switzerland
2Swiss Tropical and Public Health Institute, Basel, Switzerland
3University of Basel, Basel, Switzerland
4Physical Activity and Health Working Unit, Institute of Social and Preventive Medicine, University of Zurich, Zurich, Switzerland

Abstracts