P3.6: EVALUATION OF DIFFERENT METHODS FOR DETERMINING THE TIME DELAY OF THE ARTERIAL PULSE WAVE: APPLICATION TO THE POPMETRE®

Hasan Obeid*, Hakim Khettab, Magid Hallab, Pierre Boutouyrie, Stéphane Laurent

To link to this article: https://doi.org/10.1016/j.artres.2015.10.231

Published online: 7 December 2019
unfavourably alters both IM-GSM and cFPWV in middle-aged and older individuals, and that impaired glycaemic control (HbA1c) only accounts for the difference in cFPWV. These findings suggest the presence of an additional factor(s) together with glycaemic control that influence IM-GSM in DM.

P3.6 EVALUATION OF DIFFERENT METHODS FOR DETERMINING THE TIME DELAY OF THE ARTERIAL WAVE: APPLICATION TO THE POPMETRE 3
Hasan Obied 1,2,*, Hakim Khettab 1, Magid Hallab 3,4, Pierre Boutouyrie 1,2, Stéphane Laurent 1, 2
1Inserm U970, Paris, France 2Paris Descartes University, Paris, France 3Department of gerontology, University hospital Nantes, Nantes, France 4Axelfire, SAS, Nantes, France

Objective: Pulse Wave Velocity (PWV) can be measured between different sites. Here we used two different aspects to assess the PWV; the standard method Carotid-Femoral (CF) Sphygmocor (AtCorMedical – Australia) and the pOpmetre 3 (Axelfire SAS – France) which uses the Finger to Toe (FT) signals. The aim of this study was to evaluate the agreement between FT-PWV and CF-PWV and to test the robustness of pOpmetre 3 build-in algorithm.

Design and method: CF and FT PWV was measured in 150 subjects. MatLab was used to calculate FT-PWV from pOpmetre data using waveforms using four methods: maximum of second derivative (used by pOpmetre 3), intersecting tangents, 10% threshold and the cross correlation method.

Results: Using built in algorithms, the comparisons of the PWVs and transit times showed a good agreement between the two methods. FT-PWV correlated with CF-PWV ($r^2=0.51; p<0.001$) and transit time ($r^2=0.62; p<0.001$). The best correlation between FT and CF was observed with the maximum of the second derivative algorithm (PWV: $r^2=0.56; p<0.001$), transit time: ($r^2=0.61; p<0.001$). Other algorithms showed weaker correlations: for PWV, intersecting tangents, $r^2=0.37$, 10% upstroke, $r^2=0.35$, cross-correlation, $r^2=0.22$.

Conclusions: This study showed that pOpmetre 3 is well correlated with reference methods and the wave foot detection algorithm used by pOpmetre 3 gave the best correlation comparing to other algorithms. The FT-PWV technique has correct agreement with the reference technique, however further studies are needed to validate FT-PWV method in larger populations. Compared to CF-PFW, FT-PWV is faster, simpler to perform and more acceptable to patients.

P3.7 ARTERIAL STIFFNESS IS ASSOCIATED WITH LOWER PERFORMANCE ON THE COGNITIVE TESTS AT DIFFERENT DOMAINS IN HYPERTENSIVE PATIENTS
Henrique Muela 1, Valéria Costa-Hong 1, Michel Machado 1, Natalia Moraes 2, Claudia Memoria 3, Monica Yasuda 2, Ricardo Nogueira 2, Ayrton Massaro 2, Edison Shu 1, Ricardo Nitriti 2, Luiz Bortolotto 1,2
1Heart Institute (Incor), University of São Paulo Medical School, São Paulo, São Paulo, Brazil 2Department of Psychology, University of São Paulo Medical School, São Paulo, São Paulo, Brazil 3Department of Neurology, University of São Paulo Medical School, São Paulo, São Paulo, Brazil

Background: Cognitive impairment and elevated arterial stiffness are described in patients with arterial hypertension (AH), but its correlations are not well studied.

Objectives: To study the cognitive function at different domains and arterial properties in patients with AH stage 1 to 3 compared to normotensives and to evaluate the correlations between these variables.

Methods: We evaluated 162 subjects, 42 normotensives (44.7±11.9yrs, 69% male,88%white) and 120 patients with stage 1-3 AH (56.8±11.9yrs,69% male,88%white) under treatment. The global cognitive function was assessed by radiofrequency ultrasound(WTS). The central wave velocity and augmentation index(AIX) were obtained using application tonometry(Sphygmocor®). The aim of this study was to evaluate the correlations between these variables.

Results: Mean BP of the normotensive group (121.9±7/76.1±7 mmHg) was significantly lower than hypertensive patients (141.4±23/87.2±13 mmHg). Hypertensive group had worse performance in cognitive evaluation either by MoCA test (23.8±3 vs. 26.7±2, p<0.05) or NOCA test (23.8±3 vs. 26.7±2, p<0.05). On the neuropsychological tests hypertensive patients had worse performance mainly in visuospatial and visuospatial capacities and executive function. On the multivariate regression analysis, the following independent associations were observed: PWV-memory, executive function and attention parameters; IMT-memory and executive function; AIX-all neuro-psychological domains except memory.

Conclusions: Cognitive impairment at different domains was more frequent in patients with different stages of AH. Arterial functional and structural properties were diversely associated with cognitive performance at different domains.

P3.8 ARTERIAL STIFFNESS AND LEFT ATRIAL VOLUME IN HYPERTENSIVE AND NORMOTENSIVE SUBJECTS
Marta Rojek 1,2, Marek Rajzer 1,*, Danuta Czarnecka 1
1Department of Cardiology, Intervventional Electrocardiography and Hypertension, Jagiellonian University Medical College, Cracow, Poland 2Medical Faculty, Dresden University of Technology, Dresden, Germany

Aim: Investigation of relationship between arterial stiffness indices and LAVI in hypertensive and normotensive subjects.

Materials and methods: A total of 193 subjects recruited among Norawica town inhabitants. Study group (AH) consisted of 41 untreated hypertensives (20 men). Control group (NonAH) consisted of 60 normotensives (32 men). Anthropometric and demographic data were collected via questionnaire. Following examinations were performed: office blood pressure measurement (SBP, DBP) using Omron M5-I; arterial stiffness measurements i.e. carotid-femoral pulse velocity (PWV) and central blood pressure (cSBP, cDBP) using Sphygmocor® device; echocardiographic left atrium volume determination (LAV) using VIVID-7 GE device followed by LAVI calculation (LAVI = LAV/body surface area).

Results: AH group was older (56,9±16,9 vs 50,2±7,9 yrs, p<0.0002) and had lower values of LAVI (141.4±23 vs 149.5±15.7 mmHg, p=0.03) and higher office BP (SBP, DBP) than normotensives. Hypertensive subjects represent higher values of LAVI. In this group AH-LAVI correlated positively with LAVI (141.4±23 vs 149.5±15.7 mmHg, p=0.03), BMI (r=0.39, p<0.03), cSBP (90.8±9.5 vs 84.9±12.3 mmHg, p=0.01) and cDBP (90.8±9.5 vs 84.9±12.3 mmHg, p=0.01) in higher AH group. LAVI was significantly higher in AH group than in NonAH group (27.8±9.5 vs 24.3±6.6 ml/m², p<0.0001). Among AH group LAVI correlated positively only with cSBP (p=0.03, p=0.04). Among NonAH group, LAVI correlated positively with age (r=0.27, p=0.03, BMI (r=0.39, p=0.02) and cSBP (r=0.27, p=0.03). Among NonAH group, LAVI correlated positively with BMI (r=0.39, p=0.02) and cSBP (r=0.27, p=0.03).

Conclusions: Hypertensive subjects represent higher values of LAVI. In this group LAVI depends mainly on central systolic blood pressure while in the group of normotensives LAVI is additionally determined by age and body mass index.

P3.9 PROGRESSION OF ARTERIAL STIFFNESS AND VASCULAR LESIONS ACCORDING TO THE DEGREE OF GLYCEMIC ABNORMALITIES. A WARNING IN PATIENTS WITH METABOLIC SYNDROME
Pedro Forcada 1,2, Carlos Castelaro 1,3, Jorge Chibact 1,2, Sergio Gonzalez 1,3, Carol Kottlar 1,2, Sebastian Obregon 1,2
1Hospital Universitario Austral, Pilar, Buenos Aires, Argentina 2Santa María De La Salud, San Isidro, Buenos Aires, Argentina 3Centro Champagnat, Pilar, Buenos Aires, Argentina

Introduction: Metabolic Syndrome (MS), is postulated as intermediate stage in the way to overt DVT, and probably the degree of vascular compromise in this stage could explain the higher proportion of CV complications in diabetics. If so, it should deserve an intensive prevention in MS to reduce DVT complications.

Objective: To compare the vascular patterns in MS and DVT patients (p.).

Methods: From our Vascular Lab database (2007–2012) we selected 3297 p. in primary prevention, first evaluated with data of central BP (Arteriograph), IMT, plaques in carotid and femoral arteries (P), PWV (Complior) and forearm endothelial test. We compared 215 control (C) p. (normal BP, NO risk factors, evident CV disease), 104 MS (15.0 vs 126.8±20.0 mmHg, p<0.04) and DVT (91.1±8.4 vs 85.7±12.8, p=0.02). PWV did not differ in investigated groups, while cSBP correlated positively with LAVI (27.8±9.5 vs 24.3±6.6 ml/m², p=0.0003). Among AH group LAVI correlated positively only with cSBP (r=0.39, p=0.04). Among NonAH group, LAVI correlated positively with age (r=0.27, p=0.03, BMI (r=0.39, p=0.02) and cSBP (r=0.27, p=0.03).

Conclusions: Hypertensive subjects represent higher values of LAVI. In this group LAVI depends mainly on central systolic blood pressure while in the group of normotensives LAVI is additionally determined by age and body mass index.