P3.1: SUB-MAXIMAL EXERCISE BLOOD PRESSURE RELATES TO LEFT VENTRICULAR MASS INDEX, BUT IS DEPENDENT ON LOW AEROBIC CAPACITY

Martin Schultz*, Dean Picone, Rachel Climie, Costan Magnussen, Leah Wright, Thomas Marwick, Alison Venn, James Sharman

To cite this article: Martin Schultz*, Dean Picone, Rachel Climie, Costan Magnussen, Leah Wright, Thomas Marwick, Alison Venn, James Sharman (2015) P3.1: SUB-MAXIMAL EXERCISE BLOOD PRESSURE RELATES TO LEFT VENTRICULAR MASS INDEX, BUT IS DEPENDENT ON LOW AEROBIC CAPACITY, Artery Research 12:C, 10–11, DOI: https://doi.org/10.1016/j.artres.2015.10.226

To link to this article: https://doi.org/10.1016/j.artres.2015.10.226

Published online: 7 December 2019
calibrated to mean (MAP) and diastolic pressures (DBP) obtained with a Philips SureSigns monitor on the fistula-free arm. Mean±SD values and coefficient of variation (CV) of repeated measurements are shown below:

Pre-dialysis CV During dialysis CV
Peripheral SBP (mmHg) 139±16 4% 120±16 7%
Peripheral DBP (mmHg) 74±12 5% 70±8 6%
Peripheral MAP (mmHg) 99±13 6% 88±12 7%
Central cSBP (mmHg) 127±20 3% 117±6 5%

Peripheral form factor (FF) was 37±13% (range 19-59) before dialysis and 39±21% (13-61) during dialysis while central FF was 45±7% (30-57) and 39±21% (21-46), respectively.

Estimation of cSBP during dialysis was feasible with Compilo Analyse. Its variability was similar to peripheral BP variability. The wide range of peripheral form factor values suggested that there is a need to improve peripheral BP estimation during dialysis.

P2.18 IMPACT OF CARDIOVASCULAR RISK FACTORS ON CAROTID STIFFNESS AND CAROTID INTIMA MEDIA THICKNESS — GENDER DIFFERENCES
Maria Lobo-Rudnicka 1, Joanna Jaroch 1, Zbigniew Bociaj 1, Barbara Ryczewska 1, Ewa Kruszynska 1, Krystyna Lobo-Gudzien 1, Andrzej Szuba
1 Department of Cardiology, T. Marnicki Hospital, Wroclaw, Poland
2 Faculty of Health Science, Medical University of Wrocław, Wrocław, Poland
3 Department of Internal Medicine, 4th Military Hospital in Wrocław, Wrocław, Poland

Background and purpose: Whether the influence of risk factors on carotid stiffness (CS) and carotid intima media thickness (CIMT) is modulated by gender is still unclear. The aim of our study was to examine the association between cardiovascular (CV) risk factors, CS and CIMT in men and women.

Material and methods: 252 subjects (including 132 women), mean age: 55 years, with CV risk factors and without the history of manifest CV disease underwent the examination of CS parameters and CIMT. The following CS parameters: stiffness index (beta), Pettersson’s elastic modulus (Ep), one-point pulse wave velocity (PWV-beta) and arterial compliance (AC) were measured with the use of the high-resolution echotomapping system.

Results: The multivariate analysis revealed that age, diabetes and MAP were independent determinants of CS parameters in both men and women. Pulse pressure (PP) was significantly associated with beta (β coefficient -0.261, p<0.006), Ep (β coefficient -0.426, p<0.001) and PWV-beta (β coefficient -0.283, p=0.007) only in women. Of the risk factors significantly associated with CIMT in the multivariate analysis, age was an independent determinant of CIMT in both sexes, while PP (β coefficient -0.317, p=0.014) and increased waist circumference (β coefficient -0.207, p=0.048) only in women.

Conclusions: The influence of CV risk factors on CS and CIMT is modulated by gender. The impact of the pulsatile component of blood pressure on CS and CIMT and of the increased waist circumference on CIMT seems to be more prominent in women than in men.

P2.19 COMPARISON OF BRACHIAL AND CENTRAL BLOOD PRESSURES FROM 2 SPHYGMOCOR XCEL SYSTEMS EQUIPPED WITH A 2M AND 6M-LONG HOSE
S. Stoer 1, G. Soulat 1, S. Tavolaro 1, S. Millasseau 1, H. Khettab 1, S. Millasseau 2, H. Khettab 1
1 Department of Internal Medicine, 4th Military Hospital in Wroclaw, Poland
2 Department of Internal Medicine, 4th Military Hospital in Wroclaw, Wroclaw, Poland

Background and purpose: Whether the influence of risk factors on carotid stiffness (CS) and carotid intima media thickness (CIMT) is modulated by gender is still unclear. The aim of our study was to examine the association between cardiovascular (CV) risk factors, CS and CIMT in men and women.

Material and methods: 252 subjects (including 132 women), mean age: 55 years, with CV risk factors and without the history of manifest CV disease underwent the examination of CS parameters and CIMT. The following CS parameters: stiffness index (beta), Pettersson’s elastic modulus (Ep), one-point pulse wave velocity (PWV-beta) and arterial compliance (AC) were measured with the use of the high-resolution echotomapping system.

Results: The multivariate analysis revealed that age, diabetes and MAP were independent determinants of CS parameters in both men and women. Pulse pressure (PP) was significantly associated with beta (β coefficient -0.261, p<0.006), Ep (β coefficient -0.426, p<0.001) and PWV-beta (β coefficient -0.283, p=0.007) only in women. Of the risk factors significantly associated with CIMT in the multivariate analysis, age was an independent determinant of CIMT in both sexes, while PP (β coefficient -0.317, p=0.014) and increased waist circumference (β coefficient -0.207, p=0.048) only in women.

Conclusions: The influence of CV risk factors on CS and CIMT is modulated by gender. The impact of the pulsatile component of blood pressure on CS and CIMT and of the increased waist circumference on CIMT seems to be more prominent in women than in men.

P3.1 SUB-MAXIMAL EXERCISE BLOOD PRESSURE RELATES TO LEFT VENTRICULAR MASS INDEX, BUT IS DEPENDENT ON LOW AEROBIC CAPACITY
Martin Schultz 1,*, Dean Picone 1, Rachel Clime 1, Costan Magnussen 1,*, Leah Wright 1, Thomas Marwick 1, Alison Venn 1, James Sharman 1
1 Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
2 Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland

Background: Exaggerated blood pressure (BP) responses to sub-maximal exercise independently predict cardiovascular (CV) events, mortality and incident hypertension. The aim of this study was to explore relationships between exercise BP, left-ventricular (LV) structure and function and aerobic fitness as potential mechanisms underlying the CV risk associated with sub-maximal exercise BP.

Methods: 149 participants aged 40±2 years, 45% male completed a staged cycle test to estimate physical work capacity (aerobic fitness; PWC170) with concomitant BP measured each two minutes. 2D echocardiography was used to quantify LV mass (obtained from 2D-guided M-mode echo), and LV function (longitudinal strain, haemodynamics).

Results: Early-stage exercise systolic BP was associated with aerobic fitness and LV mass index (r = 0.22, and 0.24, p<0.05) and was greater in those performing high stage-relative work (high-fitness) compared with low stage-
relative work (low-fitness) (154±22 vs. 133±15 mmHg, p<0.001). The high-fitness group had greater stroke volume, lower heart rate and LV longitudinal strain compared to the low-fitness group (72±18 vs. 59±15 ml, 61±9 vs. 69±11 bpm, r=−0.3; p<0.05 for all). Exercise systolic BP was associated with LV mass index independent of resting BP, age and sex in the low-fitness group during stage one of the PWCT170 (β=0.13, 95% CI=0.01-0.3) but not in the high-fitness group at any stage.

Conclusions: Sub-maximal exercise systolic BP independently relates to LV mass index in those with low, early stage-relative aerobic capacity. BP measured during submaximal exercise testing (light-intensity) may reveal early changes in hypertension-related organ damage that are more evident in people with low-fitness.

P3.2
ROGOZA INDEX IN HEALTHY VOLUNTEERS AS A FUNCTION OF AGE
Igor Posokhov
Hemodynamic Laboratory Ltd, Nizhniy Novgorod, Russia

Background: Recently, prof Anatoly N Rogoza proposed a new vascular index calculated from one-channel volume sphygmography of brachial artery, Rogoza’s Index or Rogoza Index. It may be useful as a new indicator of asymptomatic vascular damage associated with cardiovascular risk in patients with hypertension.

Objective: This study provides just an idea about the Rogoza Index in healthy volunteers as a function of age and sex.

Methods: The object of the study was the set of 120 bw-passes (BLab format) with oscilometric ambulatory (24-h) blood pressure readings in age-matched group of 60 male and 60 female healthy volunteers. Rogoza Index (ms/cm) was calculated as RWTT/L where RWTT is reflected wave transit time (ms) and L is height (cm).

Results: Averaged 24-h Rogoza Index was 1.1885−0.0063 Age (r=−0.30) for men and 0.9327−0.0025 Age (r=−0.27) for women; averaged daytime Rogoza Index was 1.2054−0.0067 Age (r=−0.32) and 0.90958−0.0022 Age (r=−0.22) and nighttime 1.1412−0.0049 Age (r=−0.24) and 1.0076−0.0033 Age (r=−0.31) accordingly. All correlations are significant, p<0.05.

There was also a significant difference between Rogoza Indices in male and female subgroups: for 24-h period Rogoza Index was of 0.88 vs 0.80 ms/cm (mean, p=0.002); for daytime of 0.79 vs 0.87 ms/cm (p=0.001); and for nighttime of 0.84 vs 0.90 ms/cm (p=0.002).

Conclusions: Rogoza Index is sex- and age- dependent like other surrogate markers of arterial stiffness.

P3.4
PULSE WAVE REFLECTIONS AND THEIR DIURNAL CHANGES IN PATIENTS WITH MARFAN SYNDROME COMPARED TO HEALTHY CONTROLS
Bernhard Hametner 1,4, Matthias Hillebrand 2, Ghazaleh Nouri 3, Stephanie Parragh 1,3, Jelena Köster 3, Kai Mortensen 3, Achim Schwarz 4, Yskert von Kodolitsch 5, Siegfried Wassermann 1
1A1T Austrian Institute of Technology, Vienna, Austria
2Universitäts Herzzentrum Hamburg, Hamburg-Eppendorf, Germany
3Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
4E.M. GmbH, Solberg, Germany
5Vienna University of Technology, Vienna, Austria

Introduction: Patients with Marfan syndrome may suffer from a variety of symptoms, including changes of the cardiovascular system. The aim of this study was to perform ambulatory 24 hour blood pressure and pulse wave measurements in a group of Marfan patients and a group of healthy controls and to analyse wave reflections.

Methods: All measurements were obtained with the Mobi-O-Graph device. Reflection magnitude (RM) was calculated with the inbuilt ARCSolver algorithms and averaged during daytime and nighttime. The study included 27 patients with Marfan syndrome and 27 healthy controls. Matching criteria were age (39 years mean in both groups), sex (14 female) and daytime brachial systolic blood pressure (119 mmHg mean in both groups). Patients with Marfan syndrome were significantly taller than controls (190 cm vs. 174 cm).

Results: Reflection magnitude increased significantly during night in both groups (Marfan: 57.8 day, 66.6 night; controls: 56.8 day, 68.7 night). Differences between groups were not significant both day and night. Correlations between RM and body height were positive in Marfan patients (R=0.36 day, R=0.33 night) but negative in controls (R=−0.47 day, R=−0.66 night), showing a significantly different trend (p<0.01).

Conclusions: There are similar levels and diurnal changes of reflection magnitude in patients with Marfan syndrome and healthy controls, but correlations of RM to body height are significantly different in Marfans and controls. This finding may relate to structural changes of the cardiovascular system associated with Marfan syndrome.

P3.5
TYPE 2 DIABETES EXACERBATES CAROTID ARTERY ECHOGENICITY AND CENTRAL ARTERY STIFFNESS IN MIDDLE-AGED AND OLDER INDIVIDUALS
Kunihiko Alizawa 1,2, Francesco Casanova 1,2, Dave Mawson 1,2, Salim Elyas 1,2, Damilola Adingbenu 1,2, Kim Gooding 1,2, David Strain 1,2, Angela Shore 1,2, Phillip Gates 1,2
1University of Exeter Medical School, Exeter, UK
2NHIR Exeter Clinical Research Facility, Exeter, UK

Grey scale median of the common carotid artery intima-media complex (IM-GSM) characterizes the composition of the arterial wall and low IM-GSM reflects more generalized atherosclerotic vulnerability. However, it is unclear whether the presence of DM itself affects IM-GSM, similar to that observed with aortic stiffness. We measured IM-GSM and aortic stiffness in middle-aged and older individuals with and without DM. We included 264 individuals with DM (DM+; 67±9 years, 83F and 226 individuals without DM (DM−; 66±3.9 years, 81F). Ultrasound images of the common carotid artery intima-media thickness (IMT) were obtained and IM-GSM was analysed using semi-automated edge-detection software. Aortic stiffness was assessed by carotid-femoral pulse wave velocity (cfPWV) using a SphygmoCor® device. IM-GSM was significantly lower in DM+ than DM− (103.6±1.5au vs 113.4±1.6au, p<0.05) after adjustment for age and sex. Adjustments for cardiovascular disease (CVD), hypertension (HT), statin treatment and IMT did not change the finding. cfPWV was significantly higher in DM+ than DM− (10.2±1.0ms/s vs 9.1±1.1ms/s, p<0.05) after adjustment for age, sex and mean arterial pressure. Adjustments for CVD, HT, statin treatment and heart rate did not change the finding. With further adjustment for HbA1c, cfPWV became similar between the groups, but IM-GSM remained lower in DM+ than DM− (p<0.05). These results demonstrate that the presence of DM