P30: THE ROLE OF NOVEL BIOMARKERS IN ARTERIAL STIFFNESS, AND IN PREDICTING FURTHER VASCULAR EVENTS AFTER TIA AND LACUNAR STROKE

Esme Girdwood, Manuela Mengozzi, Eva Bunting, Jean Timeyin, Pietro Ghezzi, Chakravarthi Rajkumar

To link to this article: https://doi.org/10.1016/j.artres.2017.10.170

Published online: 7 December 2019
Conclusion: Increased pulse pressure and increased aortic stiffness were associated with the severity of WML, assessed with both Fazekas score and a quantitative hyperintensity segmentation method. Age is highly associated with aortic stiffness and cerebral small vessel disease.

P27
REPLACED RIGHT HEPATIC ARTERY AND INTERLOBAR BRIDGE OF LIVER WITH UNUSUAL ARTERIAL SUPPLY OF IVTH SEGMENT
Mehtap Yuksel 1, Turan Koc 2, Sezgin Ili 1
1Near East University, Faculty of Medicine, Department of Anatomy, Nicosia, Cyprus
2Mersin University, Faculty of Medicine, Department of Anatomy, Mersin, Turkey

A replaced right hepatic artery (rRHA) arising from the superior mesenteric artery and an interlobar parenchymal bridge over the sagittal fissure of liver have been observed on a 64 year old formalin-fixed male cadaver in the anatomy laboratory. As we followed a detailed segmental anatomy, encountered an arterial distribution on the segment IV featuring a different pattern from the literature so far. According to our observations, the segment I is supplied by both left (LHA) and middle (MHA) hepatic arteries; the segments II and III are supplied by the LHA while the segment IV is supplied by both the MHA and rRHA. The segments V-VIII are supplied only by the rRHA. Our case emphasizes the importance of arterial variations of liver once again in terms of the surgical procedures during the liver transplantation, hepatic tumors, and etc. Our discussion particularly focuses to the arterial supply of the segment IV and possible complications it may cause during/after the liver operations.

References

Results: 464 individuals were included (247 normotensives (mean age 44 yrs) and 237 with AH (mean age 58 yrs)). Mean PP was 46.0 ± 9.8 mm Hg in normotensive group and 58.6 ± 17.4 mm Hg in group with AH (p < 0.001). Mean PWVao was 10.9 ± 2.0 m/s and 12.5 ± 2.5 m/s in groups without and with AH, respectively (p < 0.001). PP > 60 mm Hg had 11% subjects without AH and 43% with elevated blood pressure (BP) (p < 0.001). PWVao >10 m/s had 68% of normotensive subjects and 92% of hypertensive patients (p < 0.001). PWVao correlated with brachial systolic (r = 0.42, p < 0.05) and diastolic BP (r = 0.38; p < 0.05), central systolic (r = 0.45, p < 0.05) and diastolic BP (r = 0.41; p < 0.05), age (r = 0.37, p < 0.05), heart rate (r = 0.41, p < 0.05). There was association between elevated PWVao and body mass index (r = 0.39, p < 0.05). In a multiple linear regression model, independent determinants of PWV were systolic BP (β = 0.29, p < 0.001), body mass index (β = 0.19, p < 0.001).

Conclusions: High PWVao measured by BPLab® device with VasoQ® technology is characterized physician’s population with and without AH. The main determinants of PWVao are systolic BP and body mass index.

P29
TOTAL LONGITUDINAL DISPLACEMENT (TLOD) OF THE COMMON CAROTID ARTERY (CCA) DOES NOT DIFFER BETWEEN PATIENTS WITH MODERATE OR HIGH CARDIOVASCULAR RISK (CV) AND PATIENTS AFTER ACUTE MYOCARDIAL INFARCTION (AMI)
Urte Gargalskaite 1,2, Pranas Serpytis 1,2, Karolis Azukaitis 1,2, Rokas Navickas 2, Vilma Dzenkeviucите 1,2, Jolita Badariene 2, Zaneta Petruilioniene 1,2, Kristijonas Cesas 1
1Faculty of Medicine, Vilnius University, Lithuania
2Vilnius University Hospital Santaros Klinikos, Lithuania

Background: Total longitudinal displacement (TLod) of the common carotid artery (CCA) wall is a novel ultrasound marker of vascular function that can be evaluated using modified speckle tracking techniques. Decreased CCA TLod has already been shown to be associated with diabetes and was shown to predict one year cardiovascular outcome in patients with suspected coronary artery disease (CAD). The aim of our study was to evaluate if CCA TLod differ between patients with moderate or high cardiovascular (CV) risk and patients after recent acute myocardial infarction (AMI).

Methods: 49 patients (54 ± 6 years) with moderate or high CV risk and 42 patients (58 ± 7 years) after recent AMI were included. All patients were non-diabetic. CCA TLod was evaluated using GE EchoPAC speckle tracking software and expressed as mean of both sides. Data on systolic blood pressure, total and high density lipoprotein (HDL) cholesterol levels, high sensitivity C-reactive protein (hsCRP) level, smoking status and family history of early CV events was evaluated and assessed for association with CCA TLod.

Results: TLod of CCA did not differ between patients with moderate or high CV risk and patients after recent acute myocardial infarction. There was association between elevated PWVao and body mass index (r = 0.42, p < 0.05). In a multiple linear regression model, independent determinants of PWV were systolic BP (β = 0.29, p < 0.001), body mass index (β = 0.19, p < 0.001).

Conclusions: High PWVao measured by BPLab® device with VasoQ® technology is characterized physician’s population with and without AH. The main determinants of PWVao are systolic BP and body mass index.

P30
THE ROLE OF NOVEL BIOMARKERS IN ARTERIAL STIFFNESS, AND IN PREDICTING FURTHER CARDIOVASCULAR EVENTS AFTER TIA AND LACUNAR STROKE
Esme Girdwood 1, Manuela Mengozzi 1, Eva Bunting 2, Jean Timeyin 2, Pietro Ghezzi 1, Chakravarthi Rajkumar 1
1Brighton and Sussex Medical School, University of Sussex, UK
2Brighton and Sussex University Hospitals NHS Trust, UK

Objective: To explore the role of biomarkers (hsCRP, sRANKL, PRDX1 and EPO) in arterial stiffness and in predicting further vascular events.

Methods: Patients from the ongoing ASIST study each attended a laboratory visit within fourteen days of their diagnosed TIA or lacunar stroke. Arterial stiffness was calculated using cPWV (carotid-femoral pulse wave velocity) measured with Complior® Artech, France, and with the CAVI® Fukuda.
Japan (cardio-ankle vascular index) method. Blood samples were taken for ELISA assays. Analysis was completed with SPSS software.

Results: Forty patients were evaluated in this preliminary study (29 male/11 female, mean age 70.7 ± 11.99), with four experiencing a further event during the six month follow up (10%). All biomarkers and both measurements for arterial stiffness had a higher mean value in patients with a further event (hsCRP 3.89 vs 1.42, P = 0.08; EPO 9.06 vs 9.01, P = 0.85; sRANKL 0.05 vs 0.03, P = 0.31; PRDX1 6.27 vs 6.21, P = 0.95; CAVI 11.13 vs 9.69, P = 0.15; cfPWV 10.82 vs 10.2, P = 0.55), however none were statistically significant.

Levels of PRDX1 were elevated acutely post-event before falling significantly (R = −0.475, P = 0.002), while hsCRP and EPO continued to be elevated at >10 days post-event.

In addition, CAVI correlated closely with hsCRP (R = 0.28, P = 0.09) and EPO (R = 0.29, P = 0.08), but cfPWV was not closely related to any of the biomarkers.

Conclusions: This preliminary data suggests that biomarkers, particularly EPO and hsCRP, are more closely related to CAVI than cfPWV. hsCRP was the most relevant as an independent predictive factor for further vascular events.

Poster Session II – Obesity and Diabetes

P150

ARTERIAL STIFFNESS AND PROGRESSION OF CEREBRAL WHITE MATTER LESIONS IN ASYMPTOMATIC PATIENTS WITH TYPE 2 DIABETES AND MATCHED CONTROLS: A 5-YEAR COHORT STUDY

Kristian Laake Funck 1, Ebden Laugesen 1, Pernille Hayem 1, Brian Stausboll-Gren 1, Won Kim 2, Leif Østergaard 1, Torels Kranup Hansen 1, Per Legstrup Poulsen 1.

1Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark
2MR Research Centre, Department of Clinical Medicine, Aarhus University, Denmark
3Department of Cardiology, Aarhus University Hospital, Denmark
4Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Denmark

Aim: Stroke is a frequent and feared complication in patients with type 2 diabetes. Arterial stiffness may improve current suboptimal risk prediction of stroke. However, studies in diabetes populations are lacking. We investigated the association between arterial stiffness progression (carotid-femoral pulse wave velocity [PWV]) and the progression of cerebral white matter lesions (WML), a marker of stroke risk, in patients with type 2 diabetes and matched controls.

Methods: In a 5-year follow-up study, data from 49 patients and 58 controls were available for analysis. At baseline, participants had a mean ± SD age of 59 ± 10 years and patients had a median (range) diabetes duration of 1.8 (1.0–3.2) years. Fifty-two (49%) were males. At both baseline and follow-up, PWV was obtained by tonometry and WML by cerebral T2-FLAIR MRI. WML was assessed by Breteler score, and progression was defined as an upward change in category during follow-up.

Results: Patients with type 2 diabetes had a higher PWV than controls at both baseline (9.2 ± 2.2 vs. 7.9 ± 1.4 m/s, p < 0.01) and follow-up (9.8 ± 2.4 vs. 8.6 ± 1.9 m/s, p = 0.01). Breteler scores and WML progression were similar in the two groups (p = 0.05). PWV progression was associated with WML progression in the total cohort (adjusted for age, sex, diabetes, baseline PWV and systolic blood pressure progression: OR 1.58 [95%CI: 1.09–2.28], p = 0.02). We found no interaction between diabetes and PWV progression on WML progression.

Conclusions: PWV progression is associated with WML progression in patients with type 2 diabetes and healthy controls. PWV candidates as a new risk marker for stroke.