P182: ARTERIES IN PATIENTS WITH HUNTINGTON’S DISEASE

Ziva Melik, Jan Kobal, Ksenija Cankar, Janja Pretnar, Marjan Zaletel, Lucijan Kobal, Natasa Teran

To cite this article: Ziva Melik, Jan Kobal, Ksenija Cankar, Janja Pretnar, Marjan Zaletel, Lucijan Kobal, Natasa Teran (2017) P182: ARTERIES IN PATIENTS WITH HUNTINGTON’S DISEASE, Artery Research 20:C, 105–106, DOI: https://doi.org/10.1016/j.artres.2017.10.183

To link to this article: https://doi.org/10.1016/j.artres.2017.10.183

Published online: 7 December 2019
correlated with FMD (r = 0.828; p = 0.011; rspearman = 0.738; p = 0.037). No indices of BP variability correlated with cIMT or cDC.

Conclusions: BP variability, in particular ARV, shows a correlation with systemic but not local vascular stiffness in a sample of obese children, suggesting a relation between daily BP variability and arterial elastic properties. Further studies, especially perspective ones, are needed to clarify the pathophysiological significance of these relations.

P159 ASSOCIATION BETWEEN PULSE WAVE VELOCITY AND APNEA-HYPOPNEA INDEX IN PATIENTS WITH TYPE 2 DIABETES AND OBSTRUCTIVE SLEEP APNEA

Christoffer Krogager 1, Anne Margereta Banghøj 2, Per Legstrup Poulsen 3, Lise Tarnow 4, Esben Laugesen 5, Klavs Würgler Hansen 6

1Aarhus University, Denmark
2North Zealand Hospital, Denmark
3Aarhus University Hospital, Dept. of Endocrinology, Denmark
4Regional Hospital Silkeborg, Dept. of Endocrinology and Internal Medicine, Denmark

Introduction: Obstructive sleep apnea (OSA) is associated with increased cardiovascular (CV) risk. OSA is highly prevalent among patients with type-2 diabetes (T2D). Patients with T2D have increased risk of cardiovascular events, and have an increased aortic stiffness.

Continuous Positive Airway Pressure (CPAP) treatment reduces severity of OSA, but whether it reduces CV risk remains unclear. One randomized trial with CPAP intervention and pulse wave velocity (PWV) as endpoint has shown a significant reduction in PWV after four months, in non-diabetic patients.

The effect on patients with diabetes remains unknown.

Aim: Investigate the effects of CPAP treatment on PWV in patients with T2D and newly diagnosed OSA. Furthermore, investigate the relationship between PWV and severity of OSA.

Method: A randomized, controlled, multicenter study. 70 patients with T2D and newly diagnosed OSA randomized to: CPAP treatment or a control group.

Data will be collected at baseline, 4 and 12 weeks. PWV was measured using SphygmoCor (AtCor Medical, Sydney, Australia) and AHI measured using ApneaLink (ResMed, Poway, CA, USA).

Results: Baseline data from the first 21 patients showed mean age 63 years (±8.1), mean systolic blood pressure (BP) was 134 (±12.5) mmHg, mean BMI was 30.2 (±12.4) and mean PWV was 11.6 (±1.9) m/s.

AHI was associated with PWV in multivariate analysis with adjustment for age and systolic BP, beta-coefficient 0.08, p = 0.029.

Conclusion: At baseline PWV and AHI were correlated. Progression of the study will reveal if CPAP treatment can lower PWV in this cohort.

P160 VASCULAR ABNORMALITIES AND HAEMODYNAMIC PATTERN IN OBSESE YOUNG ADULTS

Pedro Forcada 1, Jorge Chiabaut Svane 2, Sergio Gonzalez 1, Carol Kottiar 4, Sebastian Obregón 3, Carlos Castello 3

1Cemic and Dim Prevention Cardiovascular, Buenos Aires, Argentina
2Hospital Austral, Buenos Aires, Argentina
3Hospital Austral and Hospital Churruca, Buenos Aires, Argentina
4Hospital Austral and Santa Maria De La Salud, Buenos Aires, Argentina
5Hospital Austral and Cemic, Buenos Aires, Argentina

Background: Obesity is linked to a higher prevalence of risk factors, metabolic and inflammatory pathways contributing to increased vascular disease and CV risk.

Objective: To assess vascular disarrangements and haemodynamic patterns in obese young subjects (O) compared with matched lean (L) controls, using non invasive methods.

Methods: From the database of our Non Invasive Vascular Lab with 3964 first evaluated patients, we performed a case control study with 363 subjects, 268 obese and 95 lean, age and sex matched controls. We measured IMT, Plaque analysis, PWV, Endothelial Function (EF) and arterial stiffness (CAP and Aix) (AS) using an occlusive device (Arteriograph, Tensionmed, Hungary). and non invasive haemodynamic evaluation using impedance cardiography (Z Logic Exxer®).

Results: Age (O 42.5 ± 5; L 43.5 ± 11) and sex % (O 80.6%; L 78%) were matched. BMI (O 33.5 ± 3.3; L 25 ± 1.1 kg/m²), waist (O104 ± 7.5; L 91.2 ± 6.1cm) and BP (SBP 139.8 ± 16.8; L119 ± 8.8 and DBP O 39 ± 3.9; L74.3 ± 8 mmHg) were higher in O (p < 0.001).

BMI (O 33.5 ± 3.3; L 25 ± 1.1 kg/m²), waist (O104 ± 7.5; L 91.2 ± 6.1cm) and BP (SBP 139.8 ± 16.8; L119 ± 8.8 and DBP O 39 ± 3.9; L74.3 ± 8 mmHg) were higher in O (p < 0.001).

Further studies, especially perspective ones, are needed to clarify the pathophysiological significance of these relations.

P161 ROLES OF ANGIOPOIETINS 1 AND 2 ON ARTERIAL FUNCTION DURING A TREATMENT TRIAL IN PEOPLE WITH OR AT RISK OF DIABETES

K. Parkin, G. Slee, R. Gray, A. Webb, C. Mills, J. K. Cruickshank

King’s College London, UK

Background/ Objective: Vascular growth factors angiopoietin-1 (Ang1) and -2 (Ang2) regulate vascular permeability and inflammation, Ang2 likely as Ang1’s selective antagonist. Their role before or in type 2 diabetes (pre-T2D) is unknown. We hypothesised that higher circulating Ang1 and lower Ang2 (= lower Ang2/1 ratios) would be linked to increased arterial stiffness and its change over the trial, independent of blood pressure (BP).

Methods: ELISA assays were performed from 60 participants with all time-points of plasma samples from ‘VaSera’, a trial of single-centre, double-blind, parallel, randomised, controlled, 2x factorial design. Interventions were spironolactone and beetroot juice, a NO3- donor, with doxazosin and placebo juice respectively to control for BP change (4) over the trial.

Vascular measurements were aortic pulse wave velocity (aPWV), carotid-ankle pulse wave velocity (CAV), analysed by multiple regression adjusted for baseline BP and change in BP over 6 months.

Results: Baseline Ang1 was positively while higher baseline Ang2 was negatively associated with baseline aPWV at (ß = 0.37, p = 0.011; ß = -0.27, p = 0.047, respectively), Independent of BP, BMI and DM status, so baseline r = -0.45 for the Ang2:1 ratio with aPWV, and r = 0.39 for ΔaPWV over the trial. Higher baseline Ang1 independently predicted decreased aPWV over 6 months (ß = –0.44mm/sec per ng/ml, p = 0.006). Angiopoietin concentrations were not associated with CAVI or BP.

Conclusions: Angiopoietins were related to baseline aPWV, independently of BP, and to ΔaPWV over the trial, also independent of BP change, but were unrelated to CAVI or BP. Monitoring and manipulating Angiopoietins may help arterial health in pre-T2DM.

Poster Session II — Special Populations P182 ARTERIES IN PATIENTS WITH HUNTINGTON’S DISEASE

Ziva Melik 1, Jan Kobal 2, Ksenija Cankar 3, Janja Pretnar 3, Marjan Zaletel 1, Lucijan Kobal 1, Natasa Teran 3

1University of Ljubljana, Faculty of Medicine, Institute of Physiology, Ljubljana, Slovenia
2University Medical Centre Ljubljana, Division of Neurology, Ljubljana, Slovenia
3University of Ljubljana, Faculty of Medicine, Department of Neurology, Ljubljana, Slovenia
4University Medical Centre Ljubljana, Division of Gynaecology and Obstetrics, Ljubljana, Slovenia

Background: Huntington’s disease (HD) is a neurodegenerative disorder leading to the progressive death of neurons in various brain regions. Although it is a disease of the central nervous system (CNS), mortality surveys indicate that heart disease is one of the major causes of death in HD patients. The mechanisms of cardiac pathophysiology of the disease remain unknown. It might be a consequence of altered activity of autonomic nervous system as part of the CNS.
Methods: Our study evaluated global risk factors for coronary heart disease (CHD), structure and function of preclinical arteries in 41 HD subjects and 41 matched controls. HD subjects were divided into groups by the United Kingdom diabetes risk score scale (preclinical-MHD, early-MHD, mid-stage-MHD and late-MHD). CHD risk factors assessment and Doppler examination of preclinical arteries were performed, including measurements of the carotid artery intima-media thickness (IMT), and parameters indicating local carotid artery distensibility (stiffness index), pulse wave velocity, pressure strain elasticity module and carotid artery compliance.

Results: In the HD and controls we identified a comparable number of non-obstructive plaques (~50% lumen narrowing). No obstructive plaques (~50% lumen narrowing) were found in patients or controls. There was significantly increased IMT in MHD patients. In PHD and EHD the parameters of arterial stiffness were significantly higher and the carotid artery compliance was significantly lower.

Conclusion: Our results reveal functional vascular pathology in PHD, EHD, and MHD. Preclinical arteries dysfunction in HD therefore appears to be mostly functional and in agreement with autonomic nervous system dysfunction in HD.

P183
INCREASED ARTERIAL STIFFNESS IS ASSOCIATED WITH POORER LEFT VENTRICULAR STRUCTURE AND FUNCTION IN ADOLESCENCE
Hannah Taylor 1, Alun Hughes 1, Marietta Charakida 2, Nishi Chaturvedi 1, George Davey-Smith 1, John Deanfield 1, Abigail Fraser 1, Laura Howe 1
1Cardiometabolic Phenotyping Group, University College London, UK
2Vascular Physiology Unit, Institute of Cardiovascular Science, University College London, UK
3MRC Integrative Epidemiology Unit (IEU), University of Bristol, UK

Introduction: Increased arterial stiffness (AS) in adults causes increased left ventricular (LV) afterload, putting additional strain on the heart. Long-term, this can lead to an adverse cardiovascular phenotype and AS has been found to be a determinant of CVD, independent of traditional cardiovascular risk factors. However, limited evidence exists for this association in children and adolescents.

Methods: 1625 young adults (age 17y; 46% male) from the Avon Longitudinal Study of Parents and Children (ALSPAC), a UK based birth cohort, underwent echocardiography and carotid-to-femoral pulse wave velocity (PWV) measures. Linear regression was used to investigate associations between PWV and LV structure and function, including LV mass, relative wall thickness (RWT), left atrial diameter (LAD), mitral inflow (E/A), midwall fractional shortening (MFS) and tissue Doppler peak systolic velocity (s’). PWV were considered as AS increase. p < 0.05 was considered significant.

Results: Mean PWV was 9.3 ± 3.2 m/s. PWV > 10m/s was observed in 32.3% patients, CAVI > 9.0 in 25.8%. Patients with PWV > 10m/s were older (69.8 ± 8.5 vs 53.2 ± 15.1 years), had higher BMI (29.3 ± 6.5 vs 24.7 ± 4.8 kg/m²), duration of AH (median 11.5 [IQR 5.5; 17] vs 0 [IQR 0; 5] years), higher SBP levels (144 ± 20 vs 123 ± 14 mmHg), higher levels of hs-CRP (median 22 [IQR 13.3; 60] vs 6.7 [IQR 1.6; 17.2] mg/dl), higher CAVI (9.5 ± 1.1 vs 7.6 ± 1.4), vascular age (71 ± 8.4 vs 53.4 ± 17.5 years). There were positive correlations between PWV and age (r = 0.7), BMI (r = 0.4), SBP (r = 0.6), hs-CRP (r = 0.3), vascular age (r = 0.6). Multiple regression analysis confirmed that AH duration (β = 0.2, p = 0.03), SBP (β = 0.6, p = 0.00009) and hs-CRP (β = 0.3, p = 0.000009) were independent predictors of AS increase.

Conclusion: Elevation of hsCRP as well as other traditional risk factors is an independent predictor of PWV increase in patients with RA.

P184
INCREASED ARTERIAL STIFFNESS IS ASSOCIATED WITH HIGH INFLAMMATORY ACTIVITY IN RHEUMATOID ARTHRITIS
Sergey Veil'makina, Elena Troitskaya, Svetlana Villevalda, Zhanna Kobalava
RUDDN University, Russia

Background: Patients with rheumatoid arthritis (RA) a have high cardiovascular (CV) risk. Relationships between inflammation and arterial stiffness (AS) in patients with RA are not well understood.

Aim: To evaluate parameters of AS and their associations with inflammation in patients with RA.

Methods: 62 patients with RA without known CVD were examined (73% females, age 58.5 ± 15.4 years, 13% smokers, 61% with AH). Median duration of RA was 8 years (IQR 3–17), Median hsCRP 12.1 mg/dl (IQR 2.2; 23.4), median rheumatoid factor (RF) 32.5 IU/l (IQR 8.3; 173 IU/ml). All patients received disease-modifying antirheumatic drugs.

Mean duration of AH 6,1 years (IQR 0–10 years). Parameters of AS were assessed by applanation tonometry. Cardio-ankle vascular index (CAVI) and vascular age were measured by VaSera 1500. PWV > 10,0 m/s and CAVI > 9,0 were considered as AS increase. p < 0.05 was considered significant.

Results: Median PWV was 9,3 ± 3,2 m/s. PWV > 10m/s was observed in 32,3% patients, CAVI > 9,0 in 25,8%. Patients with PWV > 10m/s were older (69,8 ± 8,5 vs 53,2 ± 15,1 years), had higher BMI (29,3 ± 6,5 vs 24,7 ± 4,8 kg/m²), duration of AH (median 11,5 [IQR 5,5; 17] vs 0 [IQR 0; 5] years), higher SBP levels (144 ± 20 vs 123 ± 14 mmHg), higher levels of hs-CRP (median 22 [IQR 13,3; 60] vs 6,7 [IQR 1,6; 17,2] mg/dl), higher CAVI (9,5 ± 1,1 vs 7,6 ± 1,4), vascular age (71 ± 8,4 vs 53,4 ± 17,5 years). There were positive correlations between PWV and age (r = 0,7), BMI (r = 0,4), SBP (r = 0,6), hs-CRP (r = 0,3), vascular age (r = 0,6). Multiple regression analysis confirmed that AH duration (β = 0,2, p = 0,03), SBP (β = 0,6, p = 0,00009) and hs-CRP (β = 0,3, p = 0,000009) were independent predictors of AS increase.

Conclusion: Elevation of hsCRP as well as other traditional risk factors is an independent predictor of PWV increase in patients with RA.

Table 1.

<table>
<thead>
<tr>
<th></th>
<th>Unadjusted</th>
<th>Age and sex adjusted</th>
<th>Age, sex, BMI, SBP, alcohol, smoking, SES adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV mass(2,7) (g/m²)</td>
<td>0.55 ± 0.21</td>
<td>-0.066 ± 0.225</td>
<td>-0.123 ± 0.225</td>
</tr>
<tr>
<td>RWT</td>
<td>0.007 ± 0.002</td>
<td>0.008 ± 0.002</td>
<td>0.005 ± 0.00</td>
</tr>
<tr>
<td>LAD (cm)</td>
<td>-0.004 ± 0.015</td>
<td>-0.017 ± 0.015</td>
<td>-0.010 ± 0.016</td>
</tr>
<tr>
<td>E/A</td>
<td>-0.054 ± 0.014</td>
<td>-0.073 ± 0.015</td>
<td>-0.067 ± 0.019</td>
</tr>
<tr>
<td>MFS (%)</td>
<td>-0.40 ± 0.079</td>
<td>-0.246 ± 0.085</td>
<td>-0.232 ± 0.1</td>
</tr>
<tr>
<td>s’ (cm/s)</td>
<td>0.078 ± 0.05</td>
<td>0.004 ± 0.057</td>
<td>-0.038 ± 0.067</td>
</tr>
</tbody>
</table>

Conclusion: Increased AS is already associated with poorer measures of LV structure and function in adolescence. Adjustment for potential confounders did not substantially attenuate these associations with LV function.

are adipokines with immunomodulatory and vascular functions [2]. We studied the association between arterial stiffness and plasma leptin and adiponectin levels in SLE patients in Ghana.

Methods: In a case control design involving 80 SLE patients and 90 non-SLE controls, arterial stiffness was assessed by cardio-ankle vascular index