P138: CAN PULSE WAVE VELOCITY BE MEASURED IN THE FETAL ASCENDING AORTA?

Madalina Negoita, Arianna Laoreti, Tarek F. Antonios, Asma Khalil, Ashraf W. Khir

To cite this article: Madalina Negoita, Arianna Laoreti, Tarek F. Antonios, Asma Khalil, Ashraf W. Khir (2017) P138: CAN PULSE WAVE VELOCITY BE MEASURED IN THE FETAL ASCENDING AORTA?, Artery Research 20:C, 94–95, DOI: https://doi.org/10.1016/j.artres.2017.10.150

To link to this article: https://doi.org/10.1016/j.artres.2017.10.150

Published online: 7 December 2019
(DBP). Accuracy of estimated aortic BP has never been determined when pe-
ripheral waveforms are precision calibrated using peripheral intra-arterial
SBP/DBP. This is relevant to understanding the best methods to estimate
aortic BP accurately and was the aim of this study. We also determined
how other calibrations influence estimated aortic BP accuracy.

Methods: Ascending, brachial and radial artery intra-arterial BP was
measured among 104 patients (61.8 ± 10 years, 66% male) undergoing coro-
nary angiography. Intra-arterial aortic SBP was compared with estimated
aortic SBP by generalised transfer function (SphygmoCor) using: (1) intra-
arterial brachial pressure waveforms calibrated with intra-arterial brachial
SBP/DBP; (2) intra-arterial radial pressure waveforms calibrated with
intra-arterial brachial SBP/DBP and (3) radial SBP/DBP and; (4) intra-arterial
aortic mean arterial pressure (MAP)/DBP.

Results: All intra-arterial SBP/DBP peripheral waveform calibrations signifi-
cantly underestimated intra-arterial aortic SBP (1) −4.5 ± 7.0 mmHg; (2) −8.9 ± 8.0 mmHg and (3) −5.4 ± 7.6 mmHg; p < 0.0001 all). Conversely,
intra-arterial aortic MAP/DBP calibration (4) accurately estimated aortic
SBP (0.03 ± 4.6 mmHg; p = 0.95). Underestimation of intra-arterial aortic
SBP was related to lower aortic-to-brachial SBP amplification (r > 0.25, p < 0.009 all calibrations).

Conclusion: Even when using accurate (intra-arterial) SBP/DBP for precision
waveform calibration, aortic SBP was significantly underesti-
mated. Intra-arterial aortic MAP/DBP was the most accurate calibration,
but is not feasible for non-invasive use. These findings highlight the need
for improved ways to accurately estimate aortic SBP.

P136

**ALTERED ADVENTITIAL COLLAGEN FIBRIL MECHANICS AND
MORPHOLOGY WITH HIGH PULSE WAVE VELOCITY**

Zhuo Chang 1, Maria Lyck Hansen 2, Lars Melholt Rasmussen 2, Riaz Akhtar 1
1University of Liverpool, UK
2Odense University Hospital, Denmark

Background: Arterial stiffening, occurring as part of the natural aging process
of the artery, is well-established as a powerful predictor of cardiovascular dis-
ease. However, little is known about how localised changes in the extracellular
matrix and mechanical properties of arterial tissue contribute to gross stiff-
ing in the vasculature, particularly in the adventitia. The mechanical prop-
erties of the adventitia are attributed to the collagen fibrils which exhibit high
tensile strength when an axial load is placed on the vessel.

Objective: To determine the relationship between the adventitial collagen
fibril properties and carotid-femoral pulse wave velocity (PWV).

Methods: 16 patients were split into high PWV (13.6 ± 1.1ms⁻¹) and
low (8.5 ± 0.3ms⁻¹) PWV groups (t-test, P < 0.001). Internal mammary arteries
(IMAs) which were collected during coronary artery bypass grafting (CABG)
were used to nano-scale characterisation of the tissue with atomic force mi-
croscopy (AFM). AFM was used to determine nanomechanical properties and
collagen fibril morphology.

Results: Abundant, highly oriented collagen fibrils were observed in the
adventitial layer in both groups. The adventitia had high elastic modulus
properties and carotid-femoral pulse wave velocity (PWV).

Conclusion: Local PWV was determined using the ln(D) U-loop method [1].
AFM was used to determine nanomechanical properties and
collagen fibril morphology.

P137

**NUMERICAL ASSESSMENT AND COMPARISON OF PULSE WAVE VELOCITY
METHODS PRESUMING TO MEASURE AORTIC STIFFNESS**

Hasan Obeid 1, Gilles Soulou 2, Elie Mousseaux 2, Stephane Laurent 2, Nikolaos Stergiopolus 2, Pierre Boutouyrie 3, Patrick Segers 1
1IBI/Tech-bioMMeda, ELIS Department, iMinds Medical IT, Ghent University, Ghent, Belgium
2Hôpital Européen Georges-Pompidou, Inserm U970, Paris, France
3Laboratory of Hemodynamics and Cardiovascular Technology, Ecole Polytechnique Fédérale de Lausanne EPFL, Switzerland

Recently several methods have been proposed as tools to measure aortic
pulse wave velocity (aPWV). The carotid–femoral pulse wave velocity (cf-
PWV), the current clinical gold standard method for the noninvasive
assessment of aPWV, uses the carotid–femoral pulse transit time (cf-PTT)
to derive cf-PWV. The heart-ankle PWV (ha-PWV), brachial-ankle PWV (ba-
PWV) and finger-toe (ft-PWV) are also methods presuming to approximate
PWV based on time delays between physiological signals at two locations
(heart-ankle PTT, ha-PTT; brachial-ankle PTT, ba-PTT; finger-toe PTT, ft-PTT). To test the validity of these methods, we used a 1D arterial network
model (143 segments) including the foot and hand circulation.

The arterial tree dimensions and properties were taken from the literature
and completed with CT-scans data. We calculated PTT’s with all the
methods above. The calculated PTT’s were compared with the aortic PTT (aPTT), considered as the absolute reference method in this study. The correlation between methods
and aPTT was good and significant, cf-PTT (R² = 0.97; P < 0.001; mean difference
5.4 ± 2ms), ha-PTT (R² = 0.96; P < 0.001; 150 ± 23 ms), ba-PTT (R² = 0.96; P < 0.001; 70 ± 13 ms) and ft-PTT (R² = 0.95; P < 0.001; 14 ± 10 ms).
Consequently, good correlation was also observed for the PWV values
derived with the tested methods, but absolute values differed because of
different path lengths used. In conclusion, our computer model based
analyses demonstrate that for PWV methods based on peripheral signals,
PTT’s closely correlate with the aPTT, supporting the use of these methods
in clinical practice.

P138

**CAN PULSE WAVE VELOCITY BE MEASURED IN THE FETAL ASCENDING
AORTA?**

Madalina Negota 1, Arianna Laoreti 2, Tarek F. Antonios 3, Asma Khalil 2, Ashraf W. Khir 1
1Brunel Institute of Bioengineering, Brunel University London, UK
2Fetal Medicine Unit, St George’s Hospital, University of London, UK
3Molecular & Clinical Sciences Research Institute, St George’s, University of London, UK

Background: Routine ultrasound exams are conducted to assess fetus de-
velopment. Heart defects and cardiac function are the main areas investigated
in an ultrasound assessment. However, prenatal assessment of the fetal
arterial stiffness is yet to be established in the ascending aorta.

Aim: To investigate whether pulse wave velocity (PWV) can be determined
in the fetus ascending aorta using ultrasound examination.

Methods: 35 fetuses (19 normal, 16 growth restricted) were included in the
study. High quality recordings were achieved in 6 normal and 8 fetuses diag-
nosed with fetal growth restriction (FGR). Images of the diameter and blood
velocity in the ascending aorta were recorded (Voluson, GE and Samsung)
with a curvilinear probe 2–8MHz/1–7MHz. The diameter and velocity
waveforms were extracted from DICOM images, offline, using in-house developed
codes in Matlab. The extraction was based on thresholding of the grey-scale
images. Local PWV was determined using the ln(D) U-loop method [1].

Results: PWV in the fetal ascending aorta increased with gestational age in
both normal (r² = 0.77) and FGR (r² = 0.55) fetuses. Mean PWV in the fetal
ascending aorta per gestational week was 0.045m/s in normal and 0.066m/s
in FGR fetuses, with a percentage difference of 32%.

![Figure 1. PWV vs gestational age in weeks for normal (blue diamond) and FGR (red squares) fetuses and the trendlines with equations describing them and their r² values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)](image-url)

Abstracts
Conclusions: Despite the challenging ultrasound images of the fetal ascending aorta, local PWV measurement has proven to be possible through recordings of diameter and blood velocity. PWV increases with gestational age and it is higher in FGR than normal fetuses. Further studies are needed to determine the potential clinical predictive value of fetus PWV.

References

P139 COMPARISON OF EJECTION DURATIONS DERIVED FROM RADIAL AND BRACHIAL PRESSURE WAVES
Andreas Bauer1, Bernhard Hametner 1, Thomas Weber2, Siegfried Wasserteurer 1
1Center for Health & Bioresources, AIT Austrian Institute of Technology, Austria
2Cardiology Department, Klinikum Wels-Grieskirchen, Austria

Purpose: The ejection duration (ED) is an important indicator of ventricular function as well as ventriculo-aortic coupling. Thus, the non-invasive oscillometric determination of ED from arterial pressure waves could enhance methods of pulse wave analysis. The aim of this work was to test and to validate the calculation of ED based on measurements from two different devices (brachial oscillometry and radial tonometry).

Methods: 138 pulse wave measurements from 79 patients were obtained in direct succession with the Mobil-O-Graph (IEM, Germany) and with the Sphygmocor device (At Cor Medical Pty. Ltd., Australia) in a comparative study. An algorithm based on numerical derivatives was developed to determine the ejection duration from the arterial pulse wave. For both measurements, the ED was calculated and the ED from the internal algorithm of the Sphygmocor was obtained.

Results: The mean ED of the internal Sphygmocor algorithm (SphyInt) is 309±27 ms, of the calculated ED from the Mobil-O-Graph measurements (Mob) 304±29 ms of the calculated ED from the Sphygmocor recordings (Sphy) 308±30 ms. So, the mean differences between Mob and Sphy are 4±20 ms, see figure, and between Mob and Sphy are 3±26 ms. The sampling rates of Sphygmocor and Mobil-O-Graph are 128 respectively 100 Hz, so the mean errors are below the particular step sizes.

Conclusion: The algorithm for calculation of the ED was tested successfully on radial and brachial recordings. As the differences between locations as well as between algorithms are sufficiently small, the determination of ejection duration from brachial oscillometric pulse waves seems feasible.

P140 COMPARISON OF DOPPLER AND OSCILLOMETRIC METHODS OF ASSESSING ANKLE-BRACHIAL INDEX IN PATIENTS WITH SYSTEMIC LUPUS ERYTHEMATOSUS
Kwame Yeboah 1, Mensah Owusu 1,2, N. A. Richard 1, Dzifa Dey 2, Vincent Boima 1, J. Kennedy Cruickshank 1
1 Department of Physiology, School of Biomedical & Allied Health Sciences, University of Ghana, Accra, Ghana
2 Department of Medicine & Therapeutics, School of Medicine & Dentistry, University of Ghana, Accra, Ghana

Objective: Peripheral arterial disease (PAD) is a common cardiovascular complication in systemic lupus erythematosus (SLE) patients [1]. PAD is objectively diagnosed with ankle-brachial index (ABI), which can be measured by the Doppler method, or oscillometric technique [2]. In Ghanaian SLE patients, we compared the utility of oscillometric ABI to Doppler ABI, which is the ‘gold standard’.

Method: ABI was measured using 8 MHz hand-held Doppler (LifeDop 250, Summit Doppler) and oscillometric technique (Vasera 1500N, Fukuda Denshi) in 80 SLE patients (160 legs). PAD was defined as ABI < 0.9 in at least one leg.

Results: There prevalence of PAD by oscillometric technique was higher than that of Doppler technique (32.5% vs 23.8%, p = 0.004). There was fair level of agreement between PAD by Doppler and oscillometric techniques (κ = 0.36, p = 0.003). Doppler ABI correlated with oscillometric ABI in the right leg (r = 0.34, p = 0.005), but not in the left leg (r = 0.18, p = 0.127). Reliability analysis showed that Doppler-ABI does not agree with oscillometric ABI in both right (intraclass r = 0.23, p = 0.13) and left (intraclass r = 0.31, p = 0.061) legs.

Conclusion: In Ghanaian SLE patients with high prevalence of PAD, measurement of ABI using oscillometric technique does not agree with Doppler-based ABI.

References

P141 COMPARISON BETWEEN TECHNIQUES OF EVALUATION MICROVASCULAR MORPHOLOGY: THE GOLD-STANDARD LOCALLY INVASIVE MICROMYOGRAPHY VS. THREE NON-INVASIVE TECHNIQUES. PRELIMINARY DATA
C. De Ciuceis1, S. Caletti1, M. A. Coschignano1, C. Rossini1, S. Duse2, F. Docchio3, S. Pasinetti3, F. Zambonardi3, F. Semeraro2, G. Sansoni4, C. Agabiti Rosei1, P. Pileri1, E. Agabiti Rosei1, D. Rizzoni1,5
1Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Italy
2Chair of Ophthalmology, University of Brescia, Italy
3Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
4Department of Information Engineering, University of Brescia, Brescia, Italy
5Istituto Clinico Città di Brescia, Division of Medicine, Brescia, Italy

Objective: The gold standard technique of evaluation microvascular morphology in human is generally considered the measure of media to lumen ratio (M/L) of subcutaneous small vessels obtained by local biopsies and evaluated by wire or pressure micromyography. However, non-invasive techniques for the evaluation of retinal arterioles were recently proposed, in particular two approaches seem to provide interesting information: Scanning Laser Doppler Flowmetry (SLDF) and adaptive optics (AO); both of them provide an estimation of the wall to lumen ratio (WLR) of retinal arterioles. A non-invasive measurement of basal and total capillary density may be obtained by videomicroscopy/capillaroscopy. No direct comparison of the non-invasive techniques in the same population was previously performed, in particular AO was never validated against micromyography.

Conclusion: The algorithm for calculation of the ED was tested successfully on radial and brachial recordings. As the differences between locations as well as between algorithms are sufficiently small, the determination of ejection duration from brachial oscillometric pulse waves seems feasible.