P144: ASCENDING AND DESCENDING THORACIC AORTA PU-LOOPS FOR THE ESTIMATION OF LEFT VENTRICULAR AFTERLOAD

Alex Hong, Jona Joachim, Cedric Buxin, Sandrine Millasseau, Arthur Le Gall, Joaquim Mateo, Etienne Gayat, Fabrice Vallée


To link to this article: https://doi.org/10.1016/j.artres.2017.10.156

Published online: 7 December 2019
Conclusions: Measurement of PWV and CPP is reliable in patients with AF, as they appear unaffected by the presence of arrhythmia.

References

P144
ASCENDING AND DESCENDING THORACIC AORTA PU-LOOPS FOR THE ESTIMATION OF LEFT VENTRICULAR AFTERLOAD
Alex Hong 1,2, Jona Joachim 1,3,4, Cedric Buxin 1, Sandrine Millasseau 5, Arthur Le Gall 1,3,4, Joaquim Mateo 1,2,4, Etienne Gayat 1,2,4, Fabrice Vallée 1,3,4
1St – Louis – Lariboisière – Fernand Widal University Hospitals, Dept of Anaesthesiology & Intensive Care – Le Temple, Paris, France
2UMR-S 942 INSERM, Lariboisière Hospital, Paris, France
3M3DISIM – Inria, Université Paris-Saclay, France
4LMS, Ecole Polytechnique, CNRS, Université Paris – Saclay, France
5Pulse Wave Consulting, Saint Leu La Foret, France
6Paris Diderot University, Sorbonne Paris Cité, France

Introduction: Pressure-Velocity (PU) loops obtained in the ascending thoracic aorta (PU-loopsasc) could estimate left ventricular afterload with two remarkable angles: β and GALA (Global Afterload Angle) [1]. The aim of this study is to compare PU-loops measured in the ascending aorta (PU-loopsasc) versus PU-loopsdes.

Methods: This study was conducted in patients scheduled for elective intervention neuroradiology. During the procedure, we measured pressures at two different sites: (1) in the ascending aorta where we obtained a transthoracic echocardiogram (TEE) concomitantly to measure ascending aortic blood velocity, (2) in the descending thoracic aorta where blood velocity was obtained using a trans-esophageal Doppler probe. Patients were divided into high risk (HR) and low risk (LR) groups based on their cardiovascular risk factors.

Results: Twenty-five patients were included (13 HR, 12 LR). We observed a significant increase in both β and GALA angles between PU-loopsasc and PU-loopsdes from 7° [0–15] to 13° [5–20] and from 30° [23–37] to 41° [29–54], p < 0.01 respectively. This increase was more marked in the HR group compared to the LR group (p < 0.05) (Fig 1). Just like in PU-loopsdes, we found that β and GALA angles in PU-loopsasc could also discriminate between LR and HR patients (β: [0.4–6] vs 17° [9–23] and 24° [22–26] vs 38° [34–43], p < 0.01 respectively).

Conclusion: PU-loopsasc had lower β and GALA angles compared to PU-loopsdes. However, GALA could discriminate between high and low cardiovascular risk patients in both sites.

References

P145
MEASUREMENT OF BLOOD PRESSURE DEPENDENCY OF CAROTID-FEMORAL PULSE WAVE VELOCITY
Mark Butlin 1, Isabella Tan 1, Fatemeh Shirbani 1, Bart Sprock 2, Alberto Avolio 1
1Macquarie University, Australia
2Maastricht University, Netherlands

Background: Carotid-femoral pulse wave velocity (cfPWV) is predictive of cardiovascular outcomes but clinical interpretation is confounded by blood pressure (BP) interaction. This study proposes a method for PWV pressure dependency measurement suitable for routine clinical or research use.

Methods: Carotid tonometry and thigh-cuff volumetric displacement allowed cfPWV measurement in the seated and supine position. Brachial oscillometry gave systemic BP. Solving simultaneous equations describing the seated and supine measurement gave hydrostatic BP change across the carotid-femoral arterial path and the pressure dependency of cfPWV. Stepwise multiple linear regression quantified the association of pressure dependency of cfPWV with demographic and cardiovascular parameters.

Results: Of 88 subjects (19 to 91 years, 41 female), 4 (4.5%) had an unexpected increase in cfPWV with decreased BP from seated to supine position. Cross-sectional analysis in the remaining cohort showed blood pressure dependency of cfPWV correlated with brachial pulse pressure (β = 0.40, p = 0.001), diastolic pressure (β = −0.33, p < 0.001), gender (β = 0.25 for female/male = 1/0, p = 0.010), and heart rate (β = 0.23, p = 0.033). There was no correlation with supine cfPWV nor age. Average pressure dependency of cfPWV was 0.6 ± 0.3 m/s per 10 mmHg (range of 0.09 to 1.5 m/s per 10 mmHg). Average change in transmural BP across the carotid-femoral arterial path was 20 ± 7 mmHg (diastolic BP change 4 ± 7 mmHg; hydrostatic BP change 16 ± 2 mmHg).