P91: GREEN TEA EXTRACT REDUCES LIPID PROFILE, PERCENTAGE OF AORTIC AUGMENTATION INDEX AND INCREASES SOLUBLE RAGE CONCENTRATIONS IN NORMOTENSIVE PATIENTS WITH TYPE 2 DIABETES MELLITUS: A RANDOMIZED, DOUBLE-BLINDED, AND PLACEBO-CONTROLLED TRIAL

Fernando Grover Páez, Patricia Quezada Fernandez, Mariana Rodriguez de la Cerda, David Cardona Müller, Jhonatan Trujillo Quiroz, Walter Trujillo Rangel, Marycruz Barocio Pantoja


To link to this article: https://doi.org/10.1016/j.artres.2017.10.128

Published online: 7 December 2019
work, and increased subendocardial viability index in supine and upright positions (p < 0.01 for all). Stroke volume was increased in the supine (~11 ml, p < 0.01) but not in the upright position, while upright (~11/ min, p < 0.01) but not supine cardiac output was significantly reduced. Upright increase in systemic vascular resistance was amplified after bisoprolol (p < 0.05). Pulse pressure amplification was reduced especially in the upright position (supine reduction 10%, upright reduction 20%). Aortic augmentation index, augmentation pressure and pulse pressure were not changed in the supine position, but were increased in the upright position (from 7 to 20%, 3 to 7 mmHg, 28 to 35 mmHg, respectively, p < 0.01 for all).

Conclusions: Bisoprolol decreased central and peripheral blood pressure in male subjects with grade I to grade II hypertension, but central blood pressure was reduced less efficiently than peripheral blood pressure. Importantly, the harmful influences of bisoprolol on central pulse pressure and pressure wave reflection were especially observed in the upright position.

P90

POSITIVE EFFECTS OF ANTHYPERTENSIVE TREATMENT ON AORTIC STIFFNESS IN THE GENERAL POPULATION

Marketa Materiánková
Internal Department II, Faculty of Medicine in Pilsen, Charles University, Czech Republic

Aortic stiffness is strongly related to age and mean arterial pressure (MAP). We investigated whether antihypertensive treatment modulates the association of the aortic pulse wave velocity (PWV) with age and with MAP in the general population. In the Czech post-MONICA, we measured the PWV in 735 subjects (mean age 61.2 ± 7.8 years, 54.1% women, 44.3% on antihypertensive medication). We used a linear regression model to assess the effect of treatment on the PWV.

The independent covariates in our analysis included sex, age, MAP, body mass index, plasma glucose, low-density lipoprotein cholesterol, smoking and observer. The patients receiving treatment were older (64.1 ± 6.7 vs. 58.9 ± 7.8 years), had higher systolic blood pressure (135.9 ± 16.2 vs. 130.1 ± 16.5 mm Hg) and had higher pulse wave velocity (9.1 ± 2.2 vs. 8.2 ± 2.1 m/s; p < 0.0001) than untreated subjects.

After adjustment for MAP, the use of treatment modified the association between age and the PWV (regression equations, treated patients 9.68–0.009 age vs. untreated subjects 6.98 ± 0.020 age, difference of regression slopes, F 1/4 11.2; P 1/4 0.0009). In analyses adjusted for age, treatment was associated with a smaller increase of the PWV with MAP (treated patients 9.63–0.006 MAP vs. untreated subjects 7.18 ± 0.010 MAP, F 1/4 10.70; P 1/4 0.0001). These results were driven primarily by subjects whose blood pressure was below 140/90 mm Hg.

In the cross-sectional analysis from a random sample of the general population, antihypertensive treatment was associated with a less steep increase in the PWV with age and the mean arterial pressure.

Table 1: Effect of 12 weeks of Green tea extract intervention or placebo on circulating parameters.

<table>
<thead>
<tr>
<th></th>
<th>GTE</th>
<th>PLACEBO</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basal n = 10</td>
<td>Final n = 10</td>
<td></td>
</tr>
<tr>
<td>Fasting Glucose, mg/dl</td>
<td>169.9 ± 92.3</td>
<td>123.9 ± 69.8</td>
<td></td>
</tr>
<tr>
<td>Creatinin mg/dl</td>
<td>0.75 ± 0.2</td>
<td>0.81 ± 0.14</td>
<td></td>
</tr>
<tr>
<td>Total Cholesterol mg/dl</td>
<td>203.9 ± 37.6</td>
<td>176.9 ± 25.9</td>
<td>0.019*</td>
</tr>
<tr>
<td>Triglycerids, mg/dl</td>
<td>202.6 ± 146.3</td>
<td>123.9 ± 64.8</td>
<td>0.023*</td>
</tr>
<tr>
<td>HDLc, mg/dl</td>
<td>47.9 ± 7.8</td>
<td>44.9 ± 5.2</td>
<td>0.529</td>
</tr>
<tr>
<td>LDLc, mg/dl</td>
<td>123 ± 32.8</td>
<td>109.4 ± 25.1</td>
<td>0.436</td>
</tr>
<tr>
<td>TGO, U/ml</td>
<td>25.6 ± 10.1</td>
<td>25.3 ± 7.08</td>
<td>0.971</td>
</tr>
<tr>
<td>TGP, U/ml</td>
<td>23.8 ± 13.6</td>
<td>28.9 ± 11.9</td>
<td>0.912</td>
</tr>
<tr>
<td>TFG, ml/min</td>
<td>119.9 ± 56.3</td>
<td>101.8 ± 23.9</td>
<td>0.739</td>
</tr>
</tbody>
</table>

Values are arithmetic means ± SE except for mean differences between groups, which have been adjusted for baseline values. Between-group P values reflect the between-group comparison change-scores from Mean Whitney U statistic methodology. *Significant (p < 0.05) within-group change.

Conclusions: Green tea extract reduces lipid levels, percentage of aortic augmentation index and increases soluble RAGE concentrations in normotensive patients with Type 2 Diabetes mellitus: A randomized, double-blinded, and placebo-controlled trial

Fernando Grover Páez 1,2,4, Patricia Quezada Fernandez 5,6, Mariana Rodríguez de la Cerda 3, David Cardona Müller 2,6,7, Jhonatan Trujillo Quiroz 2,6, Walter Trujillo Rangel 5,4, Marycruz Barocio Pantoya 5,6
1University of Guadalajara, Physiology Department of the University of Guadalajara, Mexico
2Experimental Therapeutic and Clinic Institute, University of Guadalajara, Mexico
3National System of Researchers Grade 1, National Council of Science and Technology (CONACYT), Mexico
4Experimental Therapeutic and Clinic Institute, Physiology Department of the University of Guadalajara, Mexico
5PNC, National Council of Science and Technology (CONACYT), Mexico
6National System of Researchers, National Council of science and technology (CONACYT), Mexico
7National Council of Cardiology, Mexico

Background: Type 2 diabetes mellitus is associated with premature atherosclerosis and arterial stiffening by an accumulation of advanced glycation end-products in vessel wall (1). Green tea polyphenols are considered a cardioprotective substance and may be used as an adjuvant for diabetes treatment, because its ability to stimulates the soluble RAGE secretion (2). There is no clinical evidence of the effect of green tea extract administration on metabolic parameters, arterial stiffness and the soluble RAGE expression. Material and Methods: A double-blind, placebo-controlled, randomized clinical trial in normotensive patients with type 2 diabetes mellitus was conducted to identify the effect of green tea extract on arterial stiffness, metabolic and anthropometric parameters and on soluble RAGE (sRAGE) with the s100A1 ligand.

Results: We included 20 subjects, there was no difference between groups at baseline. There was a decrease in the green tea extract group on aortic augmentation index (21.12 ± 8.9 to 18.07 ± 9.7, p = 0.045), total cholesterol (203.9 ± 37.6 to 176.9 ± 25.9 mg/dl, p = 0.019) triglycerides (202.6 ± 146.9 to 123.2 ± 64.8 mg/dl, p = 0.023) and an increase in sRAGE (1358.5 ± 390.0 to 1281.1 ± 369.7 p = 0.052).

References
P92
SIMULTANEOUS INVASIVE AND NONINVASIVE MONITORING OF CENTRAL BLOOD PRESSURE ON CRITICALLY ILL PATIENTS SUFFERING FROM CARDIOGENIC SHOCK TREATED WITH IABP
Bela Benczur 1, Adam Nemeth 1, Renata Bocskei 2, Attila Cziraki 1
1Balassa Janos’ County Hospital, 1st Dept. of Internal Medicine, (Cardiology/Nephrology), Szekszard, Hungary
2Heart Institute, University of Pecs, Pecs, Hungary

Intraaortic balloon counterpulsation (IABP) is a method of temporary mechanical circulatory support in patients suffering from cardiogenic shock to improve the balance of myocardial oxygen supply and demand by using systolic unloading and diastolic augmentation. Arteriograph is an invasively validated oscillometric device which measures central blood pressure (SBPao) noninvasively. The recently developed Arteriograph24 is a combination of a 24-hour BP-monitor and a single-measurement Arteriograph which provides both 24-hour peripheral and central BP profile. Comparison of simultaneous invasive measurements by IABP and noninvasive ones by Arteriograph of SBPao was never published yet.

Aim: The aim of this work was to compare the SBPao values measured with these two modalities.

Subjects and method: 11 severely ill patients placed on IABP were included into this study. Noninvasive monitoring of SBPao was carried out by Arteriograph24 simultaneously with IABP. Descriptive statistics were calculated for both measurements and the variables were indicated as means and standard deviations. Linear regression analysis was carried out to define the relationship between the invasive and noninvasive variables.

Results: A strong and linear correlation was found between the invasive and non-invasive SBPao values, Pearson’s correlation coefficient was R = 0.76; p < 0.001. The diastolic counterpulsation pressure waves could be correctly identified on Arteriograph-registrations. Furthermore, the onset and the end of counterpulsation were also exactly defined noninvasively.

Conclusions: The noninvasive SBPao values showed strong correlation with invasive values. Our results confirm that the SBPao values, measured by Arteriograph24, are close to the true aortic SBP. This is the first investigation when Arteriograph24 is validated against invasive SBPao measurement by IABP.

P93
ARE HEMODYNAMIC MEASURES ASSOCIATED WITH FRAILTY IN ELDERLY PATIENTS UNDERGOING TRANSCATHETER AORTIC VALVE IMPLANTATION?
Jeanette Goudzward 1, Marjo de Ronde-Tillmans 1, Najeh El Faquiur 1, Nicolas van Mieghem 2, Mattie Lenzen 2, Peter de Jaegere 1, Francesco Mattace Raso 1
1Section of Geriatrics, Department of Internal Medicine, Erasmus University Medical Center, Netherlands
2Department of Interventional Cardiology, Thorax Center, Erasmus University Medical Center, Netherlands

Background: Aortic valve stenosis (AS) is common in the elderly and is associated with high morbidity and mortality, and leads to functional decline. The aim of this study was to investigate the possible relation between aortic stiffness, AS and frailty in older patients undergoing Transcatheter Aortic Valve Implantation (TAVI).

Methods: TAVI Care&Care is an observational ongoing study including consecutive patients undergoing TAVI procedure at the Erasmus University Medical Center. Prior to TAVI echocardiography was performed and aortic stiffness was measured non-invasively by the Mobil-O-Graph. The frailty status was assessed including 5 domains. Primary outcome was to investigate the relationship between structural and functional cardiovascular parameters and frailty status. Linear regression was used.

Results: A total of 212 patients were included for analysis. Mean age was 79.2 years (±7.8), 52.7% men, mean Aortic Valve Area (AVA) was 0.73 (± 0.3), mean Pulse Wave Velocity was 12.6 (±1.5). Frailty was found in 57.8%. Peripheral pulse pressure (p = 0.04) and central pulse pressure (p = 0.02) but not aortic stiffness were associated with AS severity. AVA was associated with frailty (p = 0.02) whereas measures of aortic stiffness were not.

Conclusion: Aortic valve area but not measures of aortic stiffness is associated with frailty status in elderly patients with AS undergoing a TAVI procedure.