P37: REFERENCE VALUES OF CARDIO-ANKLE VASCULAR INDEX IN A RANDOM SAMPLE OF A CAUCASIAN POPULATION

Peter Wohlfahrt, Renata Cífková, Narine Movsisyan, Šárka Kunzová, Jiří Lešovský, Martin Homolka, Vladimír Soška, Petr Dobšák, Francisco Lopez-Jimenez, Ondřej Sochor

To cite this article: Peter Wohlfahrt, Renata Cífková, Narine Movsisyan, Šárka Kunzová, Jiří Lešovský, Martin Homolka, Vladimír Soška, Petr Dobšák, Francisco Lopez-Jimenez, Ondřej Sochor (2017) P37: REFERENCE VALUES OF CARDIO-ANKLE VASCULAR INDEX IN A RANDOM SAMPLE OF A CAUCASIAN POPULATION, Artery Research 20:C, 65–66, DOI: https://doi.org/10.1016/j.artres.2017.10.067

To link to this article: https://doi.org/10.1016/j.artres.2017.10.067

Published online: 7 December 2019
P13
ARHGFE1/RhoA SIGNALING PARTICIPATE IN AGEING-INDUCED ARTERIAL STIFFNESS AND HYPERCOAGULABILITY
Camille Rouillon 1, Nathalie Mercier 1, Patrick Lacolley 1, Gervaise Loinard 2, Véronique Renouault 3
1INSERM U1116, Faculté de Médecine, Vandœuvre-lès-Nancy, France
2UMR 1087, Nantes, France
3INSERM U1116, Faculté de Médecine, Vandœuvre-lès-Nancy, France

The RhoA signaling pathway is a master regulator of mechanotransduction and plasticity of vascular smooth muscle cells (VSMCs) that controls arterial stiffening. The RhoA exchange factor Arhgef1 is causally involved in the development of angiotensin II-dependent hypertension. Our aim was to determine whether Arhgef1 plays a key role in age-associated arterial stiffness and the coupling with modifications of the procoagulant properties of blood and VSMCs. We used 65 week-old transgenic mice invalidated for Arhgef1 (Arhgef1−/−) and age-matched controls (Arhgef1+/−). In vivo arterial diameter pressure, distensibility/arterial pressure and elastic modulus/circumferential stress curves at the level of carotid artery were recorded using an echotracking system (VEVO 770 Visualsonics Imaging) in anesthetized animals. Systolic blood pressure, pulse pressure and heart rate were not different between mutant and control mice. Isobaric carotid distensibility was increased in Arhgef1−/− mice compared to Arhgef1+/− mice. The elastic modulus/circumferential stress curves were shifted significantly rightwards in Arhgef1−/− mice compared to Arhgef1+/− mice. Thrombin generation in blood and at the surface of VSMCs cultured from aorta was reduced in Arhgef1−/− mice. Anticoagulant markers secreted by the vascular wall (tissue factor pathway inhibitor and thrombomodulin) were increased in plasma of Arhgef1−/− mice. The time of formation of an intramural thrombus induced by FeCl3 in the carotid artery was prolonged in Arhgef1−/− mice. In conclusion, the Arhgef1/RhoA contractile pathway contributes to arterial stiffening and VSMC procoagulant properties in aging. Whether this reduced procoagulant properties of the vascular wall is a cause or consequence of arterial stiffness remains to be elucidated.

P36
PULSE PRESSURE AMPLIFICATION AND ITS RELATIONSHIP WITH AGE IN YOUNG, APPARENTLY HEALTHY BLACK AND WHITE ADULTS: THE AFRICAN-PREDICT STUDY
Yoland Breet 1,2, Alta Schutte 1,2, Hugo Huisman 1,2, Ruan Kruger 1,2, Johannes van Rooyen 1,2, Lebo Gafane-Matemane 1,2, Lisa Ware 1,2
1Hypertension In Africa Research Team (HART), North-West University, Potchefstroom, South Africa
2MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa

Background: Pulse pressure amplification (PPA), i.e. the amplification from central arteries to the periphery, is inversely related to arterial stiffness, organ damage and mortality. It is known that arterial stiffness is higher in black than white populations, but it is unclear if this is due to early vascular aging. We therefore investigated whether PPA declines earlier in young normotensive black South Africans, when compared to their white counterparts.

Methods: We included 875 black and white men and women from the African-PREDICT study (55% black, 41% men), aged 20–30 years, with no prior diagnosis of chronic disease, screened for normotensive clinic blood pressure (BP). We determined supine central PP (cPP), and supine brachial systolic and diastolic BP, from which brachial PP (bPP) was calculated. PPA was defined as the ratio of the amplitude of the PP between these distal and proximal locations (bPP/cPP).

Results: We found the mean PPA to be lower in black compared to white participants (1.43 vs. 1.46; P = 0.013). In black adults PPA declined earlier with increasing age (P-trend < 0.001), with a weak trend in whites (P = 0.063) after adjustment for sex, socio-economic status, height and mean arterial pressure. In multivariable-adjusted regression, we found an independent inverse association between PPA and age only in the black group (β = –0.22, P < 0.001).

Conclusion: PPA declines earlier with age in normotensive black adults younger than 30 years, exemplifying early vascular aging which may predispose black individuals to future cardiovascular outcomes.

P35
SOLUBLE RECEPTOR FOR ADVANCED GLYCATION END-PRODUCTS AND AGE-DEPENDENT ARTERIAL STIFFENING IN A POPULATION-BASED PROSPECTIVE STUDY
Julius Gelzinsky, Otto Mayer, Markéta Honová, Petra Karnosová, Jitka Seidlerová, Jan Filipovský
2nd Dept. of Internal Medicine, Charles University/Medical Faculty and University Hospital, Pilsen, Czech Republic

Background: Accumulation of advanced glycation end-products (AGEs) is one of pathophysiological processes, responsible for progressive stiffening of vessel wall. In contrast, soluble isoform of receptor for AGEs (sRAGE) act as “decoy” and physiological defense against circulating AGEs. We hypothesized that low levels of sRAGE might be associated with accelerated age-dependent arterial stiffening.

Methods: We followed 429 population-based subjects (mean age 50.8 ± 17.7 years, 41.5% males) in prospective study. Aortic pulse wave velocity (aPWV) was measured using a SphygmoCor device. sRAGE concentrations were assessed in frozen samples by ELISA methods (R&D Systems). Baseline (aPWV) was measured using a Sphygmocor device. sRAGE concentrations were assessed by ELISA methods (R&D Systems). Baseline (aPWV) was measured using a Sphygmocor device. sRAGE concentrations were assessed by ELISA methods (R&D Systems).

Results: Mean intra-individual increase of aPWV during follow-up was 1.37 (±1.88) m/sec and was inversely associated with baseline sRAGE concentration – the aPWV difference [follow-up minus baseline] across its quintiles was 2.08 (±1.89), 1.51 (±2.16), 1.20 (±2.10), 0.99 (±1.70), 1.13 (±1.21) in 1st–5th quintiles of sRAGE, resp.; p = 0.003 (adjusted for age, gender and baseline mean arterial pressure) Baseline concentration of sRAGE <917 pg/ml (1st quintile) was associated with about two-fold higher risk, that aPWV increased by more than 0.8 m/sec (acceptable “separate” age-dependent increase) even if adjusted for baseline risk profile and pharmacotherapy [fully adjusted odds ratio was 1.95 (95%CI: 1.12–3.39, p = 0.018).

Conclusions: Low concentration of circulating sRAGE was in our sample of generally healthy subjects associated with markedly accelerated age-dependent arterial stiffening, probably as a consequence of higher deposition of AGEs in vessel wall (supported by SVV 02684, PROGRES Q39 and AZV 15-27109 grants).

P37
REFERENCE VALUES OF CARDIO-ANKLE VASCULAR INDEX IN A RANDOM SAMPLE OF A CAUCASIAN POPULATION
Peter Wohlfahrt 1,2,3, Renata Cifkova 4,5,7, Narine Movsisyan 1,7, Pola Zikova 1,7, Martin Homolka 4,5,6, Vladimir Soska 1, Petr Dobias 1, Francisco Lopez-Jimenez 7, Ondrej Sochor 7,8
1Department of Clinical Biochemistry, St. Anne’s University Hospital, Brno, Czech Republic
2Institute for Clinical and Experimental Medicine, Institute of Clinical and Experimental Medicine, Czech Republic
3Laboratory for Atherosclerosis Research, Institute for Clinical and Experimental Medicine, Czech Republic
4International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
5International Clinical Research Center, Czech Republic
6Department of Internal Medicine, Laboratory of Laboratory Methods, Masaryk University, Czech Republic
7Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
8International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic

Objectives: Cardio-ankle vascular index (CAVI), a parameter of arterial stiffness, has been increasingly used for cardiovascular risk estimation. Currently used CAVI reference values are derived from the Japanese population. It is not clear whether the same reference values can be used in the Caucasian population. The aim of the present study was to describe cardiovascular risk factors influencing CAVI and to establish CAVI reference values.

Methods: 2160 individuals randomly selected from the Brno city population aged 25–65 years were examined. Of these, 1347 subjects were free from cardiovascular disease, non-diabetic and untreated by antihypertensive or lipid-lowering drugs, forming the reference value population. CAVI was measured using the VaSera VS-1000 device.
Methods: dimensions of the aorta, measured at level of the sinuses of Valsalva (Val), at the left ventricular outflow tract (LVOT), and at the level of the proximal ascending aorta (AscAo) in subjects from a general population.

Methods: 250 subjects (43% males, mean age 56 ± 4 years, 42% hypertensives-HT) underwent laboratory examinations, clinic and 24 hours BP measurement, cardiac and carotid ultrasound, carotid-femoral pulse wave velocity measurement (AoPWV).

Results: aortic diameters were greater HT as compared to NT (Val: 3.41 ± 0.54 vs 3.25 ± 0.41 cm, LVOT: 2.10 ± 0.28 vs 2.04 ± 0.26, AscAo: 3.39 ± 0.45 vs 3.18 ± 0.38, all p < 0.05). Aortic diameters were all correlated to clinic and 24 hours BP values. The coefficients of correlation were greater for 24 hours BP (Tab). Val, AscAo, LVOT were also significantly correlated with left ventricular mass (r = 0.61, r = 0.48, and r = 0.43, all p < 0.001), mean max intima media thickness (r = 0.13, r = 0.24, and r = 0.13, all p < 0.05) and with AoPWV (r = 0.16, p < 0.05, r = 0.28 p < 0.001, r = 0.08 p = ns).

Conclusions: The dimensions of the proximal ascending aorta are significantly related to BP values in normotensive subjects and in hypertensive patients. Aortic dimension are more strictly related to twenty-four hours BP measurements reflecting diastolic LV function are slightly but significantly closer associated with central than peripheral BP.

P39
LEFT VENTRICULAR STRUCTURE AND FUNCTION IN RELATION TO PERIPHERAL AND CENTRAL BLOOD PRESSURE IN A GENERAL POPULATION

Wenyi Yang 1, Ljupcho Efremov 1, Zhen-Yu Zhang 1, Nicholas Cauwenberghs 2, Lutgarde Thijs 1, Fang-Fei Wei 1, Qi-Fang Huang 1, Blerim Mujaj 1, Aernout Luttun 2, Peter Verhamme 2, Tatiana Kuznetsova 1, Jan Staessen 1
1Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, Faculty of Medicine, University of Leuven, Leuven, Belgium
2Centre for Molecular and Vascular Biology, KU Leuven Department of Cardiovascular Sciences, Faculty of Medicine, University of Leuven, Leuven, Belgium

Background: Central blood pressure (BP) is a predictor of target organ damage. No previous study addressed the question to what extent central compared with peripheral is related to left ventricular (LV) structure and function in a general population.

Methods: In 577 Flemish recruited from the general population (47.8% women; mean age 50.5 years), we assessed the multivariable-adjusted associations of echocardiographic LV structure and systolic and diastolic LV function (Vivid7 Pro device; EchoPac software, version 4.0.4; GE Vingmed, Horten, Norway) with peripheral and central pressure, as recorded by radial application tonometry (SphygmCor software, version 9.0). Association sizes were expressed per 15/10 mmHg increment in peripheral or central systolic/diastolic BP.

Results: Peripheral compared with central systolic BP was 10.2 mm Hg higher (P < 0.0001), whereas diastolic BP was similar peripherally and centrally (P = 0.50). Associations were closer (P < 0.020) with central than peripheral systolic BP for LV mass (+0.59 g/m²) and left atrial volume (+0.29 ml/m²) indexed to body surface area, peak A transmitral flow (+0.12 cm/s), peak e′ mitral annular movement (−0.18 cm/s) and the E/A ratio (−0.017). Associations were closer (P < 0.038) with central than peripheral diastolic BP for left atrial volume index (+0.289 ml/m²), e′ (−0.123 cm/s) and E/e′ (+0.094).

Ejection fraction and global longitudinal strain were similarly associated with central and peripheral systolic (P ≤ 0.62) and diastolic (P ≤ 0.18) BP.

Conclusions: In asymptomatic people recruited from the general population, LV mass and atrial volume indexes and selected haemodynamic measurements reflecting diastolic LV function are slightly but significantly closer associated with central than peripheral BP.

P40
DOES ARTERIAL AGEING DIFFER BETWEEN EUROPEANS AND JAPANESE AND KOREAN PATIENT SAMPLES? RESULTS FROM CURRENT UK STUDIES

F. A. Kirkham 1, C. Mills 2, J. Nambiar 1,2, J. Timeyin 1, K. A. Davies 1,3, F. Kern 1, J. K. Cruickshank 2, C. Rajkumar 1,3
1Brighton and Sussex University Hospital Trust, East Sussex, UK
2Guys and St Thomas’ Hospital, King’s College and King’s Health Partners, UK
3Brighton and Sussex Medical School, University of Sussex, UK

Objective: Vascular stiffness has long been linked with the ageing process. However, it is only since the development of accurate methods for measuring arterial compliance that unravelling this relationship has become possible. Arterial stiffening over time appears to differ between ethnic groups and/or geographic areas. We investigated how the cardio-ankle vascular index (CAVI) varied with chronological age to make initial comparisons of its change with age between this European study and published data from Japanese and Korean patient populations.

Method: 312 participants (180 men, 132 women), age 63.7 ± 12.9 (mean ± SD), range 25–92 years. The following were measured: CAVI using VaSera VS-1500N® (Fukuda Denshi, Japan); brachial BP using OMRON705IT; baseline characteristics and physical examination of cardiovascular health. These data are from current UK studies of healthy volunteers with approximately 20% having two or more cardiovascular risk factors.

Results: CAVI was significantly correlated with age (r = 0.63, p < 0.001), more closely in men (r = 0.71, p < 0.001) than women (r = 0.54, p < 0.001). These data were used to create a preliminary set of ‘usual’ average CAVI values for each age category (Table) and compared against data from Japan [1] and Korea [2] (plot 1 & 2). Korean men had lower CAVI values at each age.