1.5: DESPHOSPHO-UNCARBOXYLATED MATRIX GLA PROTEIN IS A NOVEL CIRCULATING BIOMARKER PREDICTING DETERIORATION OF RENAL FUNCTION IN THE GENERAL POPULATION

Fangfei Wei, Sander Trenson, Lutgarde Thijs, Qi-Fang Huang, Zhen-Yu Zhang, Wen-Yi Yang, Paula Moliterno, Karel Allegaert, José Boggia, Stefan Janssens, Peter Verhamme, Cees Vermeer, Jan Staessen

To cite this article: Fangfei Wei, Sander Trenson, Lutgarde Thijs, Qi-Fang Huang, Zhen-Yu Zhang, Wen-Yi Yang, Paula Moliterno, Karel Allegaert, José Boggia, Stefan Janssens, Peter Verhamme, Cees Vermeer, Jan Staessen (2017) 1.5: DESPHOSPHO-UNCARBOXYLATED MATRIX GLA PROTEIN IS A NOVEL CIRCULATING BIOMARKER PREDICTING DETERIORATION OF RENAL FUNCTION IN THE GENERAL POPULATION, Artery Research 20:C, 48–48, DOI: https://doi.org/10.1016/j.artres.2017.10.019

To link to this article: https://doi.org/10.1016/j.artres.2017.10.019

Published online: 7 December 2019
Average cPP was 36 ± 7 mmHg, PPamp 1.57 ± 0.13. cPP was positively associated with male sex, BSA, MAP, SI, and negatively with HR (47% of cPP variance explained). pPP was positively associated with age, HR and cf-PWV (17% of PPamp variance explained). Results did not change when BMI and height replaced BSA, ILVM replaced SI, and cf-PWV or PWV ratio (cfPWV/cPWV) replaced cf-PWV. Anthropometric and hemodynamic factors differently impact on cPP, pPP and PPamp. HR and MAP are related to cPP, but not to pPP, HR, cf-PWV and age are all positively related to PPamp. These results could help in better elucidate the clinical relevance of some BP patterns frequently observed in adolescence.

Table

<table>
<thead>
<tr>
<th></th>
<th>cPP</th>
<th>pPP</th>
<th>PPamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male sex</td>
<td>0.33</td>
<td>0.40</td>
<td>–</td>
</tr>
<tr>
<td>BSA, m²</td>
<td>0.28</td>
<td>0.32</td>
<td>0.32</td>
</tr>
<tr>
<td>Heart rate, bpm</td>
<td>–0.21</td>
<td>–</td>
<td>0.32</td>
</tr>
<tr>
<td>Mean arterial pressure, mmHg</td>
<td>0.11</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Stroke index, ml/m²</td>
<td>0.09</td>
<td>0.09</td>
<td>–</td>
</tr>
<tr>
<td>Carotid-femoral PWV, m/s</td>
<td>–</td>
<td>–</td>
<td>0.11</td>
</tr>
<tr>
<td>Age, years</td>
<td>–</td>
<td>–</td>
<td>0.10</td>
</tr>
</tbody>
</table>

1.4

A PROTEOMIC MARKER OF DIABETIC NEPHROPATHY IS ASSOCIATED WITH MORTALITY IN PATIENTS WITH TYPE 2 DIABETES

Gemma Currie 1, Sheon Mary 1, Bernt Johan von Scholten 2, Morten Kofod Lindhardt 1, Harald Milschak 1, William Mullen 1, Peter Rossing 1, Christian Delles 1

1University of Glasgow, UK
2Steno Diabetes Center Copenhagen, Denmark
3Mosaiques, Diagnostics GmbH, Germany

Background: The urinary proteomic classifier CKD273 has been found to predict diabetic nephropathy development in advance of microalbuminuria. Whether it is also a determinant of mortality and cardiovascular disease in patients with established albuminuria is unknown.

Methods: We studied 155 subjects with T2D, albuminuria (geometrical mean age, 66 years; 44% female; mean BMI 28 kg/m²) over 6.3 years follow-up period. Results: CKD273 correlated with UAE (r = 0.481, p < 0.001), age (r = 0.238, p = 0.003), CAC score (r = 0.236, p = 0.003), NT-proBNP (r = 0.190, p = 0.018) and eGFR (r = 0.265, p = 0.001). On multiple regression analysis, both UAE and CAC score were independent determinants of mortality (log rank Mantel-Cox p = 0.004), and retained significance (p = 0.050) after adjustment for age, sex, blood pressure, NT-proBNP and CAC score in a Cox regression model. Neither eGFR nor UAE were determinants of mortality in this cohort.

Conclusions: A multidimensional biomarker can provide information on outcomes associated with its primary diagnostic purpose. Here we demonstrate that the peptidomics-based classifier CKD273 is associated with mortality in albuminuric people with T2D in even when adjusted for other established cardiovascular and renal biomarkers.

1.5

DESPHOSPHO-UNCARBOXYLATED MATRIX GLA PROTEIN IS A NOVEL CIRCULATING BIOMARKER PREDICTING DETERIORATION OF RENAL FUNCTION IN THE GENERAL POPULATION

Fangfei Wei 1, Sander Treson 1, Lutgarde Thijis 1, Qi-Fang Huang 1, Zhen-Yu Zhang 1, Wen-Yi Yang 1, Paula Molterino 2, Karel Allegaert 3, José Boggia 4, Stefan Janssens 1, Peter Verhamme 1, Cees Vermeer 5, Jan Staessen 1

1Department of Cardiovascular Sciences, University of Leuven, Belgium
2Escuela de Nutrición, Universidad de la Republica, Uruguay
3Department of Development and Regeneration, University of Leuven, Belgium
4Centro de Nefrología and Departamento de Fisiopatología, Hospital de Clínicas, Universidad de la Republica, Uruguay
5R&D Group Vitak, Maastricht University, Netherlands

Background: Recent studies showing an inverse association between estimated glomerular filtration rate (eGFR), a microvascular trait, and inactive desphospho-uncarboxylated matrix Glu protein (dp-ucMGP) support the hypothesis that after vitamin K dependent activation MGP is renoprotective, but were limited by their cross-sectional design.

Methods: In 1009 randomly recruited Flemish (50.6% women), we assessed the association between eGFR and plasma dp-ucMGP, using multivariable-adjusted analyses.

Results: From baseline to follow-up 8.9 years later (median), dp-ucMGP increased by 3.7%, whereas eGFR decreased by 4.05 ml/min/1.73 m² (P < 0.001). In 938 participants with baseline eGFR ≥ 60 ml/min/1.73 m², incidence of eGFR < 60 ml/min/1.73 m² at follow-up was 8.0% vs. 4.1% in the top vs. the bottom halve of baseline dp-ucMGP. For each doubling of baseline dp-ucMGP, eGFR at follow-up decreased by 1.36 ml/min/1.73 m² (95% confidence interval (CI) 0.35–2.17 ml/min/1.73 m²; P = 0.001). The hazard ratio expressing the risk of progression to eGFR < 60 ml/min/1.73 m² was 1.67 (95% CI 1.16–2.41; P = 0.006). The hazard ratio relating the presence of microalbuminuria at follow-up to baseline dp-ucMGP was 1.96 (95% CI 1.22–3.12; P = 0.005).

Conclusions: In conclusion, circulating inactive dp-ucMGP, a biomarker of poor vitamin K status, predicts renal dysfunction. Possible underlying mechanisms include protection by activated MGP against calcification and inhibition of bone morphogenetic protein signaling pathway.

1.6

PERIPHERAL AND CENTRAL AMBULATORY BLOOD PRESSURE IN RELATION TO ECG VOLTAGE

Wen-Yi Yang 1, Blerim Mujaj 2, Ljupcho Efremov 1, Zhen-Yu Zhang 1, Lutgarde Thijis 1, Fang-Fei Wei 1, Qi-Fang Huang 1, Aernout Luttan 1, Peter Verhamme 1, Tim Nawrot 1, José Boggia 4, Jan Staessen 1

1Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, Faculty of Medicine, University of Leuven, Leuven, Belgium
2Centre for Molecular and Vascular Biology, KU Leuven Department of Cardiovascular Sciences, Faculty of Medicine, University of Leuven, Leuven, Belgium
3Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
4Unidad de Hipertensión Arterial, Departamento de Fisiopatología, Centro de Nefrología, Hospital de Clínicas, Universidad de la República, Montevideo Uruguay, Uruguay
5Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay

Background: The heart ejects in the central elastic arteries. No previous study addressed the question whether ECG voltages are more closely associated with central than with peripheral blood pressure (BP).

Methods: Using the oscillometric Mobil-O-Graph 24h PWA monitor, we measured brachial, central BP and central hemodynamics over 24 hours in 177 men (mean age, 29.1 years), and linked to ECG voltages.

Results: From wakefulness to sleep, as documented by diaries, systolic/diastolic BP decreased by 11.7/13.1 mmHg peripherally and by 9.3/13.6 mmHg centrally, whereas pulse pressure (PP) increased by 4.3 mmHg. Over 24 hours and the awake and asleep periods, the peripheral-minus-central differences...