P161: RELATIONSHIP OF FIBRINOGEN WITH ARTERIAL STIFFNESS IS DIFFERENT ACCORDING TO GENDER. EVA STUDY

Leticia Gomez-Sanchez, Marta Gomez-Sanchez, Natalia Sanchez-Aguadero, Cristina Lugones-Sanchez, Maria C. Patino-Alonso, Sara Mora-Simon, Jose A. Maderuelo-Fernandez, Emiliano Rodriguez-Sanchez

To cite this article: Leticia Gomez-Sanchez, Marta Gomez-Sanchez, Natalia Sanchez-Aguadero, Cristina Lugones-Sanchez, Maria C. Patino-Alonso, Sara Mora-Simon, Jose A. Maderuelo-Fernandez, Emiliano Rodriguez-Sanchez (2018) P161: RELATIONSHIP OF FIBRINOGEN WITH ARTERIAL STIFFNESS IS DIFFERENT ACCORDING TO GENDER. EVA STUDY, Artery Research 24:C, 127–127, DOI: https://doi.org/10.1016/j.artres.2018.10.214

To link to this article: https://doi.org/10.1016/j.artres.2018.10.214

Published online: 7 December 2019

Poster Session II – Other

P161

RELATIONSHIP OF FIBRINOGEN WITH ARTERIAL STIFFNESS IS DIFFERENT ACCORDING TO GENDER. EVA STUDY

Leticia Gomez-Sanchez 1, Marta Gomez-Sanchez 1, Natalia Sanchez-Aguadero 1, Cristina Lugones-Sanchez 2, Maria C. Patino-Alonso 1, Sara Mora-Simon 1, Jose A. Maderuelo-Fernandez 2, Emiliano Rodriguez-Sanchez 2

1Institute of Biomedical Research of Salamanca (IBSAL), Primary Health Care Research Unit, La Alamedilla Health Center, Salamanca, Spain
2Institute of Biomedical Research of Salamanca (IBSAL), Primary Health Care Research Unit, La Alamedilla Health Center, Health Service of Castilla y Leon (SACyL), Salamanca, Spain

Objectives: To analyze the association of arterial stiffness with the fibrinogen in general population without previous cardiovascular diseases. Differences by gender.

Methods: A cross-sectional study. Study population: From the population assigned to the participating healthcare centres, a cluster random sampling was stratified by age and gender was performed to obtain 501 participants aged between 35 and 75, 100 per decade, (50% women) without cardio or cerebrovascular disease. Measurements: pulse wave velocity femoral carotid (cfPWV) was determined using the SphygmoCor System and Cardio Ankle Vascular Index (CABI) using the VaSera. Plasma fibrinogen was measured in blood.

Results: Mean values: age 55.9 ± 14.2 years (Males = 65.9 ± 14.3 years, Females = 55.8 ± 14.2 years, p = 0.935); CABI: 8.0 ± 1.4 (Males = 8.1 ± 1.5, Females = 7.9 ± 1.4, p = 0.043); cfPWV: 6.5 ± 2.0 m/sec (Males = 6.8 ± 2.2 m/sec, Females = 6.2 ± 1.8 m/sec, p < 0.01) and fibrinogen: 314 ± 70 mg/Dl (Males = 198 ± 65 mg/Dl, Females = 330 ± 71 mg/Dl, p < 0.001). CABI and cfPWV showed positive correlation with fibrinogen (r = 0.248 and r = 0.147 in males p < 0.05 in both cases), but not in the females (r = 0.126 and r = 0.101 p > 0.05 in both cases). In the multiple regression analysis after adjusting for age, cardiovascular risk factors, drugs and lifestyles, the association of CABI with fibrinogen was β = 0.249 (95% CI 0.033 to 0.464) p = 0.024, and of the cfPWV with fibrinogen was β = 0.01 (95% CI -0.031 to 0.042) p = 0.684 in males, without finding association between CABI, cfPWV with fibrinogen in the case of females (p = 0.144 and p = 0.825 respectively).

Conclusions: CABI and cfPWV showed a positive correlation to fibrinogen in males in general population without previous cardiovascular diseases, but not in females. However, after adjusting for confounding factors, the association only remains with CABI in males.

References

P162

ARTERIAL STIFFNESS AND BODY COMPOSITION IN CHILDREN AND ADOLESCENTS

Tommy Cai 1, 2, Alice Meroni 1, 3, Hashi Dissanayake 1, 4, Melinda Phang 1, Ahmad Qasem 1, Ahmad Qasem 3, Julian Ayer 1, 3, Martin Butlin 5, Alberto Avolio 1, David Celermajer 1, 5, Michael Skilton 1, 5

1School of Medicine, University of Sydney, Sydney, Australia
2Royal Prince Alfred Hospital, Sydney, Australia
3The Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
4Heart Centre for Children, The Children’s Hospital at Westmead, Sydney, Australia
5Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia

Objectives: Carotid-femoral pulse wave velocity (cfPWV) is a validated non-invasive measure of aortic stiffness. Risk factors for cfPWV are well described in adulthood, and furthermore cfPWV is associated with incident cardiovascular disease in adults (1). However, risk factors for arterial stiffness in childhood are poorly described (2). Accordingly, we sought to determine the risk factors for cfPWV in childhood and adolescence and hypothesized that cfPWV would be higher amongst those with greater adiposity.

Methods: We prospectively recruited 88 healthy children (mean age = 11.0 ± 5.3 years old). Age, weight, height, and blood pressure were measured. cfPWV was assessed using a semi-automated cuff-based device (SphygmoCor XCEL; AtCor Medical, Australia), and body composition using air displacement plethysmography (BOD POD; Cosmed, Italy) (3).

Associations with cfPWV were determined by multivariable linear regression, with subsequent mediation analyses to inform likely causal pathways.

Results: After adjusting for age and sex, cfPWV was significantly associated with weight, body mass index (BMI), systolic blood pressure, mean blood pressure, heart rate, and lean body mass (LBM), while LBM was significantly associated with height, weight, BMI and fat mass (Table 1). After further adjusting for weight, mean blood pressure and heart rate, LBM remained significantly associated with cfPWV (β = 0.68; p = 0.007). Mediation analyses indicate that weight mediates the association between age and cfPWV (PM = 76%), and that LBM mediates the relationship between weight and cfPWV (Figure 1).

Conclusion: Higher cfPWV in healthy children and adolescents is a function of growth, and this association may be in turn mediated by higher LBM rather than adiposity.

P163

REGIONAL DIFFERENCES IN GEOMETRICAL FEATURES AND LAYER-SPECIFIC RESIDUAL STRESSES IN THE BOVINE DESCENDING THORACIC AORTA

Alessandro Giudici 1, Ian B. Wilkinson 2, Ashraf W. Khir 3

1Brunel University London, Uxbridge, United Kingdom
2Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom

Background: The Opening Angles (OA) is widely used as an index of the residual stresses and strains present in the arterial wall not subjected to internal