P152: THE EFFECT OF SURGICAL AORTIC VALVE REPLACEMENT ON AORTIC STIFFNESS AND THE PROGNOSTIC ROLE OF AORTIC STIFFNESS ON SURGICAL SUCCESS

Evangelia Sigala, Dimitrios Terentes-Printzios, Charalambos Vlachopoulos, Konstantinos Triantafillou, Nikolaos Koumallos, Andreas Katsaros, Vasilios Lozos, Ilias Kouerinis, Nikolaos Giakis, Michael Demosthenous, Konstantinos Filis, Dimitrios Tousoulis


To link to this article: https://doi.org/10.1016/j.artres.2018.10.205

Published online: 7 December 2019
THE EFFECT OF SURGICAL AORTIC VALVE REPLACEMENT ON AORTIC STIFFNESS AND THE PROGNOSTIC ROLE OF AORTIC STIFFNESS ON SURGICAL SUCCESS

Evangelia Sigala 1, Dimitrios Terentes-Printzios 1, Charalambos Vlachopoulos 1, Konstantinos Triantafillou 2, Nikolaos Koumalis 1, Andreas Katsaros 1, Vasilios Lozos 1, Ilias Kouerinis 2, Nikolaos Giakis 2, Michael Demosthenous 1, Konstantinos Filis 1, Dimitrios Tousoulis 1
1Hippokration Hospital, University of Athens, 1st department of Cardiology, Athens, Greece
2Hippokration General Hospital, Department of Cardiac Surgery, Athens, Greece
3Hippokration General Hospital, First Department of Propaedeutic Surgery, Athens, Greece

Purpose/Background/Objectives: Aortic stiffness and hemodynamics are established biomarkers for cardiovascular events. Surgical aortic valve replacement (SAVR) remains the first choice of treatment in most patients with aortic stenosis. We investigated the effect of SAVR on aortic stiffness and the role of arterial biomarkers in predicting the echocardiographic response.

Methods: We included thirty-three patients (mean age 71 ± 8 years, 58% males) with moderate to severe aortic stenosis undergoing SAVR. In measurements prior and acutely after the surgery, carotid-femoral pulse wave velocity (cfPWV) and brachial-ankle pulse wave velocity (baPWV) and aortic hemodynamics (aortic augmentation index corrected for heart rate [AIx@75]) were used as indicators of arterial stiffness. Echocardiography, mean and peak pressure gradient of the aortic valve was measured and their differences post and pre-surgery were calculated (i.e. ΔMeanGradient = MeanGradient post-surgery – MeanGradient pre-surgery).

Results: There was a statistically significant increase on measurements of aortic stiffness (7.5 ± 1.4 vs 8.2 ± 1.9 m/s for cfPWV, p = 0.013) and a decrease in wave reflections (28 ± 13% vs 21 ± 11% for AIx@75, p = 0.015). We also observed a negative association of baseline cfPWV with baseline mean and peak gradient of aortic stenosis (r = −0.598 and r = −0.614 with p = 0.002 and p = 0.001, respectively), independently of age, gender and systolic blood pressure. Baseline cfPWV was associated with ΔMeanGradient and ΔPeakGradient (r = 0.609 and r = 0.533 with p = 0.002 and p = 0.009, respectively). (Figure)

Conclusions: Our study shows that post-operative aortic stiffness increases while there is an improvement of wave reflections. Furthermore, increased aortic stiffness prior to surgery predicts smaller benefit in decreasing transvalvular pressure gradient as assessed echocardiographically, implying that low aortic stiffness prior to surgery could lead to better outcome.

PULSE WAVE VELOCITY DISTRIBUTION IN CHILDREN AT A SCHOOL IN THE NORTH OF PORTUGAL

Mariana Formigo 1, Cristina Silva 1, Nuno Formigo 2,3, Sara Freitas 1, Cristina Cunha 1, Margarida Rocha 1, Clarisse Neves 1, Laura Castro 1, Filipe Gonçalves 1, Maria J. Cotter 3, Pedro G. Cunha 1,5,4, Jorge Cotter 1,5,6
1Center for the Research and Treatment of Arterial Hypertension and Cardiovascular Risk, Hospital Senhora da Oliveira, Guimarães, Portugal
2Department of Biology, Faculty of Sciences of University of Porto, Portugal
3Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
4Department of Natural Sciences, Escola E.B. 2, Jodo de Meira, Guimarães, Portugal
5Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
6ICVS/38’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal

Background: Pulse Wave Velocity (PWV) is a measure of arterial stiffness and vascular aging and an important parameter for cardiovascular risk stratification. A previous study showed high prevalence rates of early vascular aging in an adult population from the North of Portugal. The aim of this study was to characterize children from the same region regarding PWV and its relationship with central adiposity indices and blood pressure.

Methods: A convenience sample of 285 children aged 10–14 years attending a Northern Portuguese school was used. PWV, height, weight, body mass index (BMI), waist circumference e blood pressure (BP) were measured. Collected data was distributed by gender, age and height specific percentiles.

Results: Mean PWV values were 5.4 ± 1.0 for males and 5.1 ± 0.7 for females. We only found statistically significant differences between males and females PWV in the 13’ years old group (p = 0.02). 27.4% of the children (N = 78) had PWV > 90th percentile. 64.1% of which were males (N = 50) and 15.3% (N = 12) were overweight/obese. PWV was significantly higher in children with systolic BP > 90th percentile (p = 0.004). No differences were found in PWV between overweight/obese (BMI > 85 percentile) and healthy weight children.

Conclusion: Our study found a high prevalence rate of elevated PWV in children. This is a concerning aspect, taking into account the highly recognized relationship of PWV and cardiovascular outcomes, indicating that healthy policy measures need to be implemented early in life. Future research is needed to establish PWV reference percentile curves specific for Portuguese children.

DOES THE METHOD OF THE MEASUREMENT OF BLOOD PRESSURE CORRELATES DIFFERENTLY WITH PULSE WAVE VELOCITY IN RESISTANT HYPERTENSION?

Jose Mesquita Bastos 1,2, Susana Lopes 1, Catarina Garcia 1, Verónica Ribau 5, Susana Bertoquini 1, Cátia Leitão 5, P. Ribeiro Ilda 3, Daniela Figueiredo 1, L. Viana João 13, Fernando Ribeiro 11, Jorge Polónia 1
1Cardiology Department, Hospital Infante D. Pedro, Centro Hospitalar do Baixo Vouga, Aveiro, Portugal
2School of Health Sciences and CINTESIS@UA, University of Aveiro, Aveiro, Portugal
3School of Health Sciences and Institute of Biomedicine — IBIMED, University of Aveiro, Aveiro, Portugal
4Research Center in Sports Sciences, Health and Human Development, CIDESO, University Institute of Maia, Maia, Portugal
5Cardiology Department, Hospital Infante D. Pedro, Centro Hospitalar do Baixo Vouga, Aveiro, Portugal
6Hypertension Unit, Hospital Pedro Hispano, Matosinhos, Faculty of Medicine of the University of Porto (FMUP), Center for Health Technology and Services Research (CINTESIS), University of Porto, Porto, Portugal
7Departamento de Física & ISN and Instituto de Telecomunicações, University of Aveiro, Portugal
8Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal
9School of Health Sciences and CINTESIS@UA, University of Aveiro, Aveiro, Portugal