P129: DETERMINATION OF THE DIASTOLIC PRESSURE DECAY CONSTANT (TAU) FROM RADIAL TONOMETRY: DEMOGRAPHIC AND HEMODYNAMIC ASSOCIATIONS IN NORMAL AND HYPERTENSIVE INDIVIDUALS

Joseph Izzo, Sherif El-sayed, Rahil Ahmed, Peter Osmond, Benjamin Gavish


To link to this article: https://doi.org/10.1016/j.artres.2018.10.182

Published online: 7 December 2019
Abstracts

P129
DETERMINATION OF THE DIASTOLIC PRESSURE DECAY CONSTANT (TAU) FROM RADIAL TONOMETRY: DEMOGRAPHIC AND HEMODYNAMIC ASSOCIATIONS IN NORMAL AND HYPERTENSIVE INDIVIDUALS
Joseph Izzo, Sherif El-sayed, Rahil Ahmed, Peter Osmond, Benjamin Gavish
University at Buffalo, Buffalo, NY, USA

Introduction: The feasibility of measuring the diastolic pressure-decay constant (tau) in normal and hypertensive humans is not established and the clinical and physiological relevance of tau is not known.

Methods: Studies were performed in the non-invasive cardiac laboratory in subjects who had been supine for at least 30 minutes. Measurements included standard oscillometric cuff BP, echocardiography (stroke volume [SV] and systolic vascular resistance [SVR]), pulse wave velocity (PWV, both aortic [heart-femoral] and peripheral [femoral-ankle]), and radial tonometry (Sphygmocor). Tau was estimated by photo-digitizing the pulse contour (Webplot digitizer) and modeling the terminal diastolic component according to the formula: P = A + (SBP-A)*exp(-(t-t0)/tau), where P is pressure, A is the modeled diastolic BP, and t0 is the start of the mono-exponential diastolic pressure decay.

Results: Full data were available in 76 individuals (mean age 55 years, weight 84 kg, BP 138/79 mmHg, resting HR 67; 45% female). Using simple Pearson correlations, tau was positively correlated with age, female gender and SVR, but negatively correlated with HR (all p < 0.05). Tau was unrelated to blood pressure (systolic, diastolic, mean or pulse pressure) or to peripheral or central PWV. In a forward stepwise multiple regression model of tau that included various hemodynamic indicators, only SVR survived, to blood pressure (systolic, diastolic, mean or pulse pressure) or to peripheral or central PWV. In a forward stepwise multiple regression model of tau that included various hemodynamic indicators, only SVR survived.

Conclusions: Tau can be estimated from radial tonometry and is most closely related to SVR, age, and female gender. Further application of tau (e.g. in the study of circulatory models) also seems feasible.

P130
COMPARISON BETWEEN PWV MEASURED FROM CUTANEOUS LENGTH BY SPHYGMOCOR AND BY MRI LENGTH TRACED ALONG THE WHOLE AORTA
Marina Cecelja
King's College London, UK

Background: Accuracy of non-invasive PWV as m/sec is impeded by crude surface estimates of aortic length. We compared PWV measured using the Sphygmocor via surface length measurements with PWV measured using MRI with distance traced more precisely along the whole imaged aortic length.

Methods: Magnetic resonance imaging (MRI) was performed in 74 asymptomatic women aged between 51 and 65 years of age. Carotid-femoral PWV was measured using Sphygmocor. The path distance between the carotid and femoral sites was estimated from the distance between the sternal notch and femoral artery at the point of palpation. Phase-contrast MRI was performed at the level of the aortic arch and distal to the aortic bifurcation to estimate (399 ± 32 mm). Corresponding PWVs estimated with Sphygmocor and MRI were 9.87 ± 2.1 and 7.63 ± 1.9 (P < 0.001) m/s, respectively. PWV differences between Sphygmocor and MRI decreased to 0.50 (0.13–0.86) m/s when Sphygmocor PWV was calculated using the MRI path length.

Conclusions: In these older women, the PWV difference between Sphygmocor and MRI is reduced when MRI length estimates are used. The difference between PWV measured by Sphygmocor and MRI is in part due to the accuracy of distance measurements.

P131
UTERINE ARTERIES EVALUATION DURING PREGNANCY: MODELING AND COMPUTATIONAL FLUID DYNAMICS CALCULATIONS
Andrea Serrano 1,2, Vanessa Cunha 3, Jorge Teixeira 4, Maria Pires 3, Joao O'Neill 3, Valentina Vassilenko 3
LIBPhys - Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics, Faculty of Science and Technology, New University of Lisbon, Caparica, Portugal
LIBMT, S. A., Madan Park Building, Rua dos Inventores, Caparica, Portugal
Libatorio de Instrumentacao, Engenharia Biomedica e Fisica da Radiacao (LIBPhys-UNL), Departamento de Fisica, Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, Monte da Caparica, 2829-516, Caparica, Portugal
UNIDEMI, Departamento de Engenharia Mecanica e Industrial, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
Anatomy Department, Nova Medical School, New University of Lisbon, Lisbon, Portugal

Preeclampsia (PE) affects pregnancy, being one of the main causes of prenatal maternal mortality and morbidity (1). Recent studies show that PE is characterized by a significant reduction on maternal cardiac output and increased peripheral resistance. However, studies on the maternal hemodynamic adaptation during PE and the available information about central maternal hemodynamics are scarce. Our purpose is to develop a computational model to obtain relevant hemodynamic parameters of the maternal circulation, formed by the common iliac (CI), the internal (II) and the external iliac (EI) and the uterine arteries (UA). Model construction requires many approximations and generalizations to optimize numerical calculation of hemodynamic parameters by Computational Fluid Dynamics (CFD), however this is the best representation of maternal circulatory system. Four different models were created to simulate non-pregnant women and 21, 30 and 36 weeks of pregnancy (2). Numerical simulations performed by ANSYS®.

P132
CONTINUOUS MEASUREMENTS OF CENTRAL BLOOD PRESSURE DURING MENTAL STRESS MONITORING
Valentina Vassilenko 1,2, Andrea Serrano 1,2, Paulo Bonifacio 1,2, Peter Roth 1, Viktor Fetter 1
LIBPhys - Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics, Faculdade de Ciencia e Tecnologias, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal

REFERENCES

References

P132
CONTINUOUS MEASUREMENTS OF CENTRAL BLOOD PRESSURE DURING MENTAL STRESS MONITORING
Valentina Vassilenko 1,2, Andreia Serrano 1,2, Paulo Bonifacio 1,2, Peter Roth 1, Viktor Fetter 1
LIBPhys - Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics, Faculdade de Ciencia e Tecnologias, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal

References

P132
CONTINUOUS MEASUREMENTS OF CENTRAL BLOOD PRESSURE DURING MENTAL STRESS MONITORING
Valentina Vassilenko 1,2, Andreia Serrano 1,2, Paulo Bonifacio 1,2, Peter Roth 1, Viktor Fetter 1
LIBPhys - Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics, Faculdade de Ciencia e Tecnologias, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal

REFERENCES