P101: REFERENCE VALUES OF DIFFERENT PARAMETERS OF VASCULAR FUNCTION IN CAUCASIAN POPULATION WITHOUT CARDIOVASCULAR DISEASES. EVA STUDY

Marta Gomez-Sanchez, Leticia Gomez-Sanchez, Gristina Lugones-Sanchez, Jesus Gonzalez-Sanchez, Rosario Alonso-Dominguez, Jose I. Recio-Rodriguez, Olaya Tamayo-Morales, Manuel A. Gomez-Marcos


To link to this article: https://doi.org/10.1016/j.artres.2018.10.154

Published online: 7 December 2019
ARTERIAL STIFFNESS: A META-ANALYSIS
THE ASSOCIATION BETWEEN DAIRY PRODUCTS CONSUMPTION AND ARTERIAL STIFFNESS: A META-ANALYSIS
P100 The association between dairy products consumption and arterial stiffness: a meta-analysis
Celia Álvarez-Bueno 1, Iván Cavero-Redondo 1, Alba Soriano-Cano 2, Diana P. Pozuelo-Carrascosa 2, Blanca Notario-Pacheco 2, Estela Jimenez-Lopez 2
1Universidad de Castilla-La Mancha, Centro de Estudios Socio-Sanitarios, Cuenca, España
2Universidad de Castilla-La Mancha, Health and Social Research Center, Cuenca, España

Background: Dairy products consumption has been related to some metabolic risk parameters. Specifically, some studies have associated higher intake of dairy products with lower pulse wave velocity (PWV) values, although discrepancies persist in this relationship.

Objective: To determine the association between dairy products consumption and PWV.

Methods: A search strategy was conducted in Medline, SCOPUS and WOS, from their inception to June 2018, for observational studies addressing the association between dairy products and PWV. Effect sizes (ES) were estimated by using random-effects meta-analysis models based on Der Simoan and Laird method. Subgroup analyses were conducted based on dairy products type (i.e., milk, cheese, and yogurt).

Results: Six studies were included in this systematic review and meta-analysis. The ES for the association between total dairy products and PWV was −0.01 (95% CI: −0.08; 0.05) (Figure 1). Subgroup analysis could be only performed based on milk consumption ES: 0.00 (95% CI: −0.07; 0.08; I2: 0.0%; p = 0.865). Systematic review showed similar results for cheese, and yoghurt. Conversely, low fat dairy products were associated with lower PWV values. Conclusion: There was no association between total dairy products, milk, cheese and yoghurt consumption and PWV. Low fat dairy products consumption has been related to lower levels of PWV. These findings add further evidence supporting that dairy products consumption does not pose any additional cardiovascular risk factor. Further research is needed to elucidate the role of each dairy product type on cardiovascular disease risk factors.

P101 Reference values of different parameters of vascular function in caucasian population without cardiovascular diseases. Eva study
Marta Gomez-Sanchez 1, Leticia Gomez-Sanchez 1, Cristina Lugones-Sanchez 1, Jesus Gonzalez-Sanchez 1, Rosario Alonso-Dominguez 1, Jose I. Recio-Rodriguez 1, Olaya Tamayo-Morales 1, Manuel A. Gomez-Harcos 1
1Institute of Biomedical Research of Salamanca (IBSAL), Primary Health Care Research Unit, La Alamedilla Health Center, Salamanca, Spain
2Institute of Biomedical Research of Salamanca (IBSAL), Primary Health Care Research Unit, La Alamedilla Health Center, Health Service of Castilla y León (SACYL), Salamanca, Spain

Objective: To describe the mean values of different parameters of vascular function, evolution with age and differences by gender in the general population without cardiovascular diseases.

Design and method: An observational, descriptive, cross-sectional study. Study population: From the population assigned to the participating health-care centres, a cluster random sampling stratified by age and gender was performed to obtain 501 participants aged between 35 and 70, 100 per decade, (50% women) without cardiac or cerebrovascular disease. Measurements: pulse wave velocity femoral arterial (cfPWV) was determined using the Sphygmocor System, Cardio Ankle Vascular Index (CAVI) and the pulse wave velocity ankle arm (aAPWV) using the VaSera.

Results: Mean values: age 53.9 ± 14.2 years (Males = 65.9 ± 14.3y, Females = 55.8 ± 14.2y, p = 0.935); CAVI: 8.0 ± 1.4 (Males = 8.1 ± 1.5, Females = 7.9 ± 1.4, p = 0.043); aAPWV = 12.9 ± 2.7 m/sec (males = 13.2 ± 2.5 m/sec and women = 12.7 ± 2.9 m/sec, p = 0.064) and cfPWV: 6.5 ± 2.0 m/sec (Males = 6.8 ± 2.2 m/sec, Females = 6.2 ± 1.8 m/sec, p < 0.001). For each year that the age increases, an increase of the CAVI of 0.073 (y = 3.919 + 0.003*age), in males 0.075 (y = 3.943 + 0.005*age) and in women 0.071 (y = 3.900 + 0.007*age). An increase in aAPWV of 0.137 m/sec (y = 5.276 m/sec + 0.137 m/sec * age) in males 0.118 (y = 6.554 m/sec + 0.118 mmHg*age) and in women 0.156 (y = 3.978 m/sec + 0.156 m/sec*age) and an increase in cfPWV of 0.092 m/sec (y = 1.417 m/sec + 0.092 m/sec*age), in males 0.104 (y = 1.075 m/sec + 0.104 m/sec*age) and in women 0.080 (y = 1.748 m/sec + 0.080 m/sec*age).

Conclusions: The mean values of CAVI and cfPWV as well as the annual increase are greater in males than in females. However, there are no differences in the mean values of the aAPWV and the annual increase is greater in females.

References

P102 Withdawn by author

P103 Reference values in a representative sample for a certain country
Pedro Forcada 1, Carlos Castellaro 2, Sergio Gonzalez 1, Carol Kotliar 4, Sebastian Obregon 3, Jorge Chiabaut Swane 3
1Cemic, Argentina

References

Abstracts