P98: AGE AND GENDER DIFFERENCES IN VARIABILITY OF WAVE REFLECTIONS OVER 24 HOURS: THE INTERNATIONAL 24-HOUR AMBULATORY AORTIC BLOOD PRESSURE CONSORTIUM (I24ABC)

Thomas Weber, Siegfried Wasserheurer, James Sharman, Cristina Giannatasio, Piotr Jankowski, Yan Li, Alessandro Maloberti, Barry Mcdonnell, Carmel McEniery, Maria Lorenza Muisan, Janos Nemcsik, Anna Paini, Enrique Rodilla, Ian Wilkinson, Robert Zweiker, Athanase Protogerou

To link to this article: https://doi.org/10.1016/j.artres.2018.10.151

Published online: 7 December 2019
correlation coefficient between $r = 0.450$ (cfPWV and diastolic blood pressure) and $r = 0.128$ (between CAVI and triglycerides). After adjustment for age and sex the correlation remains the same with the cfPWV. However, it is only maintained with the CAVI only with blood pressure. Subjects with MetS have odds ratio (OR) for both cfPWV > 10 m/sec (OR = 1.884, 95% CI 0.996–3.486) and CAVI > 9 (OR = 1.810, 95% CI 0.749–4.372).

Conclusions: The cfPWV showed the positive correlation, after adjusting it for age and sex with all the components of the MetS, however the CAVI showed the positive correlation with the arterial pressure.

P97

FAMILY PATTERNS OF CENTRAL HAEMODYNAMICS ACROSS THREE GENERATIONS IN THE MALMÖ OFFSPRING STUDY

Peter Nilsson 1, Erik Petersson Rosberg 2
1Lund University, Department of Clinical Sciences, Skane University Hospital, Jan Waldenstroms gate 15, Level 5, S-20502, Malmö, Sweden
2Lund University, Department of Clinical Sciences, Skane University Hospital, Malmö, Sweden

Background: Markers of central haemodynamics have in recent years emerged as promising predictors of cardiovascular disease (CVD). Central haemodynamics are affected early in the development of vascular aging and affect organs directly attached to large arteries. Carotid-Femoral pulse wave velocity (c-f PWV), Augmentation index (Aix), and central systolic blood pressure (cSBP) are variables from indirect measurements that reflect central haemodynamic and arterial stiffness. Family patterns exist [1].

Aim: To investigate if a relationship exists for patterns of central haemodynamics across three related generations, especially c-f PWV.

Methods: In all, 1131 participants from Malmö Diet Cancer Study (MDCS) and Malmö Offspring Study (MOS) were included in this study. c-f PWV was measured in grandparents and in all offspring. Correlation analyses of c-f PWV between offspring and c-f PWV in parents and grandparents were conducted. Parents and grandparents were divided in quartiles by c-f PWV and offspring c-f PWV, and cSBP means were compared with one-way ANOVA analyses. Multiple regression analyses were conducted to adjust for age, sex, BMI, SBP and fasting glucose.

Results: c-f PWV in grandchildren was positively correlated with c-f PWV in parents ($r = 0.26$, $p < 0.001$) and in grandparents ($r = 0.29$, $p < 0.001$). Offspring c-f PWV correlated significantly with parental Aix and cSBP. Parents with high c-f PWV had offspring with statistically significant higher means of c-f PWV and cSBP than parents with low c-f PWV.

Conclusion: Measures of central haemodynamic are positively correlated across three generations in a population-based study.

References

P98

AGE AND GENDER DIFFERENCES IN VARIABILITY OF WAVE REFLECTIONS OVER 24 HOURS: THE INTERNATIONAL 24-HOUR AMBULATORY AORTIC BLOOD PRESSURE CONSORTIUM (I24ABC)

Thomas Weber 1, Siegfried Wasserheimer 2, James Sharan 3, Cristina Giannatasio 4, Piotr Jankowski 5, Yan Li 6, Alessandro Maloberti 7, Barry McDonnell 8, Carmel McEniery 9, Maria Lorenza Muisan 10, Janos Nemcsik 11, Anna Paini 9, Enrique Rodilla 12, Ian Wilkinson 13, Peter Nilsson 1, Erik Petersson Rosberg 2
1Austrian Institute of Technology, Vienna, Austria
2Semmelweis University Budapest, Hungary
3Menzies Institute for Medical Research, University of Tasmania, Australia
4University Milano-Bicocca, Milan, Italy
5Jagiellonian University Krakow, Krakow, Poland
6Shanghai Institute of Hypertension, Shanghai Jiaotong University School of Medicine, Shanghai, China
7Cardiff Metropolitan University, Cardiff, UK
8Cambridge University, Cambridge, UK
9Universita di Brescia, Italy
10Semenews University Budapest, Hungary
11Valencia (Hospital de Sagunto) Universidad CEU Cardenal Herrera, Spain
12Cambridge University, UK
13Cardiology Department, Medical University Graz, Austria
14Department of Pathophysiology Medical School National and Kapodistrian University of Athens, Athens, Greece

Background: Wave reflection parameters predict cardiovascular events, but 24-hour profiles in large samples of healthy adults are unknown.

Methods: In 1645 individuals free from antihypertensive drugs from 11 centers in Europe and Asia, 24-hour blood pressure monitoring with a validated oscillometric brachial cuff (Mobilograph, I.E.M., Stoolberg; Germany) was performed. Brachial waveforms were acquired and processed with ARCSolver algorithms to derive information relating to wave reflections using pulse waveform analysis (heart-rate corrected augmentation index-Aix75, augmentation pressure-AP) and wave separation analysis (backward wave amplitude-Pb, reflection magnitude-RM). Nighttime/daytime difference (N/D) was night time (01.00–06.00) minus daytime (09.00–21.00) values/ daytime values. Participants were categorized as young (13–39 years; male/female: 219/112), middle-aged (40–66 years; male/female: 545/553), and old (67–104 years; male/female: 86/130).

Results: 24-hour measures of wave reflections increased with increasing age and were significantly lower in men compared to women (Aix75: 18.3 vs 28.0 %, AP: 10.1 vs 14.9 mm Hg, Pb: 18.9 vs 20.0 mm Hg, RM: 63.0 vs 66.2). Aix75 was higher during daytime compared to nighttime (23.3 vs 21.35), but only in young and middle-aged participants. For all participants, AP (11.6 vs 14.5 mm Hg), Pb (18.5 vs 21.7 mm Hg), and RM (62.9 vs 68.8) were higher during nighttime compared to daytime. N/D varied with age and was more pronounced in younger individuals.

Conclusion: 24-hour variability of wave reflection parameters differs according to age and gender. In future, this information could be useful for tailoring individual cardiovascular risk management.