P76: CAROTID THERMAL HETEROGENEITY AND DYSLIPIDEMIA: THE HEAT IS ON


To link to this article: https://doi.org/10.1016/j.artres.2018.10.129

Published online: 7 December 2019
P73
AORTIC BUT NOT PERIPHERAL PULSE WAVE VELOCITY IS IMPROVED AFTER HEART RATE TARGETED AEROBIC PHYSICAL TRAINING IN METABOLIC SYNDROME SUBJECTS
Ieva Slivovskaja, Jurate Baloyte, Ligita Ryliskyte, Jolita Badariene, Rokas Navickas, Aleksandras Laucevicius
Vilnius University, Faculty of Medicine, State Research Institute Centre For Innovative Medicine, Vilnius, Lithuania

Objective: To evaluate the response of aortic and peripheral arterial stiffness parameters to heart rate (HR) targeted exercise training in metabolic syndrome (MS) subjects.

Methods: This cohort study included 170 individuals with MS (mean age 53.3 ± 6.9 years, 55% women). The subjects were recruited using a 1:1 random sampling method and divided into intervention aerobic physical training (aPT) and control groups. Intervention group subjects participated in a 2-month duration HR targeted aPT programme. Subjects in both groups were investigated at baseline and after 2 months. Arterial stiffness parameters, such as aortic carotid–femoral pulse wave velocity (cfPWV), peripheral carotid-radial pulse wave velocity (crPWV) and aortic augmentation index, mean blood pressure in the aorta (MBP) were evaluated.

Results: After 2 months of aPT arterial stiffness decreased indicated by the reduction of cfPWV by 0.54 m/s (6.33 ± 9.69, p < 0.05). Using a regression tree method the highest improvement of arterial wall after aPT was achieved when intial cfPWV was >10.1 m/s (<2.41 ± 1.15 m/s) and cut-off value for positive effect was 8.6 m/s.

Conclusions: After 2 months of aPT arterial stiffness improved only in reduction of cfPWV and MBP. Therefore, it would be reasonable to measure cfPWV rather than crPWV in order to evaluate the aPT effect on arterial wall function in MS patients.

P74
SLEEP QUALITY IS ASSOCIATED WITH CEREBROVASCULAR FUNCTION IN INDIVIDUALS WITH MULTIPLE SCLEROSIS
Georgios Grigoridis 1, Alexander J. Rosenberg 2, Sang Ouk Wee 3, Elizabeth C. Schroeder 1, Garrett Griffith 1, Tracy Baynard 2
1University of Illinois at Chicago, Chicago, IL, USA
2University of Illinois at Chicago, Chicago, IL, USA
3California State University, University of Illinois, San Bernadino, CA, USA

Introduction: Individuals with multiple sclerosis (MS) exhibit impaired cerebrovascular function and have poor sleep quality. In the general population, poor sleep contributes to cerebrovascular dysfunction and is related to cardiovascular disease (CVD). Improving sleep quality may have beneficial effects in preventing CVD; however, the relationship between sleep quality and cerebrovascular function in MS has not been examined.

Purpose: To examine the effect of sleep quality on cerebrovascular function in individuals with MS.

Methods: Sixteen individuals with MS had sleep quality assessed with the Pittsburgh Sleep Quality Index. Individuals were categorized as having poor sleep quality (n = 6, score >5) or good sleep quality (n = 10, score ≤5). Cerebrovascular function was assessed via transcranial Doppler ultrasound with the following hemodynamic outcomes: mean middle cerebral artery velocity (mMCAv), pulsatility index (PI), and resistance index (RI). An automated blood pressure cuff was used to measure baseline blood pressure (systolic, diastolic, mean (SBP, DBP, MAP)) and heart rate in a seated position. End-tidal CO2 (EtCO2) was measured by gas capnography.

Results: Those with poor sleep quality had greater PI and RI, and lower mMCAv compared to those with good sleep quality (p < 0.05, table 1). No group differences were seen for weight, height, BMI, CO2, or hemodynamic variables.

Conclusion: Our results suggest that individuals with MS with poor sleep quality have worsened indicators of cerebrovascular function. Therefore, sleep quality may be related to the elevated CVD risk in individuals with MS, and it should be assessed in future studies evaluating cerebrovascular function in MS, including intervention studies.

Posterior Session I — Pathophysiology
P75
DIFFERENTIAL ELASTIN DEGRADATION AND MICROMECHANICAL PROPERTIES IN ASCENDING AORTIC ANEURYSM GROUPS: STATISTICAL MODELLING
Ya Hua Chim 1, Hannah Davies 2, Francisco Diaz De la O 3, Mark Field 4, Jill Madine 1, Riaz Akhtar 5
1School of Engineering, University of Liverpool, Liverpool, UK
2Institute of Integrative Biology, University of Liverpool, Liverpool, UK
3Institute for Risk and Uncertainty, University of Liverpool, Liverpool, UK
4Department of Cardiac Surgery, Liverpool Heart and Chest Hospital, Liverpool, UK

Background: Elastin microstructure is an important factor in aortic aneurysms. However, it is unclear whether elastin microstructure varies in different ascending aneurysm aetiologies, and how this relates to micromechanical behaviour. Objective to combine in vitro experimentation and statistical modelling to distinguish between ascending aortic aneurysm groups; bicuspid aortic valve with associated aneurysm (BAV) and idiopathic degenerative aneurysm (DA). The role of micromechanical and biochemical properties as risk factors was explored.

Methods: Aortic biopsies were taken from patients undergoing BAV or DA aneurysmal repair (n = 30). Oscillatory nanoindentation was applied to the medial layer [1]. The same tissues were chemically or enzymatically digested and measured for collagen, elastin and glycosaminoglycan (GAG) levels using hydroxyproline, fastin elastin kit and 1-9 dimethylmethylene blue respectively. Elastic fibre numbers and length were measured from Verhoeff-Van Gieson stained images. All measured data and patient clinical characteristics were analysed using least absolute shrinkage and selection operator (LASSO) regression.

Results: Micromechanical properties of BAV tissue was found to be significantly higher than DA tissue (p < 0.001). Similarly, this significant trend was also noted for GAG (p = 0.004) and collagen levels (p = 0.02). Although elastin levels were not significant, an increase in the number of long fibres was observed in BAV tissue (p = 0.02).

Conclusions: LASSO regression showed that micromechanical and elastin properties were unique predictors for BAV, whereas age, gender, collagen and preoperative aortic diameter were unique for DA. Our statistical approach is the first to show that ascending aortic aneurysm groups can be distinguished using novel in vitro measurements.

References
of treatment was reduced statistically significant (0.88 ± 0.42 to 0.58 ± 0.29 °C, p = 0.021) (Image).

Conclusion: In a group of patients with dyslipidemia thermal heterogeneity in the carotid arteries was positively associated with carotid subclinical atherosclerosis. Moreover, dyslipidemia treatment reduced thermal heterogeneity after a short-term period, implying a beneficial effect of treatment on thermal heterogeneity.

Material and methods: AS was measured by carotid-femoral pulse wave velocity (cfPWV) using the Sphygmocor device (AtCor Medical, Australia). Mean arterial pressure (MAP) was obtained by pulse-wave analysis of the radial artery and ANS activity was estimated by heart rate variability (HRV) as log-ratio of low-frequency/high-frequency heart rate components (Schiller Medilog AR12plus, United States) in hypertensive subjects (n = 43, 17 female, mean ± SD age 45 ± 13 years, brachial BP 145 ± 17/87 ± 10 mmHg) at rest. All measurements were subsequently repeated during supervised device-guided paced breathing (DGB) and reduction of cardiac pre-load by lower limb venous occlusion (LVO). These interventions, which are known to decrease and increase sympathetic activity, were performed in random order.

Results: DGB reduced HRV by 0.14 [0.07, 0.20] (Mean [95% confidence intervals]) and LVO increased HRV by 0.13 [0.08, 0.18] (both P < 0.05). DGB reduced cfPWV by 1.3 [0.9, 1.6] m/s alongside with a reduction in MAP of 6.6 [5.1, 8.1] mmHg (both P < 0.01). By contrast, LVO increased cfPWV by 1.0 [0.6, 1.4] m/s (P < 0.01), despite a fall in MAP of 1.5 [0.2, 2.7] mmHg (P < 0.05). The difference between effects of DGB and LVO on cfPWV was significant whether adjusted or unadjusted for change in MAP (P < 0.05).

Conclusion: Despite BP-lowering effects, DGB and LVO had opposite effects on HRV and cfPWV. This suggest that the autonomic nervous system has a pressure-independent role in the regulation of AS in hypertension.