P63: MODIFICATION OF SYMPATHETIC TONE BY RENAL ARTERY DENERVATION CAUSES EARLY, SIGNIFICANT AND SUSTAINED ARTERIAL DE-STIFFENING

Andrius Berukstis, Gintare Neverauskaite-Piliponiene, Nerijus Misonis, Vytautas Juknevičius, Jurate Balsyte, Aleksandras Laučevičius

To link to this article: https://doi.org/10.1016/j.artres.2018.10.116

Published online: 7 December 2019
P63

MODIFICATION OF SYMPATHETIC TONE BY RENAL ARTERY DENERVATION CAUSES EARLY, SIGNIFICANT AND SUSTAINED ARTERIAL DE-STIFFENING

Andrius Berukstis, Gintare Neverauskaite-Piliponiene, Nerijus Misonis, Vytautas Juknevičius, Jurate Balsyte, Aleksandras Laučevičius

Department of Cardiology, University of Tartu, Estonia

Objective: To examine whether Sympathetic Renal Denervation (RDN) might have an additive value for cardiovascular risk decline beyond lowering blood pressure.

Methods: 73 selected patients with resistant hypertension had RDN performed. Arterial stiffness was measured, using applanation tonometry, before the procedure, 24 to 48 hours following the procedure and subsequently 1, 3 and 6 months after the RDN.

Results: Within 48 hours RDN significantly reduced carotid-femoral aortic pulse wave velocity (AoPWV) from 11.3 ± 2.7 to 10.3 ± 2.6 m/s (p = 0.001), the reduction was sustained at months 1, 3, and 6. Early changes of AoPWV value did not correlate with office systolic or diastolic BP (p = 0.07, p = 0.45; p = 0.33). Furthermore, the higher the initial AoPWV value, the greater the reduction of AoPWV was observed after 6 months: Q1 8.4 ± 1.1, Δ 0.05 ± 1.6/Q2 10.1 ± 0.4, Δ 1.1 ± 1.4/Q3 12.2 ± 0.8, Δ 1.8 ± 1.7/Q4 15.3 ± 1.7, Δ 2.8 ± 2.1, (p = 0.002).

Conclusion: A sustainable effect on AoPWV, observed in our study as early as within 24–48 hours following the procedure and up to 6 months, suggests an additional RDN effect on reducing arterial stiffness and cardiovascular risk.

The de-stiffening effect was greater in patients with high initial AoPWV.

P65

REMOTE ISCHAEMIC PRECONDITIONING REDUCES KIDNEY INJURY IN VASCULAR SURGERY

Teele Kepler 1, Karl Kussik 2, Urmars Lepner 3, Joel Starkopf 4, Mihkel Zilmer 5, Jaan Eha 1, Liisi Anette Torop 1, Jaak Kals 3, 5

1Department of Surgery, Institute of Clinical Medicine, University of Tartu, Estonia
2Department of Cardiology, Institute of Clinical Medicine, University of Tartu, Estonia
3Department of Surgery, Institute of Clinical Medicine, University of Tartu, Estonia
4Department of Anaesthesiology and Intensive Care, Institute of Clinical Medicine, University of Tartu, Estonia
5Department of Biochemistry, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Estonia
6Department of Neurology, Institute of Clinical Medicine, University of Tartu, Estonia

Background: Perioperative acute kidney injury has been found to occur in 12% of patients undergoing lower limb revascularisation (Arora et al., 2013). The aim of the current double-blind, randomised and sham-controlled pilot study was to determine the effect of remote ischaemic preconditioning (RIPC) in perioperative renal damage in vascular surgery.

Methods: Patients undergoing elective lower limb revascularisation surgery between January 2016 and February 2018, who gave full informed consent, were recruited. Four episodes of 5 minutes of upper limb ischaemia were applied instead of ischaemia. Blood samples were collected preoperatively and 20–28 hours after surgery.

Results: 10 patients with severe AS (aged 75.8 ± 7.8 years) and preserved EF (62.2 ± 7.1%) were studied before and 48–72 hours after AVR. There was a significant reduction in mean arterial pressure (MAP) (pre:96.9 ± 12.3 mmHg vs post:83.4 ± 11.2 mmHg, p = 0.012) and AP (pre:20.8 ± 11.4 mmHg vs post:11.0 ± 5.8 mmHg, p = 0.017). EF1 improved significantly (pre:18.7 ± 6.8% vs post:28.9 ± 12.4%, p = 0.043), whilst EF did not change. aPWV didn’t change significantly after AVR. The change in EF1 was negatively associated with change in AP (β = -0.841, p = 0.002) (Figure 1). This relationship persisted after adjustment of age, gender, BMI, baseline MAP and aortic valve area (β = -1.095, p = 0.033).

Conclusion: In patients with AS and preserved EF, an improvement of early ejection is associated with reduction in augmentation pressure after AVR.

![Figure 1. Central aortic pressure waveforms in one subject pre (blue line) and post (red line) AVR.](image)

AVR: Augmentation pressure reduced from 16mmHg to 4mmHg, whilst EF increased from 17.7% to 37.7% after AVR.