P53: ZERO FLOW PRESSURE (PINFINITY) IS LARGER THAN MEAN CIRCULATORY FILLING PRESSURE. A SYSTEMATIC REVIEW AND META-ANALYSIS

Alun Hughes, Kim Parker, Ashraf Khir


To link to this article: https://doi.org/10.1016/j.artres.2018.10.106

Published online: 7 December 2019
ASSESSMENT BASED ON ULTRASOUND IMAGES
A MACHINE LEARNING SYSTEM FOR CAROTID PLAQUE VULNERABILITY
measured immediately after cessation of heart pumping. Am J Physiol
References
short-term (seconds to minutes).
Conclusions: MCFP was 15.1(12.0, 18.3) mmHg (n
P
and MCFP differ substantially, indicating non-equilibration
of pressures in the circulation following cessation of flow at least in the short-term (seconds to minutes).

Background: Zero flow pressure (P∞), the steady-state pressure following cardiac arrest or cessation of flow is often assumed to equal mean circulatory filling pressure (MCFP). [1] However, this assumes complete equilibration of circulatory pressures, which may not occur if there is a 'critical closing pressure' or 'Waterfall' in the circulation. We undertook a systematic review and meta-analysis to obtain robust estimates of P∞ and compared this with MCFP measured in the same studies.

Methods: A literature search was performed using PubMed and was limited to full articles in English using the search terms 'mean circulatory filling pressure" OR 'critical closing' OR "zero-flow". Only data relating to measurements of pressure following cardiac arrest or cessation of blood flow were included. Other exclusions were: individual case-reports, pregnancy, non-adult animals, not mammalian, or any non-human models of disease. Meta-analysis was performed using a random effects model in Stata 15.1. Data are mean (95% confidence intervals).

Results: A total of 1082 unique publications were identified; 1062 were excluded during screening. The remaining 20 studies with P∞ data were used to perform a meta-analysis. These included data from dog, rat, pig and human; 8 of these articles also provided data on MCFP. From this analysis P∞ = 26.5(23.4, 29.5) mmHg (n = 20) and the difference between P∞ and MCFP was 15.1(12.0, 18.3) mmHg (n = 8).

Conclusions: P∞ and MCFP differ substantially, indicating non-equilibration of pressures in the circulation following cessation of flow at least in the short-term (seconds to minutes).

References

A MACHINE LEARNING SYSTEM FOR CAROTID PLAQUE VULNERABILITY ASSESSMENT BASED ON ULTRASOUND IMAGES
Nicole Di Lascio 1,2, Claudia Kusmic 1, Anna Solini 1, Vincenzo Lionetti 1, Francesco Faita 1
1Institute of Clinical Physiology, CNR, Pisa, Italy
2Department of Surgical, Medical, Molecular, and Critical Area Pathology, University of Pisa, Pisa, Italy

Purpose/Background/Objectives: Carotid plaque vulnerability assessment is essential for the identification of high-risk patients. A specific mouse model for the study of carotid atherosclerosis has been recently developed. Aim of this study was to develop a predictive mathematical model for carotid plaque vulnerability assessment based on the post-processing of micro-Ultrasound (μUS) images only.

Methods: 17 ApoE-/male mice (16 weeks) were employed. After three weeks of high-fat diet, a tapered cast, designed to induce the formation of an unstable plaque upstream from the cast and a stable one downstream from it, was surgically placed around the right common carotid. μUS examination was repeated before the surgical procedure and after three months from it. Color-Doppler, B-mode and Pulsed-wave Doppler images were acquired to assess morphological, functional and hemodynamic parameters. In particular, texture analysis was applied on both the atherosclerotic lesions post-processing B-mode images. Peak velocity (Vp), Relative Turbulence Intensity (rTI) and velocity range (rangelv) were assessed from PW-Doppler images. Relative Distension (rD) and Pulse Wave Velocity (PWV) were evaluated for both the regions. All the μUS indexes underwent a feature reduction process and were used to train different machine learning approaches.

Results: The downstream region presented higher PWV values than the upstream one; furthermore, it was characterized by higher values of rTI and rangevel. The weighted kNN classifier supplied the best providing 92.6% accuracy, 91% sensitivity and 94% specificity.

Conclusions: The mathematical predictive model could represent a valid approach to be translated in the clinical field and easily employed in clinical practice.

CENTRAL PULSE PRESSURE IS ASSOCIATED WITH RETINAL ARTERIOLAR WALL THICKNESS AND WALL CROSS SECTIONAL AREA AS EVALUATED BY ADAPTIVE OPTICS
Antonio Gallo 1,2, Thomas Dietenbeck 2, Nadja Kachenoura 2, Valérie Carreau 1, Michel Paques 1, Xavier Girerd 1
1Cardiovascular Prevention Unit, University Hospital Pitié-Salpêtrière, Paris, France
2Sorbonne Université, INSERM, Laboratoire d’Imagerie Biomédicale, Paris, France

Introduction: In 1991 Baumback et al demonstrated taht pulse pressure (PP) but not mean arterial pressure (MAP) was correlated with pial arterioles wall cross-sectional area (WCSA). In rats. Adaptive optics (AO) allows a near-