P24: BRACHIAL AND CENTRAL SYSTOLIC BLOOD PRESSURES FROM TWO OSCILLOMETRIC DEVICES (SPHYGMOCOR AND MOBIL-O-GRAPH) OVERESTIMATE HIGH FIDELITY INTRA-ARTERIAL MEASUREMENTS IN CHILDREN AND ADOLESCENTS: RESULTS OF THE KIDCOREBP STUDY

Jonathan Mynard, Greta Goldsmith, Lucas Eastaugh, Geoff Lane, Gabriella Springall, Alberto Avolio, Joe Smolich, Michael Cheung

To link to this article: https://doi.org/10.1016/j.artres.2018.10.077

Published online: 7 December 2019
Poster Session I — Hypertension I

P22
THE ROLE OF RENAL FUNCTION ON TARGET ORGAN DAMAGE AND CARDIOVASCULAR RISK IN HYPERTENSIVES

Eirini Solomou 1, Dimitrios Terentes Printzios 2, Charalampos Vlachopoulos 4, N. Ioakimidis 2, K. Aznaouridis 2, I. Koutagiar 1, V. Gardikioti 1, E. Sigala 1, D. Tousoulis 1
1 First Academic Cardiology Clinic, Hippokration General Hospital, Athens, Greece
2 1st Cardiology Department, Athens Medical School, Hippokration General Hospital, Athens, Greece

Purpose/Background/Objective: Hypertension is associated with increased left ventricular (LV) hypertrophy, aortic stiffness and renal dysfunction, which are all predictors of cardiovascular risk. We investigated the effect of renal dysfunction on LV mass and aortic stiffness in hypertensives.

Methods: We enrolled 1223 consecutive hypertensives (mean age 53.0 ± 11.6 years, 726 males). We estimated the glomerular filtration ratio (GFR) using the MDRD formula. We classified our population as hypertensives with moderate to severe renal dysfunction [GFR < 60 ml/min/1.73 m²] compared to hypertensives with GFR > 60 ml/min/1.73 m². Ten-year cardiovascular risk was estimated using Framingham risk score.

Results: After adjustment for age, gender, mean blood pressure, body-mass index, diabetes mellitus, low-density lipoprotein and C-reactive protein, hypertensives with GFR < 60 ml/min/1.73 m² had higher PWV levels (8.86 m/s vs. 7.92 m/s, p = 0.014), higher LVMI (119.5 g/m² vs. 114.9 g/m², p = 0.012) and higher AIx (31.1% vs. 27.4%, p = 0.05). On the contrary, hypertensives with GFR > 60 ml/min/1.73 m² had similar 10-year cardiovascular risk compared to hypertensives with GFR < 60 ml/min/1.73 m² (17.3% vs. 13.0%, p = 0.32).

Conclusions: Renal dysfunction is associated with LVMI and aortic stiffness. Hypertensives with moderate to severe renal dysfunction despite having similar 10-year cardiovascular risk with hypertensives with normal renal function or mild renal dysfunction, demonstrate higher aortic stiffness and LV mass, implying a possible underestimation of risk by Framingham.

P23
THE COMPARISON OF PROGNOSTIC VALUE AMONG ANKLE BRACHIAL PRESSURE INDEX, ARTERIAL STIFFNESS AND PRESSURE WAVE REFLECTION IN SUBJECTS WITH CORONARY ARTERY DISEASE

Kazutaka Kimura
Tokyo Medical University Obaraki Medical Center, Ibaraki, Japan

Objectives: The present retrospective study was conducted to compare the prognostic value among ankle brachial pressure index (ABI), brachial-ankle pulse wave velocity (baPWV), and radial augmentation index (rAI) in patients with coronary artery disease (CAD).

Methods: ABI, baPWV and rAI were measured in consecutive patients admitted for the management of CAD into our medical university hospital (n = 821, 677 males and 144 females; age 65.4 ± 10.5 years old), and they were followed at the outpatient department. During the follow-up period, events were defined as in-stent restenosis, new lesion of coronary artery sclerosis and MACE (i.e., acute coronary syndrome, cerebral infarction, cerebral bleeding and cardiac death).

Results: Among the study period (4.2 ± 3.0 years), the event of in-stent restenosis (n = 99), new lesion of coronary artery sclerosis (n = 77) and MACE (n = 18) were observed respectively. In cox regression analysis after adjustment of age and gender, baPWV > 18 m/sec, but not ABI18 m/sec, had significantly higher incidence of MACE (P = 0.021(Figure). Both baPWV >18 m/sec (odds 1.61: 95% CI: 1.01 — 2.56, p = 0.044) and ABI

P24
BRACHIAL AND CENTRAL SYSTOLIC BLOOD PRESSURES FROM TWO OSCILLOMETRIC DEVICES (SPHYGMOCOR AND MOBIL-O-GRAPH) OVERESTIMATE HIGH FIDELITY INTRA-ARTERIAL MEASUREMENTS IN CHILDREN AND ADOLESCENTS: RESULTS OF THE KIDCOREBP STUDY

Jonathan Mynard 1,2,3, Greta Goldsmith 4, Lucas Eastaugh 4, Geoff Lane 5, Gabriella Springall 1, Alberto Avolio 6, Joe Smolich 7, Michael Cheung 8,9
1 Murdoch Children’s Research Institute, Parkville, VIC, Australia
2 University of Melbourne, Parkville, VIC, Australia
3 Royal Children’s Hospital, Parkville, VIC, Australia
4 Murdoch Childrens Research Institute, Parkville, VIC, Australia
5 Royal Children’s Hospital, Parkville, VIC, Australia
6 Macquarie University, Sydney, NSW, Australia
7 Murdoch Childrens Research Institute, Parkville, VIC, Australia
8 University of Melbourne, Parkville, VIC, Australia

Objective: This study investigated the accuracy of two oscillometric devices for measuring brachial and central blood pressures (BP) in children and adolescents, using high fidelity intra-arterial measurements as a gold-standard reference.

Methods: 57 children and adolescents aged 9.5 ± 4.6 years (mean ± SD, range 3 to 17, 74% <13 years) without aortic obstruction were recruited. A catheter was inserted into the ascending aorta via the femoral artery during a clinically-indicated procedure. Aortic BP was measured with a Verrata wire (Philips Volcano), along with brachial BP via two oscillometric devices: SphygmoCor XCEL (AtCor Medical, N = 51) and/or Mobil-o-Graph (MoG, IEMGmbH, N = 40). Intra-brachial arterial systolic BP was derived by calibrating the brachial pulse waveform (measured via tonometry after wire
removal) to aortic mean and diastolic BP. For MoG, central pressure was derived through standard systolic-diastolic calibration (MoGC1) as well as mean-diastolic calibration (MoGC2).

Results: Mean±SD differences between device and intra-arterial BP are presented in the Table. There was moderate correlation between device and intra-arterial brachial systolic BP (R = 0.58 XCEL, R = 0.47 MoG, P < 0.01) and central systolic BP (R = 0.69 XCEL, R = 0.64 MoGC1, R = 0.43 MoGC2, P < 0.01). Intra-arterial central-to-brachial pulse amplification factor was 1.17 (range 0.88 to 1.55), but there was no correlation between device and intra-arterial amplification (R = 0.07 XCEL, R = 0.07 MoGC1, R = 0.19 MoGC2, P > 0.18). Results in sub-groups ≥13 and <13 years were similar.

Conclusion: Both oscillometric devices overestimated brachial and central systolic/pulse BP, exceeding the validation criteria of ≤8 mmHg, and there was no correlation between intra-arterial and device-derived central-to-brachial pulse amplification. Diastolic BP was acceptable.

Table: Mean±SD of the difference (mmHg) between device and intra-arterial measurements.

<table>
<thead>
<tr>
<th></th>
<th>Sys</th>
<th>Dia</th>
<th>Pulse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brachial XCEL</td>
<td>11.2±8.9</td>
<td>1.7±6.0</td>
<td>13.0±10.1</td>
</tr>
<tr>
<td>Brachial MoG</td>
<td>12.9±11.7</td>
<td>4.7±5.4</td>
<td>17.9±11.4</td>
</tr>
<tr>
<td>Central XCEL</td>
<td>8.8±6.6</td>
<td>0.7±2.3</td>
<td>10.0±7.7</td>
</tr>
<tr>
<td>Central MoGC1</td>
<td>7.7±10.3</td>
<td>3.1±6.1</td>
<td>10.6±11.6</td>
</tr>
<tr>
<td>Central MoGC2</td>
<td>22.3±14.3</td>
<td>3.2±6.6</td>
<td>25.4±15.0</td>
</tr>
</tbody>
</table>

P27

INVASIVE CENTRAL PULSE PRESSURE IS RELATED TO AORTIC ROOT DILATATION

Francesco Tosello 1, Andrea Guaila 2, Dario Leone 1, Martina Bollati 1, Luca Sabia 1, Fabrizio D’Ascenzo 1, Claudio Moretti 3, Franco Veglio 1, Luca Ridolfi 1, Alberto Milan 1

1Internal and Hypertension Division, Department of Medical Sciences, AOU Citta’ Salute e Scienza di Turin, University of Turin, Turin, Italy
2Vall d’Hebron Institute of Research, Barcelona, Spain
3Hemodynamic Laboratory, Department of Medical Sciences, AOU Citta’ Salute e Scienza di Turin, University of Turin, Turin, Italy
4DIATI, Politecnico di Torino, Turin, Italy

Background: Aortic root dilation is an established risk factor for aortic dissection. Despite the relations between aortic root remodeling, carotid-femoral pulse wave velocity (cPWV) and aortic blood pressure have been advocated by several clinical studies and is supported by physical law, invasive data are lacking. We aimed to investigate the relationship between aortic root remodeling, invasively-measured central blood pressure and cPWV in patients referred for invasive hemodynamic evaluation for suspected coronary disease.

Methods: In 71 patients aortic pulse pressure (aPP) was measured in the proximal aorta with a calibrated fluid-filled pressure catheter. Before entering the hemodynamic room all patients underwent 2D echocardiographic quantification of aortic root diameter and measurement of cPWV. Aortic root diameter was then expressed into z-score following age, sex and height adjusted reference values (1).

Results: Mean age was 67 ± 10 years and 76.1% of patients were men. Invasive aortic systolic pressure was 146 ± 23 mmHg, diastolic pressure was 78 ± 13 mmHg, and aPP was 68 ± 21 mmHg. Aortic Z-score was ± 0.32 ± 1.7, while cPWV was 9.8 ± 3.8 m/s. While Log10cPWV and aPP showed a positive relation (r = 0.426, p < 0.01) while aPP and aortic Z-score were inversely associated (r = -0.271, p = 0.02). In a multivariable linear regression analysis, Z-score and Log(cPWV) were statistically-significant independent predictors of aPP (p = 0.01 and p < 0.01, respectively) after adjustment for age, sex, BSA, heart rate, invasive ABP, and stroke volume.

Conclusions: In a population referred to invasive coronary hemodynamic evaluation for suspected coronary disease, aortic root remodeling and aortic stiffness were independently associated with a lower aPP.

References

P29

MECHANISMS OF VASCULAR ENDOTHELIAL GROWTH FACTOR INHIBITION INDUCED HYPERTENSION

Kaisa Maki-Petaja 1, Adam McGeoch 2, Lucy Yang 3, Annette Hubsch 1, Carmel McEneny 1, Fraz Mir 1, Parag Gajendragadkar 1, Nicola Ramenatte 1, Gayathri Anandappa 1, Christoph Brune 1, Yoeri Boink 4, Carola Bibiane-Schonlieb 5, Paul Meyer 6, Simon Bond 7, Carmel McEneny 1, Gayathri Anandappa 1, Christoph Brune 1, Yoeri Boink 4, Carola Bibiane-Schonlieb 5, Paul Meyer 6, Simon Bond 7, Ian Wilkinson 5, Duncan Jordtell 3, Joseph Cherian 1, Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, UK
2Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, UK
3Dept of Oncology, University of Cambridge, UK
4Department of Applied Mathematics, University of Twente, the Netherlands
5Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK
6Department of Ophthalmology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
7Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
8Department of Oncology, University of Cambridge, UK
9Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, UK

Introduction: Drugs targeting Vascular Endothelial Growth Factor (VEGF) signaling pathway are approved therapies for cancer. Unfortunately, VEGF...