P3: UNDERSTANDING THE ENDOTHELIAL – SMOOTH MUSCLE – FIBROBLASTIC CELLS INTERACTIONS ON A TISSUE-ENGINEERED VASCULAR GRAFT

Tatiana Felizardo, Nuno M. Neves, Albino Martins, Rui L. Reis


To link to this article: https://doi.org/10.1016/j.artres.2018.10.056

Published online: 7 December 2019
Objective: Peripheral (e.g. brachial) Pulse Pressure (Ppp) exceeds central pulse pressure (Cpp) corresponding to the first (Cpp1) or second (Cpp2) peaks in the central waveform. This pulse pressure amplification, attributed to propagation of the pulse wave from aorta to periphery and influence of reflection in the periphery, is measured as Ppp/Cpp2 (when Cpp2 to propagation of the pulse wave from aorta to periphery and influence of reflection in the periphery, is measured as Ppp/Cpp2 (when Cpp2 > Cpp1).

We examined whether the haemodynamic determinant of Ppp relates more closely to Cpp1 rather than Cpp2.

Methods: We examined the theoretical influence of change in morphology of central aortic waveform on peripheral waveform when applying a reverse transfer function to the aortic waveform. Secondy, we examined the relationship between central and peripheral waveforms during modulation of central pressure with nitroglycerine (GTN). Central pressures were obtained during cardiac atheterization with a Millar catheter placed in the proximal aortic root in patients with non-critical coronary artery disease (n = 15) at baseline and after GTN. The digital arterial pulse was acquired simultaneously with a servo-controlled finger cuff.

Results: In theoretical analysis, Ppp was sensitive only to the portion of the waveform up to the time of Cpp1. Similar results were observed with GTN, which had no significant effect on Cpp1 (18.7 ± 2.0 and 37.1 ± 2.5 mmHg at baseline and after GTN respectively, P = 0.36) nor on Ppp (70.2 ± 5.0 and 69.2 ± 4.7 mmHg at baseline and after GTN respectively, P = 0.47) but reduced Cpp2 by 17.0 ± 1.8 mmHg (P < 0.001).

Conclusions: These results suggest that peripheral pulse pressure is determined by the early systolic portion of the central aortic pressure waveform up to the time of Cpp1 and may be independent of Cpp2.

P3
UNDERSTANDING THE ENDOTHELIAL – SMOOTH MUSCLE – FIBROBLASTIC CELLS INTERACTIONS ON A TISSUE-ENGINEERED VASCULAR GRAFT

Tatiana Feizardo, Nuno M. Neves, Albino Martins, Rui L. Reis
3B’s Research Group, I3B’s — Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guilmardes, Portugal

There is still a pressing need to develop small-diameter vascular vessels for vascular reconstructive procedures. Tissue Engineering offers the prospect of being able to meet this medical demand, as it allows the development of structurally complex blood vessels substitutes 1. Accordingly, the ultimate aim of this work is to develop small diameter vascular substitutes based on layering multiple cell types. Co-culture systems of human endothelial-smooth muscle cells and fiброblastic-smooth muscle cells were initially established. These co-cultures were then assembled to develop a tri-culture system, which mimics the structural organization of a blood vessel. Electrospun nanofibrinous meshes were
used as culturing substrates, which restrict cell migration although enabling biochemical communication. 2. All the established culture systems presented viable and proliferive cell populations over time. Interestingly, the tri-culture system preserved the capillary-like synthesis values much higher than the co-cultures, mostly of collagen. On the immunofluorescence micrographs were observed the maintenance of cell type-specific proteins expression, even in the presence of another cell type. Quantification of Growth Factors (GFs) on conditioned media of the co- and tri-culture systems demonstrated a synergistic interplay between Vascular Endothelial GF (VEGF) and basic Fibroblast GF (Bfgf). The VEGF was mainly expressed by smooth muscle cells, which leads to increasing levels in the co- and tri-culture systems. A similar trend is observed for Bfgf, expectedly produced by the fibroblastic cells. By its side, the platelet derived GF levels remain unaltered among conditions. This study demonstrated the fundamental importance of the intercellular crosstalk between endothelial, smooth muscle and fibroblastic cells. It reinforces the potential of a tri-culture system in the development of tissue engineered blood vessel substitutes.

References

P4 MECHANISM OF PROANGIOGENIC ACTIVITY OF MITOCORRECTIN ON ENDOTHELIAL CELLS IN VITRO
Tetiana Nikolaenko, Viktorija Nikulina, Liudmyla Garmanchuk, Oleksandra Makarenko
Taras Shevchenko National University of Kyiv, ESC “Institute of biology and medicine”, Kyiv, Ukraine

Background: Investigations of different effective treatment modalities of infectious and inflammatory complications of stroke remain relevant. Normalization of vascularization, impaired due to hypoxia, is an important component of ischemic disease treating. The aim of our work was to study the mechanism of action of mitocorrectin on endothelial cells in vitro.

Methods: Active ingredient of mitocorrectin is a set of oligopeptides and amino acids isolated from cell mitochondria of the liver, brain and the pancreas (10:10:1) of pigs. As an experimental model was used endothelial cell line (PAEC), which was incubated at the standard conditions. Cyto-toxic/proliferative effect on cultured cells was determined using cytofluorimetric analysis and MITT-test.

Results: Our studies have shown that mitocorrectin increased of endothelial cell by 25% and decreased apoptotic cells almost 2 times compared with the control. Cytofluorimetric analysis revealed an increase 1.8-fold in the population of proliferative cells pool under the influence of mitocorrectin. The most pronounced mitogenic antiapoptotic effect of mitocorrectin on the endothelial cells was at concentrations of 0.1 – 1 μM. Thus, these doses may be the most therapeutically effective in restoring vascularization in post-stroke period. In addition, long-term cultivation of cells in the 2D-culture when exposed to mitocorrectin, more intensive formation of the capillary-like structures compared with controls, which may indicate vascular morphogenesis.

Conclusions: Thus, a study suggests that mitocorrectin shows a positive proangiogenic effect on endothelial cell line and this drug can be quite effective to restore vascularization, which is important in post-stroke period at ischemic complications.

References

P6 ARTERIAL STRUCTURE AND COAGULATION IN AGEING NAKED MOLE RATS
Takouhie Mgritchian-Griffo
University of Lorraine, Nancy, France

Vascular stiffening and a prothrombotic state consistently increase with age. Naked mole rats (NMRs) among rodent species have a maximum lifespan exceeding 30 years. Arterial stiffness assessed by pulse wave velocity and arterial pressure have been shown not to increase with age in NMRs (Grimes et al. AJP). The objective of this work was to study the relation between functional and structural arterial changes and plasma thrombin generation changes in young (2-year-old) and adult (9-year-old) NMRs. Collagen and elastin contents, vascular smooth muscle cell density and intimal thickening have been analyzed in the thoracic aorta, whereas plasma thrombin generation was assessed by calibrated automated thrombography associated with dosage of coagulation factors and endothelial markers. Our results showed no difference in collagen, elastin and vascular smooth muscle cell (VSMC) content between 2 (n = 5) and 9-year-old (n = 5) NMRs. There was no elastin degradation nor intimal thickening in NMRs at 9-years-old compared to 2-years-old. We showed no increase in plasma thrombin generation up to 9 years of age and no change in coagulant fibrinogen and factor VIII both known to increase normally with age. The expression of Endothelial Protein C Receptor (EPCR) and Thrombomodulin were similar at both ages. In conclusion, young and adult NMRs do not show structural changes of the vascular wall in accordance with the absence of arterial stiffening. The conservation of an intact structure of the vascular wall and no change in endothelial markers during the first third of lifetime is compatible with the lack of a prothrombotic state.