3.2: RESERVOIR PRESSURE INTEGRAL IS INDEPENDENTLY ASSOCIATED WITH THE REDUCTION IN RENAL FUNCTION IN AN OLDER POPULATION

To link to this article: https://doi.org/10.1016/j.artres.2018.10.033

Published online: 7 December 2019
Introduction: Increased adiposity is associated with poorer left ventricular (LV) function but the mediating role of blood pressure (BP) and other cardiovascular measures is unknown. We investigated the roles of potential mediators in adolescents in a UK birth cohort, the Avon Longitudinal Study of Parents and Children.

Methods: Fat and lean mass were assessed by dual energy X-ray absorptiometry (DXA) in 2,068 individuals (age 17.7(SD 0.32) years; 45% male; weight 67(SD 13) kg). BP was measured and echocardiography performed. Tissue Doppler systolic (s'), early diastolic longitudinal function (e') and transmitral E/A were used as measures of LV systolic and diastolic function respectively. Mediation was estimated using structural equation modelling; height, sex, socioeconomic position, lean mass and smoking were included as potential confounders in all models.

Results: Table 1 shows the total and direct (total — indirect (mediated)) effects (standardized β) for each potential mediator, alongside %mediateation. No convincing associations were found between fat mass and s' or e'.

Conclusions: MAP, HR and EDV, an indicator of preload, are important mediators of the effect of adiposity on diastolic function in adolescence, while TPR appears to account for none of the effect. Absence of mediation by BP, in combination with the mediation by TAC, suggests that stroke volume contributes some mediative effect. These findings emphasise the importance of adiposity and risk factor control in adolescence.

Table 1. Mediation of the association between fat mass and e/A

<table>
<thead>
<tr>
<th>Mediator</th>
<th>Direct effect (standardized β)</th>
<th>Total effect (standardized β)</th>
<th>% mediation</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0.15</td>
<td>0.18</td>
<td>16</td>
</tr>
<tr>
<td>Mean arterial pressure (MAP)</td>
<td>-0.11</td>
<td>-0.14</td>
<td>21</td>
</tr>
<tr>
<td>Pulse pressure (PP)</td>
<td>-0.13</td>
<td>-0.13</td>
<td>0</td>
</tr>
<tr>
<td>Heart rate (HR)</td>
<td>-0.11</td>
<td>-0.14</td>
<td>21</td>
</tr>
<tr>
<td>Total arterial resistance (TAC)</td>
<td>-0.15</td>
<td>-0.15</td>
<td>0</td>
</tr>
<tr>
<td>End-diastolic volume (EDV)</td>
<td>-0.17</td>
<td>-0.15</td>
<td>-13</td>
</tr>
</tbody>
</table>

3.2 RESERVOIR PRESSURE INTEGRAL IS INDEPENDENTLY ASSOCIATED WITH THE REDUCTION IN RENAL FUNCTION IN AN OLDER POPULATION

Kunihiko Aizawa 1, Francesco Casanova 1, David M. Mawson 2, Kim M. Gooding 3, W. David Strain 1, Phillip E. Gates 1, Gerd Otstling 1, Faisal Khan 4, Helen M. Colhoun 1, Carlo Palombo 6, Kim H. Parker 7, Jan Nilsson 1, Angela C. Shore 1, Alun D. Hughes 8

1Diabetes and Vascular Medicine Research Centre, NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, UK
2Department of Clinical Sciences, Lund University, Malmo, Sweden
3Division of Molecular & Clinical Medicine, University of Dundee, Dundee, UK
4Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
5Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
6Institute of Cardiovascular Science, University College London, London, UK

Background: Central haemodynamic parameters derived from reservoir pressure analysis (RPA-parameters) exhibit prognostic utility. Alterations in reservoir function could have an unfavourable influence on target organs, such as the kidneys. We determined in older adults whether these RPA-parameters would be associated with the reduction in estimated glomerular filtration rate (eGFR) during a 3-year follow-up period.

Methods: We studied 544 individuals (69.4±7.9 yrs, 195F, 235CVD) at baseline and after 3 years. RPA-parameters including reservoir pressure integral (INTPR), peak reservoir pressure, excess pressure integral, systolic and diastolic rate constants were obtained by radial artery tonometry.

Results: After 3 years, 95 individuals (72.4±7.6 yrs, 26F) had an eGFR reduction of more than 5 ml/min/1.73 m²/year. A multivariate logistic regression analysis revealed that baseline INTPR was independently associated with the eGFR reduction after adjusting for conventional risk factors and baseline renal function (odds ratio 0.975 (95% CI, 0.958–0.993), p < 0.01). When the eGFR reduction was expressed as a continuous variable, baseline INTPR was also independently associated with changes in eGFR (β = 0.115, p < 0.01; multivariate linear regression with adjustment for
conventional risk factors and baseline renal function). These associations remained unchanged after further adjustments for central artery stiffness or traditional central haemodynamic parameters. No other RPA-parameters exhibited significant associations.

Conclusions: These findings demonstrate that baseline INTPR is independently associated with the eGFR reduction in older adults, suggesting that INTPR may play a role in the functional decline of the kidneys.

3.3 ROLE OF ARTERIAL STIFFNESS AND BLOOD PRESSURE VARIABILITY IN THE DEFINITION OF SHATS (SYSTEMIC HEMODYNAMIC ATEROTHROMBOTIC SYNDROME)

Angelo Scuteri 1, Valentina Rovella 2, Danilo Alunni Fegatelli 2, Manfredi Tesauro 2, Marco Gabriele 2, Nicola Di Daniele 2
1Medicine Director School of Geriatrics University of Sassari University Hospital, Sassari, Italy
2Pollicino Tor Vergata, Rome, Italy
3University of Rome La Sapienza, Rome, Italy
4University of Rome Tor Vergata, Rome, Italy

Background: CV risk exponentially increases as the number of damaged organs increases. The Systemic Hemodynamic Atherosclerotic Syndrome (SHATS) represents a novel conceptualization of the CV continuum focusing on simultaneous multi-organ alteration. This is the first study operationally defining SHATS and aimed at identifying its determinants.

Methods: Left Ventricular Hypertrophy (echocardiography), Common Carotid Artery plaque and increased thickness (ultrasound), and Chronic Kidney Disease (estimated Glomerular Filtration Rate) indexed selective target organ damage. SHATS was operationally defined as their simultaneous presence in a patient. PWV was measured by Sphygmocor and BP variability by 24 h ABPM.

Results: SHATS affected 19.9% of the 367 studied subjects. Subjects with SHATS had a similar prevalence in diabetes mellitus, but a greater prevalence of very stiff artery (84.9 vs 64.3 %, \(p < 0.01 \)) and use of antihypertensive medications. In the presence of similar office BP, SHATS was associated with higher 24 h SBP and lower 24 h DBP (a greater pulsatile pressure), and in larger nighttime SBP fall, and a twofold greater prevalence of reverse diastolic slip (48.2 vs 20.2 %, \(p < 0.001 \)). BMI (positive correlation) and DBP (negative correlation) were the only traditional CV risk factors significantly associated with the odds of having SHATS. Very stiff artery and BP variability were significant independent determinants of SHATS, with highly predictive accuracy.

Conclusion: SHATS, the simultaneous damage of multiple target organs, may easily operationally defined. Very stiff artery and BP variability represent key factors for SHATS. The present results support the hypothesis of SHATS as a systemic condition, needing further characterization.

3.4 A CLINICAL SCORE TO PREDICT ELEVATED ARTERIAL STIFFNESS: DERIVATION AND VALIDATION IN 3,943 HYPERTENSIVE PATIENTS

Panagiotis Xaplanteris 1, Charalampos Vlachopoulos 2, Athanasios Proterou 2, Konstantinos Aznaouridis 2, Dimitris Terentes-Printzios 1, Antonis Argyris 1, Nikolaos Tentolouris 2, Petros Sfikakis 2, Dimitris Tousoulis 2
1CHU Saint Pierre, Brussels, Belgium
2Hippokration Hospital, University of Athens, 1st Department of Cardiology, Athens, Greece
3Laiko University General Hospital, Cardiovascular Prevention and Research Unit, Department of Pathophysiology, Athens, Greece

Purpose/Background/Objectives: Aortic stiffness assessed by carotid-femoral pulse wave velocity (PWV) is an important predictor to gauge the overall risk of hypertensive patients; nonetheless, it is underutilized in everyday practice. We derived a simple scoring system based on clinical variables that can identify patients with a priority for measurement of PWV, i.e. those with elevated PWV (> 10 m/sec) and at higher risk for events.

Methods: Patient data from three outpatient clinics (n = 3,943) were used to form a derivation, internal and external validation cohort. For derivation, independent predictors of high PWV from a binary logistic regression model were dichotomized and implemented in a clinical prediction scoring system with the acronym SAGE (office systolic blood pressure > 160 mmHg: 4 points, age ≥ 60 years: 4 points, glycerina [blood glucose ≥126 mg/dl]: 1 point, eGFR < 60: 2 points).

Results: Its performance was validated at the internal and external validation cohorts with c-statistics being 0.781 (95% CI: 0.753–0.808) and 0.718 (95% CI: 0.682–0.755) respectively (Figure 1). A cut-off of 5 points to identify patients with high PWV in the external validation cohort yielded a positive predictive value, negative predictive value, sensitivity and specificity of 60.7%, 84.8%, 51.9% and 78.3% respectively.

Conclusions: The SAGE score that takes into account easily measured clinical variables (systolic blood pressure, age, glucose and eGFR) can be used to predict elevated levels of PWV and prioritize its measurement in specific patients. Its use will result in greater acknowledgement of the role of aortic stiffness and aid physicians in implementing it in clinical practice.

References

3.5 CLIFF BLOOD PRESSURE IS PROGRESSIVELY MORE BIASED WITH INCREASING AGE: INDIVIDUAL PARTICIPANT LEVEL ANALYSIS FROM THE INSPECT CONSORTIUM